# Plasmonic Filter and Demultiplexer Based on Square Ring Resonator

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials, Structures, and Methods

## 3. Applications in Sensing and Switching

## 4. Dual Demultiplexer for Telecommunication Wavelengths

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Bozhevolnyi, S.I.; Volkov, V.S.; Devaux, E.; Laluet, J.Y.; Ebbesen, T.W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature
**2006**, 440, 508–511. [Google Scholar] [CrossRef] [PubMed] - Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: Berlin, Germany, 2014; Volume 52, pp. 49–74. [Google Scholar]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics
**2010**, 4, 83–91. [Google Scholar] [CrossRef] - Zhang, Q.; Huang, X.G.; Lin, X.S.; Tao, J.; Jin, X.P. A subwavelength coupler-type MIM optical filter. Opt. Express
**2009**, 17, 7549–7554. [Google Scholar] [CrossRef] - Zhang, Z.; Shi, F.; Chen, Y. Tunable multichannel plasmonic filter based on coupling-induced mode splitting. Plasmonics
**2015**, 10, 139–144. [Google Scholar] [CrossRef] - Xiao, S.; Liu, L.; Qiu, M. Resonator channel drop filters in a plasmon-polaritons metal. Opt. Express
**2006**, 14, 2932–2937. [Google Scholar] [CrossRef] [PubMed] - Lu, H.; Liu, X.; Gong, Y.; Mao, D.; Wang, G. Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. J. Opt. Soc. Am. B
**2011**, 28, 1616–1621. [Google Scholar] [CrossRef] - Hu, F.; Yi, H.; Zhou, Z. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt. Lett.
**2011**, 36, 1500–1502. [Google Scholar] [CrossRef] [PubMed] - Geng, X.M.; Wang, T.J.; Yang, D.Q.; He, L.Y.; Wang, C. Tunable plasmonic wavelength demultiplexing device using coupled resonator system. IEEE Photonics J.
**2016**, 8, 1–8. [Google Scholar] [CrossRef] - Taheri, A.N.; Kaatuzian, H. Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal-insulator-metal stub filters. Appl. Opt.
**2014**, 53, 6546–6553. [Google Scholar] [CrossRef] [PubMed] - He, Z.; Li, H.; Zhan, S.; Li, B.; Chen, Z.; Xu, H. Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator. Sci. Rep.
**2015**, 5, 15837. [Google Scholar] [CrossRef] [PubMed] - Shahamat, Y.; Vahedi, M. Plasmon-induced transparency in a rectangle cavity and an h-shaped structure for sensing and switching applications. J. Nanophotonics
**2017**, 11, 046012. [Google Scholar] [CrossRef] - Lu, H.; Liu, X.; Wang, L.; Gong, Y.; Mao, D. Ultrafast all-optical switching in nanoplasmonic waveguide with kerr nonlinear resonator. Opt. Express
**2011**, 19, 2910–2915. [Google Scholar] [CrossRef] [PubMed] - Zhang, Z.; Yang, J.; He, X.; Zhang, J.; Huang, J.; Chen, D.; Han, Y. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors
**2018**, 18, 116. [Google Scholar] [CrossRef] [PubMed] - Li, X.; Wei, Z.; Liu, Y.; Zhong, N.; Tan, X.; Shi, S.; Liu, H.; Liang, R. Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. Phys. Lett. A
**2016**, 380, 232–237. [Google Scholar] [CrossRef] - Yan, S.; Zhang, M.; Zhao, X.; Zhang, Y.; Wang, J.; Jin, W. Refractive index sensor based on a metal–insulator–metal waveguide coupled with a symmetric structure. Sensors
**2017**, 17, 2879. [Google Scholar] [CrossRef] [PubMed] - Kong, Y.; Wei, Q.; Liu, C.; Wang, S. Nanoscale temperature sensor based on Fano resonance in metal–insulator–metal waveguide. Opt. Commun.
**2017**, 384, 85–88. [Google Scholar] [CrossRef] - Zhang, X.; Shao, M.; Zeng, X. High quality plasmonic sensors based on Fano resonances created through cascading double asymmetric cavities. Sensors
**2016**, 16, 1730. [Google Scholar] [CrossRef] [PubMed] - Zhang, Z.; Liang, L.; Xue, C.; Zhang, W.; Yan, S. Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors
**2016**, 16, 642. [Google Scholar] [CrossRef] [PubMed] - Chu, H.S.; Akimov, Y.; Bai, P.; Li, E.P. Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide. Opt. Lett.
**2012**, 37, 4564–4566. [Google Scholar] [CrossRef] [PubMed] - Hosseini, A.; Massoud, Y. Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett.
**2007**, 90, 181102. [Google Scholar] [CrossRef] - Peng, X.; Li, H.; Wu, C.; Cao, G.; Liu, Z. Research on transmission characteristics of aperture-coupled square-ring resonator-based filter. Opt. Commun.
**2013**, 294, 368–371. [Google Scholar] [CrossRef] - Yan, Y.L.; Fu, G.; Zhang, Y.; Gong, S.X.; Chen, X. A simple nanoscale plasmonic square-shaped ring resonator waveguide. Prog. Electromagn. Res. Lett.
**2015**, 51, 39–45. [Google Scholar] [CrossRef] - Zavvari, M.; Azar, M.T.H.; Arashmehr, A. Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure. J. Mod. Opt.
**2017**, 64, 2221–2227. [Google Scholar] [CrossRef] - Wang, S.; Li, Y.; Xu, Q.; Li, S. A MIM filter based on a side-coupled crossbeam square-ring resonator. Plasmonics
**2016**, 11, 1291–1296. [Google Scholar] [CrossRef] - Shen, X.; Wang, Y.; Chen, Q.; Wu, X. Detuned square ring resonators for multiple plasmon-induced transparencies in metal–insulator–metal waveguide. Appl. Phys. Express
**2015**, 8, 112201. [Google Scholar] [CrossRef] - Wen, K.; Hu, Y.; Chen, L.; Zhou, J.; He, M.; Lei, L.; Wu, Y.; Li, J. Single- and dual-plasmonic induced absorption in a subwavelength end-coupled composite-square cavity. Appl. Opt.
**2017**, 56, 8372–8377. [Google Scholar] [CrossRef] [PubMed] - Liu, J.; Fang, G.; Zhao, H.; Zhang, Y.; Liu, S. Plasmon flow control at gap waveguide junctions using square ring resonators. J. Phys. D Appl. Phys.
**2010**, 43, 055103. [Google Scholar] [CrossRef] - Johnson, P.B. Optical constants of the noble metals. Phys. Rev. B
**1972**, 6, 4370–4379. [Google Scholar] [CrossRef] - Manolatou, C.; Khan, M.J.; Fan, S.; Villeneuve, P.R.; Haus, H.A.; Joannopoulos, J.D. Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron.
**2002**, 35, 1322–1331. [Google Scholar] [CrossRef] - Valsecchi, C.; Brolo, A.G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir
**2013**, 29, 5638–5649. [Google Scholar] [CrossRef] [PubMed] - Chai, Z.; Hu, X.; Zhu, Y.; Zhang, F.; Yang, H.; Gong, Q. Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures. Appl. Phys. Lett.
**2013**, 102, 201119. [Google Scholar] [CrossRef] - Koonen, T. Fiber to the home/fiber to the premises: What, where, and when? Proc. IEEE
**2006**, 94, 911–934. [Google Scholar] [CrossRef] - Park, S.J.; Lee, C.H.; Jeong, K.T.; Park, H.J.; Ahn, J.G.; Song, K.H. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J. Light. Technol.
**2004**, 22, 2582–2591. [Google Scholar] [CrossRef] - Wu, C.T.; Huang, C.C.; Lee, Y.C. Plasmonic wavelength demultiplexer with a ring resonator using high-order resonant modes. Appl. Opt.
**2017**, 56, 4039–4044. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**(

**a**) Two-dimensional (2D) structure of the band-stop filter with a single square ring resonator (SRR). L = 550 nm, D = 20 nm, w = 100 nm, g = 15 nm. (

**b**) The transmission spectra of the band-stop filter. The inset is the corresponding field distribution. (

**c**) The transmission spectra pertinent to different side lengths L of the SRR. (

**d**) The transmission spectra pertinent to different gaps g.

**Figure 2.**(

**a**) The drop spectrum for the traditional add-drop SRR. (

**b**) The schematic diagram of the band-pass filter. (

**c**) The drop spectrum pertinent to different coupling lengths. (

**d**) The drop spectrum pertinent to different gaps. (

**e**) The transmission spectrum for a channel drop filter with L

_{1}= 546 nm, w = 100 nm, g = 15 nm, s = 320 nm from Finite-Difference Time-Domain (FDTD) and coupled mode theory (CMT). The inset is the field distribution of the channel drop filter.

**Figure 3.**(

**a**) The drop spectrum corresponding to different values of l. The inset is the reflector structure. (

**b**) The drop spectrum with a reflector from FDTD and CMT, and the reflection spectrum when l = 34 nm.

**Figure 4.**(

**a**) The drop spectrum corresponding to different environmental refractive index (RI) values. (

**b**) The inset is the linear relationship between the drop wavelength and environmental RI. (

**c**) The schematic diagram of the optical switching device. (

**d**) The drop spectrum for optical switching with or without the pump light.

**Figure 5.**(

**a**) The schematic diagram of the dual demultiplexer. L

_{1}= 546 nm, L

_{2}= 620 nm, s

_{1}= 320 nm, s

_{2}= 370 nm, g = 15 nm, d = 80 nm. (

**b**) The drop spectrum of channels 1 and 2 without a reflector. (

**c**) The drop spectrum of channels 1 and 2 with a reflector. The inset is the reflector, l

_{1}= 34 nm, l

_{2}= 46 nm.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, Z.; Yang, J.; He, X.; Han, Y.; Zhang, J.; Huang, J.; Chen, D.
Plasmonic Filter and Demultiplexer Based on Square Ring Resonator. *Appl. Sci.* **2018**, *8*, 462.
https://doi.org/10.3390/app8030462

**AMA Style**

Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J, Chen D.
Plasmonic Filter and Demultiplexer Based on Square Ring Resonator. *Applied Sciences*. 2018; 8(3):462.
https://doi.org/10.3390/app8030462

**Chicago/Turabian Style**

Zhang, Zhaojian, Junbo Yang, Xin He, Yunxin Han, Jingjing Zhang, Jie Huang, and Dingbo Chen.
2018. "Plasmonic Filter and Demultiplexer Based on Square Ring Resonator" *Applied Sciences* 8, no. 3: 462.
https://doi.org/10.3390/app8030462