

Supplementary Material :Temperature-Dependent Electrical Properties of Al₂O₃ Passivated Multilayer MoS₂ Thin-Film Transistors

Keywords: transition metal dichalcogenide; molybdenum disulfide; thin-film transistor; passivation; contact resistance; intrinsic mobility

	r	1	
L	ີ	,	
۰		,	

Atomic %	0-К	AI-K	S-KA	Mo-KA	Si-KA
1	57.83	41.18	0.26	0.12	0.61
2	5.42	1.56	60.28	29.95	2.79

Figure S1. (a) Cross-sectional TEM image of a MoS² encapsulated by Al₂O₃. Inset: FFT patterns of the MoS² obtained in the area marked with the white dashed line. (b) HAADF image of a MoS² TFT with Al₂O₃ passivation; (c) atomic percentage of the atoms contained in the area marked with red and green rectangles in (b).

Figure S2. (a) Raman and (b) XPS spectra of (i) pristine and (ii) UV-ozone treated MoS₂.

Variations of the physical properties in multilayer MoS₂ with respect to the UV-ozone treatment were investigated using Raman and X-ray photoelectron spectroscopy (XPS). In Figure S2a, both of the two-spectra show two representative peaks belonging to MoS₂, which are assigned to the E¹_{2g} peak at 384 cm⁻¹ and the A_{1g} peak at 409 cm⁻¹, respectively [S1_3]. The Raman spectra exhibit no apparent variation in the peak intensity and position, indicating that negligible defects or lattice disorders are induced by the UV-ozone treatment.

As shown in the XPS spectra (Figure S2b), two peaks with relatively high intensities are observed at 229.3 eV and 232.4 eV for the pristine MoS_2 (i.e., before UV-ozone treatment), which correspond to Mo^{4+} 3d. Another-Other weak peaks corresponding to S^{2-} 2p are identified at 162.1 eV and 163.3 eV [S4,5]. However, after UV-ozone treatment, the intensities of the XPS peaks originatinged from Mo^{4+} 3d and S^{2-} 2p were clearly reduced. In addition, a-strong doublet peaks are observed at the higher binding energies of 232.7 and 235.8 eV₂ implying formation of Mo_O bonding (Mo^{6+} 3d) [S6]. New peaks also appear at 168.5 and 169.7 eV₂ corresponding to S⁶⁺ 2p (S_O bonding) [S3]. These results indicate that the MoS_2 surface becomes oxidized during UV-ozone treatment.

Figure S3. Transfer characteristics of 14 MoS₂ TFTs before (black line) and after (red line) Al₂O₃ passivation.

Figure S4. Transfer characteristics of six MoS₂ TFTs without Al₂O₃ passivation before (i.e., pristine) and after UV-ozone treatment.