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Abstract: Trajectory prediction is currently attracting considerable attention. This paper proposes
geodesic trajectory planning with end-effector and joint constraints to predict the trajectory properties
of the end-effector, such as velocities, accelerations, and smoothness. The prediction of the trajectory
properties is independent of the joint trajectories. The prediction makes it possible to adjust the
trajectory properties in line with a light computational burden. To demonstrate the effectiveness of
the proposed method, experiments were conducted using the Efort robot. The experiments show that
the proposed method can predict the properties of the trajectory and modify the trajectory to meet
the constraints.
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1. Introduction

There are growing interests in trajectory prediction. Trajectory prediction can be classified into
two kinds: trajectory prediction for future time and trajectory prediction for future tasks. Future actions
have been predicted for obstacle avoiding and trajectory re-planning [1,2]. Appropriate trajectories
for future tasks have been predicted by using machine learning [3,4]. Fast motion planning has been
obtained from experience. The transfer of previously optimized trajectories to a new situation cannot
be made in the joint space. Little attention has been paid to Cartesian trajectory prediction that predicts
the motion performed by the robot end-effector under joint velocity/acceleration constraints.

Many practical tasks impose constraints on robot motions, such as machining, welding, and
cutting and so on. RRT (rapidly-exploring random tree)/PRM (probabilistic roadmap)-based
approaches were used to plan the path with end-effector constraints [5–9]. The Cartesian positions
of the end-effector at the via-points were achieved, but the motions of the end-effector between via
points are not predictable, in view of the nonlinear effects introduced by the direct kinematics.

There are limits of joint positions, velocities, and accelerations. To obtain smooth motions, the joint
constraints should be bounded. Joint constraints are often met by optimizing appropriate objective
functions, such as keeping the joints close to their range centers [10], using the joint ranges in a
weighted pseudo-inversion [11], or defining an infinity norm to be minimized at the velocity levels [12].
However, this method did not track the assigned paths. Inverse kinematics was used to enable joint
velocity and acceleration not exceeding their limits [13], which was achieved by scaling the task time.
However, these methods cannot meet joint constraints.

Generally, there are three questions. (1) The motions of the end-effector between via points are
not predictable in trajectory planning with end-effector constraints. (2) There is no guarantee that the
end-effector will track the assigned paths in trajectory planning with joint constraints. (3) End-effector
constraints and joint constraints have seldom been considered simultaneously in the previous studies.
In this paper, we attempt to solve these problems.
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Geodesic is an important concept in Riemannian geometry and can be used in robot trajectory
planning [14,15] and machine tool interpolation [16]. By selecting suitable Riemannian metrics and
local coordinates, the direct output of the proposed method is joint trajectories.

In this paper, we present a predictable trajectory planning with constraints using geodesics.
The end-effector position, velocities, and accelerations can be predicted without forward kinematics.
The prediction of end-effector motion properties can be obtained before the calculation of the geodesic
method. While tracking the constrained end-effector paths, the joint velocity/acceleration constraints
can be met by scaling the motion time. The trajectory based on this method is predictable and has a
light computational burden. Furthermore, the end-effector motions are of high precision.

This paper is organized as follows. The predictable trajectory planning with constraints is
presented in Section 2. Using null constraints and a virtual end-effector constraint, predictable linear
and circular trajectory planning are described in Section 3. Experiments using the Efort robot are
illustrated in Section 4. Finally, the conclusion is given.

2. Predictable Trajectory Planning with Constraints

2.1. Predictable Trajectory Planning with End-Effector Constraints

The robot end-effector moves under some constraints to accomplish some tasks in practical
applications. The end-effector position constraint H and orientation constraint F can be described by{

H(p) = 0
F(n, o, a) = 0

(1)

where p and
{

n o a
}

are the end-effector position and orientation respectively.
The end-effector trajectories in Cartesian space can be predicted without forward kinematics.

The prediction is independent of the joint trajectories and can be made before the calculation of the
proposed geodesic method. The prediction can adjust the end-effector motion properties and has light
computational burdens.

First of all, the corresponding Cartesian paths meet the end-effector constraints defined in
Equation (1). In Cartesian space, the end-effector moves the shortest paths that are usually not
linear paths. Because the linear paths may not satisfy the end-effector constraints the shapes of the
Cartesian paths are determined by the constraints.

Secondly, the Cartesian velocity is constant. Because the velocity of a geodesic is constant, the
velocity always equal to the initial velocity. The velocity of a geodesic trajectory v is

v =
Ld
tw

= v0, (2)

where Ld, tw and v0 are the path length, the motion time, and the initial velocity, respectively.
Because the velocity of a geodesic is constant, the end-effector performs a uniform curved motion.

The tangential acceleration is zero. The centripetal acceleration a is

a =
v2

r
, (3)

where r is the radius of the curvature of a geodesic path.
Finally, the joint and Cartesian trajectories are both smooth. Because the solutions of the geodesic

equations are C3 continuous [10], the joint trajectories are smooth as are the Cartesian trajectories.
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The joint trajectories are calculated by the geodesic method. The position and orientation are the
functions of the joint variables,

p = p(q1 · · · qk)

n = n(qk+1 · · · qn)

o = o(qk+1 · · · qn)

a = a(qk+1 · · · qn)

(4)

where qi are joint variables. By the implicit function theorem [17], there are qi0 and qj0 which are
derived from Equation (1)

qi0 = qi0(q1, · · · qi0−1, qi0+1, · · · qk0)

qj0 = qj0(qk0+1, · · · qj0−1, qj0+1, · · · qn)
(5)

The position and orientation vectors can be described as,

p = p(q1, · · · qi0−1, qi0+1, · · · qk0)

O ∼= n + o + a = O(qk0+1, · · · qj0−1, qj0+1, · · · qn)
(6)

In this way, the end-effector constraints are implicit in the position and orientation vector.
For simplicity, they can be denoted as,

ui =

{
qi, i ≤ i0 − 1

qi+1, k0 ≥ i ≥ i0 + 1

vi =

{
qk+i, i ≤ j0 − k0 − 1
qk+i+1, n ≥ i ≥ j0 + 1
p = (p1, p2, p3)

O = (O1, O2, O3)

(7)

Define Riemannian metrics as

dg = ∑
α,i,j

∂pα

∂ui

∂pα

∂uj
duiduj = ∑

i,j

dg ijduiduj

og = ∑
α,i,j

∂Oα
∂vi

∂Oα
∂vj

dvidvj = ∑
i,j

og ijdvidvj
(8)

where dui is the differential of ui, and Σα,i,j is the summation notation with the index α, i, j.
The quantities relevant position and orientation with superscript are d and o, respectively. The
geodesic equations are 

d2ui
dt2 + ∑

k,j

dΓ i
kj

duk
dt

duj
dt = 0

d2vl
dt2 + ∑

m,b

oΓ l
bm

dvm
dt

dvb
dt = 0

(9)

The Christoffel symbols dΓ i
kj and oΓ l

mb are given as
dΓ i

kj =
1
2 ∑

m
dgei( ∂dgke

∂uj
+

∂dg je
∂uk

− ∂dgkj
∂ue

)

oΓ l
bm = 1

2 ∑
f

og f l(
∂o gn f
∂vm

+
∂o gm f

∂vb
− ∂o gbm

∂v f
)

(10)

where dgei and og f l are the elements of inverse Riemannian metric coefficient matrices dG−1 =(
dg ij

)−1
and oG−1 = (ogmn)

−1 respectively [16]. ∂ is the notation of partial differential. The Christoffel
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symbols are derived from the position and orientation vectors with end-effector constraints. The joint
trajectories are obtained by Equation (9) together with Equations (5) and (7) with boundary conditions

ui(t0) =
0u i

vl(t0) =
0v l

ui(t0 + tw) = f u i
vl(t0 + tw) = f v l

(11)

where t0,
{0u i, 0v l

}
and

{
f u i, f v l

}
are the start time, the start and end joint positions, respectively.

In other words, the direct output of the geodesic method is joint trajectories.
As we can see above, trajectory planning with the end-effector constraints is given. The prediction

of the end-effector motion properties can be made before the calculation of the geodesic method.
The prediction is demonstrated in Section 3.1 in a simple way. The reason why the trajectories can be
predicted is that they are geodesic trajectories. Geodesic has many merits, such as the shortest path,
constant velocity.

2.2. Joint Velocity/Acceleration Limits Avoidance

The joint velocity and acceleration limits must be taken into account. Assume that the trajectory
planned by the proposed method is,{

tw, qi,
•
qi,

••
q i(i = 1, · · · , n)

}
(12)

Introducing a set of joint velocity/acceleration limits as follows,
∣∣∣ •qi

∣∣∣ ≤ •
qi,lim∣∣∣••qi

∣∣∣ ≤ ••
q i,lim

(13)

where
•
qi,lim and

••
q i,lim are the velocity and acceleration limits of the ith joint. Define a scaling factor

α = max


∣∣∣•qi

∣∣∣
•
qi,lim

,

∣∣∣••q i

∣∣∣
••
q i,lim

, i = 1, · · · , n

 (14)

If α ≥ 1, there is at least one of the joint velocities or accelerations out of its limit. Update the
motion time by the scaling factor,

tnew = αtw (15)

The end-effector motions are predictable. The end-effector moves along the desired paths. The
end-effector velocity is renewed as,

vnew =
1
α

v (16)

Along the geodesic path, the tangential acceleration is still zero. The centripetal acceleration is

anew =
vnew

2

r
=

1
α2 a (17)

The new joint trajectories are obtained by solving the geodesic equations, Equation (9) under the
updated motion time with the boundary conditions,
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ui(t0) =

0u i
vl(t0) =

0v l
ui(t0 + tnew) = f u i
vl(t0 + tnew) = f v l

(18)

Actually, the joint velocity and acceleration limits avoidance is achieved by scaling the motion
time. Our method can track the assigned paths, and the velocities while the accelerations can be
predicted in advance.

2.3. Acceleration/Deceleration Profile

Because the geodesic is constant-speed, the planning geodesic trajectory is constant
speed. The acceleration/deceleration profile should be considered at the endpoints in the
practical applications.

Generally, the acceleration/deceleration profile is given as

d2qi
dt2 + ∑

k,j
Γi

kj
dqk
dt

dqj

dt
=

acc√
∑
j
(

dqj
dt )

2

dqi
dt

(19)

where Γi
kj and acc are the Christoffel symbols and the acceleration respectively [10]. In fact, acc is the

tangential acceleration. For linear motions, the centripetal acceleration equals zero. The tangential
acceleration is the acceleration acc. The acceleration of curved motions acc is actually the tangential
acceleration.

3. Predictable Linear and Circular Trajectory Planning

3.1. Predictable Linear Trajectory Planning

If the constraint defined in Equation (1) is zero, the method illustrated in Section 2 degenerates
into linear trajectory planning. Because the shortest path in the Cartesian space is a linear path, the
Riemannian metrics dg and og become [9],{

dg = (dp)2

og = (dn)2 + (do)2 + (da)2 (20)

The geodesic equations are 
d2qi
dt2 + ∑

k,j

dΓ i
kj

dqk
dt

dqj
dt = 0

d2ql
dt2 + ∑

m,b

oΓ l
bm

dqb
dt

dqn
dt = 0

(21)

We predict that the end-effector performs linear paths with the joint trajectories derived by
Equation (19). The velocity and acceleration are constant and zero respectively. The Cartesian
trajectories are smooth. These predictions are validated as follows.

The joint variables θ1, · · · , θk0 are regarded as local coordinates of the position space.
The components of the position vector px, py and pz can also be chosen as coordinates. The Riemannian
metric defined in Equation (19) can be rewritten as

dg = (dp)2 = ( dpx dpy dpz )I( dpx dpy dpz )
T

, (22)
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where I is a 3 × 3 identity matrix. The geodesic equations become
d2 px
dt2 = 0

d2 py
dt2 = 0

d2 pz
dt2 = 0

(23)

which are equations of the linear path. Since geodesic has no relation to the coordinates,
Equations (19) and (21) represent the same geodesic. The robot end-effector will move linearly under
the joint trajectories determined by Equation (19). The velocity and acceleration are constant and
zero respectively from Equation (21). The end-effector motion properties can be made before the
calculation of the geodesic method. The Cartesian trajectories are smooth by the theory of the ordinary
differential equation.

3.2. Predictable Circular Trajectory Planning

A geodesic of a spherical surface is a big circle. To obtain circular geodesic trajectory planning,
we can impose a virtual end-effector constraint as

(p − p0)
2 = R2, (R > 0) (24)

where p0 and R are the center and the radius of a spherical surface respectively. The corresponding
Riemannian metrics and geodesic equations can be obtained as in Section 2.

It is predicted that the end-effector performs circular paths with joint trajectories derived by the
geodesic equations. The velocity, tangential acceleration, and centripetal acceleration are constant v,
zero, and v2

R respectively. The Cartesian trajectories are smooth. Similar validation can be obtained.

4. Experiment

The proposed predictable trajectory planning method and joint velocity/acceleration limits
avoidance schemes were validated in the following experiment. The experiment used a 6-DOF
industrial robot Efort robot (ER3A-3C (HD)) produced by Anhui Efort intelligent equipment Co., Ltd.
The link parameters of the Efort robot are shown in Table 1. The joint velocity limits given by the
manufacture are presented in Table 2. The joint acceleration limit is 2 × 104 (rad/s2).

Table 1. Link parameters of the Efort robot.

i αi−1 ai−1 (mm) di(mm) θi

1 0 0 0 θ1
2 −π/2 50 0 θ2
3 0 270 0 θ3
4 −π/2 70 299 θ4
5 π/2 0 0 θ5
6 −π/2 0 0 θ6

Table 2. The joint velocity limits of the Efort robot.

Joint 1 2 3 4 5 6

limits(rad/s) 4.01 4.01 4.36 5.59 5.59 7.33

An actual machining process is performed on the Efort robot. The coordinates and time stamps of
the via points on the machined path are listed in Table 3. The paths are shown in Figure 1. The desired
Cartesian velocity is 800 mm/s. To reduce the vibration, the Cartesian velocities at the corner points
are set at 200 mm/s.
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Before the experiment, we can predict the trajectories. The robot will move along the
path shown in Figure 1 with the end-effector constraints. There will be an acceleration zone, a
constant-velocity zone and a deceleration zone in a normal block. In a short block, there will be only
an acceleration/deceleration zone or a constant-velocity zone. After avoiding the joint limits, the
end-effector will move the desired path. The motion time and velocities will be scaled.

In the constant-velocity zones, the trajectories are generated by Equation (19). The trajectories in
the acceleration and deceleration zones are generated by Equation (17). The corresponding results are
shown in Figure 2. In the first acceleration zone, the velocity creeps up from 0 to 200 mm/s in 0.2 s.
The velocity runs to 800 mm/s within 0.04 s. The total motion time grows from 6.18 s to 6.49 s with the
joint avoidance scheme. Corresponding velocities are also changed.

The joint trajectories are shown in Figure 3. As shown in Table 4, the maximum velocity and
the maximum acceleration of joint 3 are 5.06 rad/s and 2.32 × 104 rad/s2, respectively. Both of the
values exceed their limits. The method of joint velocity/acceleration limits avoidance introduced in
Section 2.2 is employed to adjust the joint velocity and acceleration trajectories. Actually, there are three
areas where the joint velocities exceed their limits. These trajectories can be modified to comply with
the velocity and acceleration constraints by scaling the motion time. Scaling the neighboring zones
using the scaling factor defined in Equation (12), the motion time is updated by the scaling factor as in
Equation (13). The maximum velocity and the maximum acceleration of joint 3 reduced to 4.36 rad/s
and 1.85 × 104 rad/s2. The maximum joint velocities and accelerations are shown in Table 4. Table 4
shows that most of the values are reduced and all values are in the allowable range. The modified
joint trajectories are shown in Figure 3. To see the details clearly, the first modified zone is taken as an
example, as shown in Figure 4. In this zone, the motion time (0.48–0.76) (s) is scaled to (0.48–0.85) (s).
The velocity of the constant-velocity zone is reduced from 800 mm/s to 592.57 mm/s, as shown in
Figure 2. The Cartesian paths marked red in Figure 1 are the joint modified zones. The Cartesian path
marked green in Figure 1 is above the plane. As is shown, the predicted Cartesian path coincides with
the modified test one. The Cartesian velocity shown in Figure 2 is consistent with the predictions
that are acceleration, constant velocity, and deceleration zones. It can be observed that the proposed
method allows us to keep the joint velocities and accelerations below their limits while precisely
tracking the desired paths. The machined workpiece is shown in Figure 5. The computational time of
each interpolation point is about 1ms, which meets the real time demands. The Cartesian trajectories
move as is predicted.

Table 3. The coordinates and time stamps of the via points.

(px, py, pz) (mm) Time (s) (px, py, pz) (mm) Time (s)

1 (500, −260, 100) 0 14 (310, −70, 80) 2.89
2 (500, −260, 80) 0.2 15 (310, −70, 100) 2.99
3 (500, −60, 80) 0.48 16 (355, −115, 100) 3.31
4 (300, −60, 80) 0.76 17 (355, −115, 80) 3.41
5 (300, −260, 80) 1.04 18 (355, −205, 80) 3.86
6 (500, −260, 80) 1.32 19 (310, −160, 80) 4.18
7 (500, −260, 100) 1.42 20 (310, −160, 100) 4.28
8 (490, −250, 80) 1.49 21 (445, −205, 100) 4.99
9 (490, −250, 100) 1.59 22 (445, −205, 80) 5.09

10 (490, −70, 80) 1.83 23 (400, −250, 80) 5.41
11 (310, −70, 80) 2.07 24 (355, −205, 80) 5.72
12 (490, −250, 80) 2.41 25 (490, −70, 80) 5.98
13 (310, −250, 80) 2.65 26 (490, −70, 100) 6.18
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5. Conclusions

In this paper, a predictable trajectory planning of industrial robots with constraints is presented.
The end-effector and joint velocity/acceleration constraints are all considered. The end-effector
motions, velocities, and accelerations can be predicted. The prediction is embedded in two aspects.
(1) The direct output of the method is the joint trajectories while the Cartesian trajectories even between
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via points can be predicted. (2) The end-effector paths can be predicted with velocity and acceleration
constraints. Experiments with this method using the Efort robot are given. The results show that the
trajectory can be predicted and modified on-line to meet the robot constraint.

There are also some limitations. In practice, the end-effector constraints may not be described
easily. In the paper, we give two specific end-effector constraints—linear and circular end-effector
motions. There are two ways to deal with complicated end-effector constraints. One is to explore
the equations of end-effector constraints as in Equation (1). The other is to fit complex end-effector
motions by linear and circular motions.

There are also questions to be studied, such as the accuracy of the prediction. Related problems
include the size, influence factor, and improvements of the accuracy of the prediction, and so on.
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