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Featured Application: The proposed novel approach presented in this paper offers a highly
effective and reliable scheme for damage detection and safety assessment of pipeline systems
and can be incorporated as a practical and highly reliable structural health monitoring approach
for the safe operationty of existing and new pipeline systems.

Abstract: Modal macro strain-based damage identification is a promising approach since it has the
advantages of high sensitivity and effectiveness over other related methods. In this paper, a basalt
fiber-reinforced polymer (BFRP) pipeline system is used for analysis by using long-gauge distributed
fiber Bragg grating (FBG) sensors. Dynamic macro strain responses are extracted to form modal macro
strain (MMS) vectors. Both longitudinal distribution and circumferential distribution plots of MMS
are compared and analyzed. Results show these plots can reflect damage information of the pipeline
based on the previous work carried out by the authors. However, these plots may not be good choices
for accurate detection of damage information since the model is 3D and has different flexural and
torsional effects. Therefore, by extracting MMS information in the circumferential distribution plots,
a novel deep neural network is employed to train and test these images, which reflect the important
and key information of modal variance in the pipe system. Results show that the proposed Deep
Learning based approach is a promising way to inherently identify damage types, location of the
excitation load and support locations, especially when the structural types are complicated and the
ambient environment is changing.

Keywords: modal macro strain; fiber-reinforced polymer (FRP) composite pipeline; damage; load;
support identification; deep learning; convolutional neural network

1. Introduction

Building resilient, ecological and sustainable infrastructure systems is increasingly becoming
important since these systems degrade with time and are prone to damage when they are subjected
to natural hazards and other unexpected disturbances. Pipelines, such as gas and utility pipeline
systems and networks, are some of the most critical components of civil infrastructure. Therefore,
to meet the goal that they have highly reliable serviceability performance under general or unforeseen
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loading scenarios, they must be properly designed to resist damage and deterioration over their
entire lifespans. More importantly, implementation and utilization of an effective structural health
monitoring system to assure the safety and potential damage detection of pipeline systems is important.
Structural health monitoring can be divided into three major components including damage
identification and its associated feature characterization, algorithm interpretation for diagnosis
and prognostics, and structural reliability and risk assessment [1–3]. In engineering applications,
composite structures have several distinct advantages such as high strength/weight ratio and corrosion
resistance property, especially under the freeze and thaw cycle effects. Some disadvantages of
composite structures are that they are prone to matrix cracks, fiber breakage, and delamination.
These problems and faults are usually invisible and may lead to catastrophic structural failures [4,5].
Design methods, manufacturing process, and quality control are common factors that may cause
internal and external damage. Several main failure modes of fiber reinforced polymer composites
(FRP) include temperature-induced failure, corrosion-induced failure, bend failure, tensile failure,
stress failure, impact failure, attachment joint failure, improper installation, etc. These failure types are
complex and are not easy to identify, localize and quantify especially when structures are subjected to
joint effects of multiple factors.

Different monitoring and analytical approaches have been proposed and employed for damage
identification. By employing an improved conjugated beam method (ICBM), distributed structural
deformation was monitored when the structure was subjected to combined actions of loads,
support settlements and temperature variations [6]. This method has also been used to identify
the settlement and lateral displacement of a statically indeterminate shield tunnel [7]. A theory
regarding a long gauge strain influence line coefficient was introduced to detect damage and evaluate
the bearing capacity of a bridge [8].

For long-gauge fiber applications, overall bonding and point fixation methods were investigated
experimentally to develop non-slippage optical fibers, and critical effective sensing length was further
studied [9]. A type of long distance fiber based sensing and monitoring system was employed to
collect vibration signal responses of soil around the pipeline, and classify different kinds of activities
using an artificial neural network [10]. A hydrostatic leak test for a water pipeline was studied
using a distributed optical fiber vibration sensing system, which was based on phase-sensitive optical
time-domain reflectometer (OTDR) technology [11] and fatigue damage identification for composite
pipeline systems using electrical capacitance sensors [12].

A modal macro-strain vector was proposed and verified as an efficient damage identification
algorithm to localize damage for flexural structures by directly extracting modal parameters from
the dynamic responses of macro-strain [13,14]. By using macro-strain based distributed sensing and
high-density point sensing, a comprehensive comparison of macro-strain modes and displacement
modes was presented [15]. Local parameters such as bending stiffness and the global parameters,
such as mass density and rotational stiffness of support, were well identified by introducing these
parameters in the objective function and updating the finite element model [16]. Further field validation
was conducted in a steel stringer bridge with area sensing [17].

For civil and industrial structures, it is difficult to monitor the structural health state in real
time when the types of structures are complicated and the signals measured from the structures
are corrupted due to environmental noise. Therefore, it is necessary to propose a non-model based
approach to identify structural damage. Deep learning can address this problem in a satisfactory way
due to its superior adaptive learning of datasets.

A large and deep convolutional neural network (CNN) was employed to make a classification
of 1.2 million high-resolution images [18]. Derivation and implementation of convolutional neural
networks were presented [19]. A vibration-based damage detection and localization in real-time was
proposed by using 1D convolutional neural networks [20–24]. A sparse coding algorithm was applied
to a large number of unlabeled examples to train a feature extractor, and features were then used to be
fed to a neural network classifier to distinguish various damage statuses of bridges [25]. To overcome
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challenges such as lighting and shadow changes, a type of convolutional neural network with deep
architecture was used for detection of concrete cracks without directly extracting defect features [26].
Responses of a healthy and loosened connection structure were analyzed via wavelet coefficient
differences to indicate damage of a steel structure [27,28]. Wavelets were used to detect spikes in
the wavelet details of responses of a framed structure subjected to strong earthquake excitation,
indicating damage occurrence [29]. A combined wavelets, neural networks, and Hilbert transform,
inspired by the deep learning paradigm, was presented to form a new signal-processing algorithm [30].
This was further studied to identify the fault condition of a roller bearing using three types of
deep neural network models such as deep Boltzmann machines, deep belief networks and stacked
auto-encoders [31]. Compared with a traditional support vector machine and back-propagation
neural network, conditions of the planetary gearbox could be detected effectively with the best
diagnosis accuracy using deep convolutional neural networks [32]. By applying wide linear models
and deep neural networks, joint wide and deep learning was employed to combine the benefits
of both generalization and memorization capability for recommender systems [33]. Concrete slabs
with induced damage were investigated by applying big data analytics in online structural health
monitoring [34]. A multi-scale structural health monitoring system was constructed to monitor the
health states and assess the serviceability of large-scale bridges by employing the Hadoop Ecosystem
(MS-SHM-Hadoop). A Bayesian network was studied to evaluate the reliability of specific components
according to serviceability and inter-component correlations [35] and a hybrid response surface
method [36].

Unlike buildings or bridges, for pipeline systems damage usually initiates from the internal
surface especially when the internal temperature is higher than external temperature. Micro damage,
matrix cracking [37], delamination [38,39], Webepage [40], and fiber failure are the three stages
that result in ultimate failure of FRP composite structure, and damages may probably initiate and
concentrate inside the pipes rather than outside the surface. Previous studies have shown that by
acquiring images from structural damage areas (mostly outside surfaces of structures), it may be good
to distinguish the different health states of structures. Images captured from the external surface of
pipelines may not be an appropriate way to identify damage.

While modal macro strain (MMS) is an effective way to reflect damage condition, it has been only
demonstrated in a 1D beam model [13–16], and a 3D pipeline model has not been validated. This paper
extracts the section feature of modal macro strain of pipelines and applies deep learning algorithm
to classify and identify different damage cases, and identify loading location and support locations.
This approach is proved as a promising way to identify structural damages especially for completed
structural types or rugged environment. The two main theories used in this paper include modal macro
strain theory and convolutional neural network. Modal macro strain theory is mainly used for inherently
extracting sensitive information of structures, which is later regarded as MMS distribution plots.
These plots and images are fed into convolutional neural network for identifying damage severity,
load location and support locations.

2. Modal Macro Strain (MMS)-Based Monitoring Strategy

Modal macro strain within the long gauge sensor can be measured from the peak value of the
power spectral density (PSD) of macro strain signals from distributed dynamic response when the
pipeline is subjected to ambient excitation. The normalized modal macro strain vector can be used
to identify damage efficiently. Generally, the excitation of pipeline structure is unknown, therefore,
the macro strain frequency response function (FRF) extracted from the ratio between output macro
strain signals and input signals is unknown. The macro strain FRF denoted by Hε

mp(ω) can be viewed
as a ratio between the measurement from the mth sensor and the signal excitation pth degree of
freedom (DOF), and can be acquired by:

Hε
mp(ω) =

εω(ω)

PP(ω)
, (1)
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where the superscript ε is macro strain, and PP(ω) is the signal excitation measured at the pth point.
By studying the relationship between frequency response function and power spectral density,
the power spectral density of macro strain in the dynamical response for mth long gauge sensor
can be denoted as:

Sε
m(ω) =

∣∣∣Hε
mp(ω)

∣∣∣2SP(ω), (2)

where power spectral density of the excitation at the pth point can be denoted as SP(ω). The above
equation can be represented as the following for a specific mode:

Sε
m(ωr) =

∣∣∣Hε
mp(ωr)

∣∣∣2SP(ωr), (3)

√
Sε

m(ωr)√
SP(ωr)

= Apr|δmr|, (4)

where, δmr is the macro strain measured within the mth gauge length, and the corresponding macro
strain modal constant is expressed as:

Apr =
φpr

2Mrξrω2
r

, (5)

where φpr, Mr, ξr and ωr respectively represent rth displacement mode shape at pth DOF,
rth damping ratio, and rth natural frequency.

Through extracting the macro strain response from the PSD of dynamic signal for every
long-gauge macro strain sensor, the modal macro strain is normalized in regard to that in the supposed
mth reference sensor, and it can be acquired by:



δ1r
δmr
δ2r
δmr
...
1
...

δnr
δmr


=



√
Sε

1(ωr)√
Sε

m(ωr)√
Sε

2(ωr)√
Sε

m(ωr)
...
1
...√

Sε
n(ωr)√

Sε
m(ωr)


, (6)

The above equation means that the dynamic macro strain extracted from the power spectral
density from all long-gauge sensors uniquely determines the structural modal macro strain. The peak
values of power spectrum density of dynamic macro strain identify the natural frequencies and modal
macro strain. The reference sensor is necessarily chosen for comparative study. For undamaged cases,
the ratio of power spectral density at ωi of dynamic macro strain from target sensor to that of the
reference sensor remains invariant. The ratio varies obviously if damage develops and occurs within
the area that the target sensors cover.

The time history of the macro strain from mth sensor within Lm gauge length is expressed as:

εm(t) =
h

Lm

(
νi(t)− νj(t)

)
. (7)

where the distance from the sensor location to inertial axis is denoted as h, while νi(t) and νj(t)
respectively denote rotational degree at first node of first element (ith DOF) within the gauge and that
at second node of last element (jth DOF) within the gauge.
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3. Convolutional Neural Networks (CNN)

A convolutional neural network generally consists of both alternating convolution operation and
sub-sampling operation, and the last layer is denoted as a general multi-layer network. Interspersed
with sub-sampling layers, convolutional layers are established to increase computation efficiency and
further improve configural and spatial invariance.

3.1. Convolution Layers

At a convolution layer, feature maps extracted from previous layers are convoluted with specific
kernels and then activated to generate new feature maps. Multiple input feature maps are combined
through the convolution operation until output is expressed as the following:

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ kl

ij + bl
j

. (8)

where Mj denotes a set of input feature maps, and each output feature map is added with an additive
bias b. The input feature maps are convolved with distinct kernels for a particular output feature map.

3.2. Gradients in the Convolution Layers

The down-sampling layer l + 1 follows the convolution layer l. For sensitivity computation,
the nodes of units for the next layer l + 1 are connected to the nodes of interest in the current layer l,
and the connections between the two layers are associated with weights defined at layer l + 1. We define
that the “weights” at a down-sampling layer map are equivalent to β, and the previous result scaled
by β is computed to achieve βl . Each map j repeats the same computation in the convolutional layer
with a paired map calculated in the subsampling layer:

δl
j = βl+1

j

(
f ′
(

ul
j

)
◦ up

(
δl+1

j

))
, (9)

where up(·) represents an operation of up-sampling which tiles each pixel in the input horizontally
and vertically n times in the output if the subsampling layer subsamples by a factor of n.

The gradients regarding bias bj and kernel weight kl
ij are described as:

∂E
∂bj

= ∑
u,v

(
δl

j

)
uv

, (10)

∂E
∂kl

ij
= ∑

u,v

(
δl

j

)
uv

(
pl−1

i

)
uv

(11)

where
(

pl−1
i

)
uv

is the patch in xl−1
i multiplied by kl

ij via elementwise operation to calculate the element

at (u, v) in the output map xl
j in the convolutional layer.

3.3. Sub-Sampling Layers

Down-sampled versions of the input maps are produced at a subsampling layer:

xl
j = f

(
βl

jdown
(

xl−1
j

)
+ bl

j

)
(12)

where down(·) denotes a sub-sampling operation.
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3.4. Gradients in the Sub-Sampling Layers

Convolutional layers surround the subsampling layers above and below. Learnable parameters
such as bias parameters β and b need to update:

∂E
∂bj

= ∑
u,v

(
δl

j

)
uv

, (13)

∂E
∂β j

= ∑
u,v

(
δl

j ◦ dl
j

)
uv

. (14)

3.5. Learning Combinations of Feature Maps

Let αij represents the weight that connects output map j and input map i. The output map j can
be expressed as:

xl
j = f

(
Nin

∑
i=1

αij

(
xl−1

i ∗ kl
i

)
+ bl

j

)
. (15)

Subject to the constraints:

∑
i

αij = 1 and 0 ≤ αij ≤ 1. (16)

The derivative of the soft max operation can be expressed as:

∂αk
∂ci

= δkiαi − αiαk. (17)

While the derivative of error with respect to αi and ci is given by:

∂E
∂αi

=
∂E
∂ul

∂ul

∂αi
= ∑

u, v

(
δl ◦

(
xl−1

i ∗ kl
i

))
uv

. (18)

Herein, given inputs u, δl denote the sensitivity map with respect to an output map. A chain rule
is employed to calculate the error gradients of the network regarding the underlying weights ci:

∂E
∂ci

= ∑
k

∂E
∂αk

∂αk
∂ci

= αi

(
∂E
∂αi
−∑

k

∂E
∂αk

αk

)
. (19)

3.6. Enforcing Sparse Combinations

The distribution of weights αi is imposed with sparseness constraints for a given map by
incorporating a regularization penalty term Ω(α) into final error function. The regularization penalty
Ω(α) can be derived as:

∂Ω
∂αi

= λsign(αi), (20)

∂Ω
∂ci

= ∑
k

∂Ω
∂αk

∂αk
∂ci

= λ

(
|αi| − αi ∑

k
|αk|

)
. (21)

Some examples are given to explain convolution and pooling processes, in the convolution operation,
and we can see from Figure 1 that, the input data is composed of a 7× 7× 3 dataset, where 7× 7
represents width and height pixels, and 3 represents R, G, B color channels.

Filter W0 and filter W1 are two different filters. The stride is two, indicating that the window
extracts 3 × 3 local data, and strides two steps for each time. Zero padding = 1. With the left
window moving smoothly, the filters convolve by using different local data covered by the window.
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Respectively, two filters are used to calculate convolution operation and two groups of results
are shown.

Figure 1. Convolution operation.

In the convolutional neural network, filters (neurons with a group of fixed weights) are used to
operate convolution for local input data. After calculating the data in each window, the data window
moves smoothly with a specific stride, until the convolution operation is finished. There are a few
parameters that need to be figured out:

(1) Depth: the number of neurons (filters), determining the depth,
(2) Stride: the number of stride covering through the data,
(3) Zero padding: Supplement a few zeros to make the window more from the initial location to the

end of the dataset.

Figure 2 is max pooling operation, which means taking the maximum value of the specific data
window area. The other pooling method is average pooling in the CNN algorithm, i.e., take the average
value of the specific data window area. Average pooling is applied in this paper.

Figure 2. Max pooling operation.

4. Pipeline System Modeling

A basalt fiber reinforced polymer (BFRP) composite pipeline finite element model is established
as shown in Figure 3.
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Figure 3. Pipeline modeling.

The ANSYS software version is R14.5 [41–43], and both tetrahedron meshing and free meshing
are applied, the minimum element size is set 0.005 m. The element type of the composite pipeline is
SHELL 181. The composite pipeline is 1 m long, the distribution of which is [−45, 45, −45, 45, −45].
The density of the model is 2.8 g/cm3. The internal radius is 0.04 m, and the external radius is 0.043 m.
The boundaries are fixed for both two ends of the pipeline. Random excitation load is perpendicular to
the wall of the pipe. Damage is modeled by reducing part of the stiffness of the pipeline. An enlarged
view of damaged areas (marked in purple) in the pipeline is depicted in Figure 4.

Figure 4. Damaged areas in the pipeline.
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Table 1 shows a detailed parameter list of structural property of BFRP composite pipeline.

Table 1. Basalt fiber reinforced polymer (BFRP) composite structural property.

Element
Type

EX
(Pa)

EY
(Pa)

EZ
(Pa) PRXY PRYZ PRXZ GXY

(Pa)
GYZ
(Pa)

GXZ
(Pa)

SHELL181 93.5 × 109 20× 109 20× 109 0.28 0.3 0.28 8.5× 109 2.35× 109 2.35× 109

Three damage levels are introduced, i.e., location: D1: 0.42–0.48 m, D2: 0.52–0.58 m, D3:
0.42–0.48 m + 0.52–0.58 m, all damages went across 180–360◦, and are assumed to occur at the
internal surface. The characteristics of the damages are:

• D1, D2: Same damage extent but different locations
• D3: Larger damage extent than D1 and D2 (D1 + D2)

Random excitation (Rand1) (−400~400 kN) is shown in Figure 5, and Figure 6 shows power
spectral density (log) of random excitation. Sampling frequency is 1000 Hz, and the duration is 1 s.
Twenty groups of random forces are loaded 0.2 m away from the right support of the pipeline, and for
each loading, four different extents of damage are considered, and 10 modal macro strain feature maps
are captured along the pipeline.

Figure 5. Random noise.
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Figure 6. Power spectrum density.

4.1. Modal Analysis of the Pipeline

Figure 7 shows 1st, 2nd and 3rd frequency of the intact pipeline. Table 2 lists all the values of
frequency orders for different damage cases (D0–D3).

Figure 7. First three frequencies of intact structure (a) 1st Order (b) 2nd Order (c) 3rd Order.
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Table 2. Structural frequency.

Frequency Order D0 (Hz) D1 (Hz) D2 (Hz) D3 (Hz)

1st order (Lateral Bending) 233.55 232.85 232.13 230.79
2nd order (Vertical Bending) 315.62 312.67 312.64 310.11

3rd order (Torsion) 824.38 822.90 822.48 820.85

4.2. Identification Using Modal Macro Strain Method

Modal macro strain is calculated using the rotational displacements which are perpendicular to
the radial direction measured by installed distributed angular displacement sensors, and then power
spectral density is acquired via Fast Fourier Transform (FFT). By extracting the peak values, the modal
macro strain relative values (normalized modal macro strain) are achieved. Grange length is chosen to
be 0.1 m, and eight groups of macro strain dynamic responses are captured from eight angle direction
(0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦). Figure 8 shows the power spectral density of the dynamic
strain response of the intact structure under the excitation of random force 1, and the power spectral
density of macro strain dynamic responses is extracted from four groups of signals (angle 0◦, 90◦,
180◦, 270◦).

Figure 8. Power spectrum density of intact structure (Rand1). (a) Angle 0◦. (b) Angle 90◦. (c) Angle 180.
(d) Angle 270 .
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As shown in Figures 9–12, modal macro strain vectors are extracted from eight-angles of
each section, and 10 long gauges in the longitudinal direction of the pipeline are acquired. The reference
macro strain location is Z = 0 m.

From Figure 9, we know that for the case of D0, two supports’ locations are well identified, and for
angle = 90◦, the MMS shows a hump compared with other cases, and the curves at 0.42–0.48 m and
0.52–0.58 m keep steady.

From Figure 10, we can see for the case of D1 (Location: 0.42–0.48 m), two supports’ locations
are well identified, and for angle = 90◦, the MMS shows a hump compared with other cases, and for
angle = 0◦ and angle = 180◦ (the edges of damage areas), the MMS of the location 0.42–0.48 m shows a
hump compared with other cases, but for the angle = 270◦ (the center of damage area), the MMS of the
location 0.52–0.58 m shows a hump, this might be the result of an abrupt change of relative stiffness.

Figure 9. Modal macro strain (Rand1, D0).

Figure 10. Modal macro strain (Rand1, D1).
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Figure 11. Modal macro strain (Rand1, D2).

Figure 12. Modal macro strain (Rand1, D3).

From Figure 11, we can see for the case of D2 (Location: 0.52–0.58 m), two supports’ locations
are well identified, and for angle = 90◦, the MMS shows a hump compared with other cases, and for
angle = 0◦ and angle = 180◦ (the edges of damage areas), the MMS of the location 0.52–0.58 m shows
a hump compared with other cases, but for the angle = 2700◦ (the center of damage area), the MMS
of the location 0.42–0.48 m shows a hump, and this also might be as a result of abrupt change of
relative stiffness.

From Figure 12, we can see for the case of D3 (Location: 0.42–0.48 m + 0.52–0.58 m), two supports’
locations are well identified, and for angle = 90◦, the MMS shows a hump compared with other cases,
and almost for all the angles, the MMSs of the location 0.42–0.48 m and 0.52–0.58 m are evident,
especially for the case when angle = 2700◦.

Figure 13 indicates the normalized modal macro strain distribution of 10 long gauges under
rand1 excitation.
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Figure 13. Normalized modal macro strain distribution (Rand1) long gauge (Z): (a) 0–0.1 m,
(b) 0.1–0.2 m, (c) 0.2–0.3 m, (d) 0.3–0.4 m, (e) 0.4–0.5 m, (f) 0.5–0.6 m, (g) 0.6–0.7 m, (h) 0.7–0.8 m,
(i) 0.8–0.9 m, (j) 0.9–1 m.
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Figure 14 shows the normalized modal macro strain distribution of supports (Z = 0–0.1 m) of the
pipeline under five random excitations.

Figure 14. Normalized modal macro strain distribution long gauge (Z = 0–0.1 m): (a) Rand1, (b) Rand2,
(c) Rand3, (d) Rand4, (e) Rand5.

From Figure 14, we can see that MMS distribution for different damage cases are not overlapped,
and the shapes of MMS distribution tend to be circular. (Random excitation location is close to
this support).

The case of MMS distribution (Z = 0–0.1 m) for different damage cases show that they
are overlapped, and the shapes of MMS distribution tend to be circular. (Random excitation location is
far away from this support).

Characteristics of MMS Plot of Cross Section at the Loading Point

Figures 15 and 16 show the normalized modal macro strain distribution of external random
excitations (Z = 0.1–0.2 m and Z = 0.2–0.3 m) of the pipeline under five random excitations.

From Figures 15 and 16 we can see that the MMS distribution for different damage cases are
almost overlapped, and the shapes of MMS distribution tend to be sharp. (Random excitation location
is close to this gauge). The cases were also analyzed by studying the normalized modal macro strain
distributions of external random excitations (Z = 0.4–0.5 m and Z = 0.5–0.6 m) of the pipeline under five
random excitations. In these cases, MMS distributions for different damage cases are not overlapped,
and the shapes of the MMS distributions tend to be circular. However, when the damage is more severe,
the MMS distribution may not be larger. This is because the pipeline model is a 3D model and the
damage can go through an area. Compared with 1D beam model and damage identification [13,14]
this performs in a more complicated way.
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Figure 15. Normalized modal macro strain distribution long gauge (Z = 0.1–0.2 m): (a) Rand1,
(b) Rand2, (c) Rand3, (d) Rand4, (e) Rand5.

Figure 16. Normalized modal macro strain distribution long gauge (Z = 0.2–0.3 m): (a) Rand1,
(b) Rand2, (c) Rand3, (d) Rand4, (e) Rand5.
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4.3. Damage, Load and Support Identification Using CNN

In the previous section, MMS distributions were studied for the intact and damaged
pipeline system. However, due to the 3D modeling and its inherent complexity, different damage levels
can hardly be identified. Therefore, a more efficient way to extract the features of MMS distribution is
employed for damage, load and support identification. The schematic diagram of the application of
the convolutional neural network can be shown in Figure 17.

Figure 17. Identification schematic using a convolutional neural network.

As discussed above, the convolution operation can be viewed as a neuron with fixed weights.
The function of convolution layer is to identify local features of the previous layer, and the sampling
layer is merging the similar features with the same feature.
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Cnnsetup: Each feature map is the number of feature map multiplied by the size of patch map
for convolution. By moving a kernel window in the feature map, each neuron of feature map
is traversed. The kernel window is composed of elements with the size of kernelsize × kernelsize.
Each element is an independent weight, so there are kernelsize × kernelsize weights that need to
be learned. Due to weight sharing, for the same feature map layer, the kernel window with the
size of kernelsize × kernelsize has the same weights, which means weights are only determined by
the kernel window. For different feature maps, the kernel windows are different, which means
the weights are different.
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input and output. Then calculate the derivative of the error with respect to weights by the back
propagation (BP) algorithm. Weight updating method will be used to update the network.
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Cnnff: Use the neural network to predict the input vector. First reorder the samples and then
randomly train them. Samples are input to the network and are mapped for prediction. For each
feature map of the last layer, the size of the feature map after convolution is: (feature map
width-conv kernel width + 1) × (feature map height-conv kernel height + 1).
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cnnbp: The convolution layer is used for up-sampling and subsampling layer is used for
down-sampling. The weights (size is onum× fvnum) between the last layer and the output neurons;
where onum is the number of labels, and fvnum is the number of output neurons at the last layer.
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Cnnapplygrads: The Cnnapplygrads is used for weight updating. The training dataset is 256 × 256
× 6000, testing dataset is 256 × 256 × 800, labeled training dataset is 7 × 6000, and the labeled
testing dataset is 7 × 800. The construction of the conventional neural network is 6c–2s–12c–2s
(c: convolution layer, s: sub sampling layer), learning efficiency Alpha = 1, Batchsize = 50,
and Numepoch = 1.

The superior characteristics of deep learning is that the outputs of intermediate layers can be
used as another expression of data, therefore regarding it as the learned features through network
adaptive learning, and these features can later be used for similarity comparison. The amounts of data
can be used to effectively train parameters of deep learning network. In this study, the convolutional
neural network includes two convolutional layers, two sub-sampling layers, and a full connection layer.
Each layer tuned parameters and the corresponding weights. The input image size is 256 × 256.

The basic architecture of the connection of the convolutional layer and sub-sampling layer is
depicted in Figure 18. C1 is a convolutional layer composed of six feature maps. By doing convolutional
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operation, the feature of the original signal can be enhanced and also reduce noise effects. Each neuron
of the feature map is connected with 16 × 16 neighborhood of input images. The feature map size is
196 × 196. C1 has 156 tuned parameters (each filter has 16 × 16 unit parameters and a bias parameter,
6 filters in total, so (16 × 16 + 1) × 6 = 1542 parameters in total). One kernel is used between input
and C1, so 1542 × (196 × 196) = 59,237,472 connections in total.

Figure 18. Connection of convolutional layer and sub-sampling layer.

S2 is a sub-sampling layer. According to the local correlation principle of image, sub-sampling
can be applied to images, thus decreasing data processing ability and retaining useful information.
Two 98 × 98 feature maps are used. Each unit of feature map is connected with 8 × 8 neighborhood
of C1. Sixteen inputs of each unit of S2 are added, multiplied by a tuned parameter with a
tuned bias. The result can be calculated by sigmoid function. Tuned parameters and bias control
the non-linearity of the sigmoid function. If these parameters are relatively small, the operation is
as similar as linear operation. Sub-sampling is equivalent to fuzzy images by decreasing the pixels
of the images. If these parameters are relatively larger, sub-sampling can be regarded as “or” or
“and” operations with noise. 8 × 8 receptive field is not overlapped for each unit, therefore the
size of each feature map in S2 is 1/4 of that of C1. S2 has (1 + 1) × 2 = 4 tuned parameters and
(8 × 8 + 1) × 2 × (98 × 98) = 1,248,520 connections.

C3 and S4 have similar architectures, and output layers are composed of Euclidean radial basis function
units. Images are fed into the network and the output Op = Fn

(
· · ·
(

F2

(
F1

(
XpW(1)

)
W(2)

))
· · ·W(n)

)
,

and the error between practical output Op and desired output Yp can be calculated by back propagation
with tuned weight parameters.

Table 3 labels all the cases regarding two supports, excitation loads and different damage cases
(D0–D3). Table 4 displays all the label settings for 10 strain gauge strain in the longitudinal direction
for different damage cases. Table 5 shows the damage, load and support identification results for seven
labels with respect to true positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and
false negative rate (FNR).

Table 3. Labeled dataset.

Label 1 2 3 4 5 6 7

Case Support 1 Support 2 Excitation D0 D1 D2 D3

Location 0–0.1 m 0.9–1 m 0.1–0.2 m/0.2–0.3 m Other Cases 0.4–0.5 m 0.5–0.6 m 0.4–0.5 m/0.5–0.6 m

Table 4. Label settings for different damage cases.

Case Str1 Str2 Str3 Str4 Str5 Str6 Str7 Str8 Str9 Str10

D0 label1 label3 label3 label4 label4 label4 label4 label4 label4 label2
D1 label1 label3 label3 label4 label5 label4 label4 label4 label4 label2
D2 label1 label3 label3 label4 label4 label6 label4 label4 label4 label2
D3 label1 label3 label3 label4 label7 label7 label4 label4 label4 label2
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Table 5. Identification testing results.

Label 1 2 3 4 5 6 7

Number 80 80 160 400 20 20 40

TPR 75
(93.75%)

77
(96.25%)

156
(97.5%)

388
(97%)

18
(90%)

18
(90%)

37
(92.5%)

TNR 704
(97.78%)

701
(97.36)

623
(97.34%)

379
(94.75%)

766
(98.21%)

764
(97.95%)

748
(98.42%)

FPR 16
(2.22%)

19
(2.64%)

17
(2.66%)

21
(5.25%)

14
(1.79%)

16
(2.05%)

12
(1.58%)

FNR 5
(6.25%)

3
(3.75%)

4
(2.5%)

12
(3%)

2
(10%)

2
(10%)

3
(7.5%)

Remark: true positive (TP): prediction is positive and the sample is positive. True negative (TN): prediction is
negative and the sample is negative. False positive (FP): prediction is positive and the sample is negative. False
negative (FN): prediction is negative and the sample is positive.

Images are scaled to the same size 900 × 1200 × 3 and then 256 × 256 × 1 without any annotation.
For labeled dataset, the location for the specific case (Support 1, Support 2, Excitation, D0, D1,

D2, D3) is labeled 1 while other locations are labeled 0.
Different evaluation rates can be calculated by:

(1) True positive rate (TPR) = TP/(TP + FN),
(2) True negative rate (TNR) = TN/(TN + FP),
(3) False positive rate (FPR) = FP/(FP + TN),
(4) False negative rate (FNR) = FN/(TP + FN).

Eight hundred testing datasets are employed to verify the effectiveness of convolutional
neural network, and it is promising to apply CNN to the identification of different extents of damage,
load excitation location and support location.

For engineering applications, to the best of the authors’ knowledge, most work presented in
the literature use artificial neural network-related methods to process images taken from bridges,
tunnels, pipes. The disadvantages of this method include the fact that images may not inherently
reflect the structural health status, and even if these images are fed into convolutional neural network,
the trained images may not have a good generalization ability to evaluate the test samples.
By combining the modal macro strain method and convolutional neural network, the sensitive strain
distribution information can be extracted and then fed it into convolutional neural network for training
and testing. The combination of these two methods can be used effectively to solve actual practical
problems in complex civil engineering structures based on the numerical and analytical results shown
in this study. A composite pipeline prototype model also is being experimentally conducted at the
National and Local Joint Research Center for Basalt Fiber Production and Application Technology
to verify the effectiveness and applicability of the combined modal macro strain and convolutional
neural network methods.

5. Conclusions

This paper first presented the basic theory of modal macro strain-based long gauge distributed
sensing technology, and deep learning theory. Both longitudinal distribution and circumferential
distribution of modal macro strain were investigated and results indicated some characteristics of
damage extent, load excitation location and support location. Image-based damage identification
using deep learning tools could only identify the external damage of structures while internal damage
images could hardly be reflected if images were acquired from outside of the structures. As concluded,
the other disadvantages of image-based damage identification is that these images may include the
disturbances of noise, and different extents of light and shadows. The advantages of the work presented
in this paper overcomes 1D beam-based damage identification; a 3D model was built to reflect the
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real status of structures. Combined with long gauge distributed sensing technology, modal macro
strains were extracted from peak values of power spectral density from the dynamic responses of
different locations of long gauges, and a convolutional neural network was applied to circumferential
distribution plots of modal macro strain. Compared with direct methods of image extraction for
damage identification, the proposed methodologies first study the plot distribution map of structural
modal macro strains, which is a sensitive parameter to structural damage. Then by training and testing
these “feature maps” using convolutional neural network, the extents of damages, external excitation
location and support locations can be inherently identified. This is especially suitable for complicated
structural types, complex and changing environments.
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