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Abstract: We study the dynamics of a partially incoherent optical pulse that propagates in a slowly
responding nonlinear Kerr medium. We show that irrespective of the sign of the dispersion (either
normal or anomalous), the incoherent pulse as a whole exhibits a global collective behavior characterized
by a dramatic narrowing and amplification in the strongly non-linear regime. The theoretical analysis
based on the Vlasov formalism and the method of the characteristics applied to a reduced hydrodynamic
model reveal that such a strong amplitude-incoherent pulse originates in the existence of a concurrent
shock-collapse singularity (CSCS): The envelope of the intensity of the random wave exhibits a collapse
singularity, while the momentum exhibits a shock singularity. The dynamic behavior of the system after
the shock-collapse singularity is characterized through the analysis of the phase-space dynamics.

Keywords: non-linear waves; partially coherent beams and pulses; shockwaves; coherence; optical
turbulence; Vlasov formalism; rogue waves

1. Introduction

Shockwaves are known to play a key role in many different branches of physics [1–3].
When dissipative effects can be neglected, the formation of shockwaves is regularized, owing to
dispersion, through the onset of rapidly oscillating nonstationary structures, the so-called dispersive
shockwaves (DSWs) or undular bores. Originally observed in plasmas [4], water surface waves [5]
and fiber optics [6], DSWs have become the subject of intense theoretical and experimental studies
in different areas and specifically in non-linear optics where they have regained great interest [7–12],
in particular to study hydrodynamic analogues [13], non-local non-linearities [14–18] or the impact of
a structural disorder of the non-linear material [19,20].

These previous studies on DSWs have been reported for purely coherent, i.e., deterministic,
amplitudes of the waves. From a different perspective, a rather recent work predicted the existence of
incoherent DSWs, which manifest themselves as a wave breaking process (“gradient catastrophe”)
in the spectral dynamics of the incoherent wave evolving in a non-instantaneous non-linear
environment [21,22]. We note that such a DSW behavior solely occurs in the spectral domain: The shock
singularity cannot be identified in the spatio-temporal domain, where the incoherent wave exhibits
fluctuations that are statistically stationary in time.

Our aim in this work is to study the development of a shock singularity with a highly
non-instantaneous non-linearity starting from an initial incoherent wave whose envelope profile
is localized in time, i.e., starting from an incoherent optical pulse that propagates, e.g., in an optical
fiber. On the basis of a long-range Vlasov-like formalism, we show that the incoherent wave exhibits a
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shock singularity that is of different nature than conventional DSW [1–3]. The analysis reveals that the
optical wave exhibits a global collective behavior in which it is the incoherent pulse as a whole that exhibits a
shock singularity.

This type of collective incoherent behavior is of the same form as the incoherent shocks [23]
identified in the spatial domain in the presence of a highly non-local spatial response [14–18,24–27].
In particular, on the basis of a temporal version of the long-range Vlasov formalism [28], here we show
that the incoherent pulse exhibits the CSCS behavior: In addition to the expected shock singularity
for the evolution of the momentum, the incoherent pulse also exhibits a collapse-like singularity for the
evolution of the intensity of the random wave. In contrast with the previous study reported in the
spatial domain [23], here in the temporal domain the response function is constrained by the causality
condition, a distinguished feature which confers an asymmetric temporal dynamics to the evolution of
the wave. As a consequence, the intensity of the incoherent pulse as a whole exhibits a temporally
drifted collapse behavior characterized by a high-intensity peak—a feature that may be interpreted
in analogy with an incoherent rogue wave phenomenon. In this work we provide physical insights
into the nature of the CSCS by using the method of the characteristics to solve in explicit form a
reduced hydrodynamic model derived from the temporal Vlasov equation. In addition, we study the
subsequent post-shock and post-collapse behaviors through the analysis of the phase-space dynamics
of the incoherent pulse.

Besides its fundamental interest, optical fibers and waveguides [29] turn out to be ideal testbeds
for the experimental verification of our predictions, thanks to the easily tailorable Raman response
function, as well as other recently investigated mechanisms involving liquid or gas-filled photonic
crystal fibers (PCF), as well as surface plasmon polariton systems [30–37].

2. NLS Simulations

A non-instantaneous non-linear response of the medium arises in several problems of
radiation–matter interaction. A typical example in one-dimensional systems is provided by the
Raman effect in optical fibers, which finds its origin in the delayed molecular response of the material.
We consider the standard one-dimensional NLS equation accounting for a non-instantaneous non-linear
response function

i∂zψ +
σ

2
∂ttψ + ψ

∫
R(t− t′) |ψ|2(z, t′) dt′ = 0. (1)

For convenience, we normalized the equation with respect to the ‘healing time’ τ0 =
√
|β2|/(γρ)

and the non-linear length scale L0 = 1/(γρ), where ρ is the power, β2 the dispersion coefficient
(σ = −sign(β2)) and γ(> 0) the non-linear coefficient. The time τ0 plays a key role: It refers to the
time scale for which linear and non-linear effects are of same order of magnitude (e.g., τ0 is the typical
modulational instability period in the limit of an instantaneous non-linearity [28]). The variables can
be recovered in real units through the transformations t→ tτ0, z→ zL0, ψ→ ψ

√
ρ and R(t)→ τ0R(t).

Hence N/T0 = T−1
0
∫
|ψ|2 dt = 1, where T0 is the temporal numerical window (T0 = 104 in our

simulations). The response function R(t) is constrained by the causality condition. In the following we
use the convention that t > 0 corresponds to the leading edge of the pulse, so that the causal response
will be on the trailing edge of a pulse, i.e., R(t) = 0 for t > 0 (clearly, the physical phenomena we are
going to present do not depend on the choice of the convention). We will write the response function
in the form R(t) = H(−t)R̄(−t), where R̄(t) is a smooth function from [0, ∞) to (−∞, ∞), while the
Heaviside function H(−t) ensures the causality property. In the following we focus the presentation
on the normal dispersion regime, where a priori one would not expect the formation of a collapse-like
behavior of the wave.

The formation of a shock-like singularity is known to require a strong non-linear interaction,
i.e., a regime in which non-linear effects dominate linear dispersion effects τ0 � tc, where tc denotes the
time correlation of the initial partially coherent wave—note that this condition is analogous to L0 � Ld
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(Ld = t2
c /|β2| being the dispersion length in dimensional units). If we consider a quasi-instantaneous

non-linear regime τR ∼ τ0, then since the response time is smaller than the correlation time (τR � tc),
each individual fluctuation in the initial pulse will lead to the formation of a dispersive shockwave.
This quasi-instantaneous non-linear regime is in some sense similar to what occurs for a purely coherent
initial pulse since the fluctuations of the incoherent pulse evolve (at least initially) independently
of each other for tc � τR. It is important to note that in this regime the intensity does not exhibit a
collapse-like behavior, a feature that will be discussed below.

The situation is fundamentally different in the regime characterized by a highly non-instantaneous
non-linear response time, τR � tc. In contrast with the quasi-instantaneous non-linear regime, here the
incoherent pulse exhibits a global collective behavior, in which it is the incoherent pulse as a whole
that exhibits a shock singularity. This is illustrated in Figure 1, which shows the temporal dynamics
of an initial incoherent pulse during its propagation through the non-linear medium, while the
corresponding spectrogram dynamics is reported in Figure 2. The remarkable result is that, aside
from the shock singularity revealed by the dynamics of the chirp, the global incoherent pulse also
exhibits a dramatic narrowing and amplification as it is drifted in time. The subsequent analysis will
reveal that this effect relies on the existence of a collapse singularity emanating from the envelope
of the incoherent pulse. In this example we considered for simplicity an exponential-like response
function, R̄(t) = t exp(−t/τR)/τ2

R, where the t−prefactor is considered to ensure the continuity of
the response function at the origin R̄(0) = 0. This appears consistent with the variety of response
functions considered for instance in [31] to model light propagation in liquid-filled PCFs.
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Figure 1. Numerical simulations of the NLS Equation (1) (gray line), of the Vlasov Equation (2)
(red line), and of the hydrodynamic-like Equation (3) and (4) (blue line). (a) Evolution of the intensity
of the field that develops a collapse singularity, and corresponding evolution of the momentum (chirp)
that develops a shock singularity (b). The quantitative agreement between the different models is
obtained without using adjustable parameters. Propagation lengths at z = 0, 60, 130, 200 from left to
right, τR = 300, σ = −1.

Figure 2. Phase-space representation of the shock-collapse singularity shown in Figure 1: (a) Numerical
simulation of the NLS Equation (1) showing the evolution of the spectrogram. (b) Numerical simulation
of the Vlasov Equation (2). Propagation lengths at z = 0, 60, 130, 200 from left to right, τR = 300,
σ = −1.
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3. Vlasov Approach

The collective incoherent behavior revealed by the NLS simulations can be described in detail
by a temporal version of the long-range Vlasov formalism [28,38,39]. The Vlasov equation governs
the evolution of the averaged spectrum of the incoherent wave nω(t, z) =

∫
B(t, τ, z) exp(iωτ) dτ,

with B(t, τ, z) = 〈ψ(t− τ/2, z)ψ∗(t + τ/2, z)〉 the correlation function:

∂znω(t, z) + σω∂tnω(t, z)− ∂tV(t, z) ∂ωnω(t, z) = 0, (2)

where N(t, z) =
∫

nω(t, z) dω is the temporal profile of the averaged intensity of the incoherent
wave, and V(t, z) = − 1

2π

∫
R(t − θ)N(θ, z)dθ is the effective potential. Please note that since the

statistics of the pulse is not stationary in time, the spectrum nω(t, z) depends on the time position,
i.e., it denotes the spectrogram of the optical pulse. The Vlasov Equation (2) conserves the total
power N = (2π)−1

∫
N(t, z)dt. Contrary to the spatial case [28], in the temporal domain the potential

V(t, z) is constrained by the causality of R(t), which breaks the Hamiltonian structure of the Vlasov
Equation (2) [28]. In the same way, the total momentum P(z) =

∫∫
ω nω(t, z) dt dω, is no longer

conserved [40]. Please note that the Vlasov equation governs the evolution of the averaged spectrum
nω(t, z), which is inherently a deterministic (smooth) function of the phase-space variables (t, ω).
In contrast, the NLS equation governs the evolution of an initial random function ψ(t, z = 0), which
remains stochastic during the propagation in z. We compare the evolutions of the spectrograms of
ψ(t, z) (e.g., Figure 2a) with the corresponding averaged spectra nω(t, z) obtained from the numerical
integration of the Vlasov equation e.g., Figure 2a)—we do not perform averages over the realizations
of the initial random condition ψ(t, z = 0). We also note that in Figure 1 (as well as Figures 5 and 8)
the direct comparison between the NLS and Vlasov simulations has been improved by smoothing the
NLS data with an averaging over nearest-neighbor points (smooth MATLAB function).

4. Hydrodynamic-Like Model

4.1. Singular Solutions of the Vlasov Equation

The spectrogram dynamics can be described by means of singular solutions of the Vlasov
equation [23,41], nω(t, z) = N(t, z) δ

(
ω −Ω(t, z)

)
—note that the presence of the Dirac δ−function

reflects the narrowness of the spectrum evolving in the strongly non-linear regime. The function
Ω(t, z) can be interpreted as a ‘momentum per particle’, a feature that becomes apparent by remarking
that Ω(t, z) = P(t, z)/N(t, z), where the momentum density P(t, z) is defined by P(z) =

∫
P(t, z)dt.

This leads to the following hydrodynamic-like model governing the evolutions of the intensity envelope
N(t, z), and momentum Ω(t, z), of the incoherent pulse:

∂zN + σ∂t(NΩ) = 0, (3)

∂zΩ + σΩ∂tΩ + ∂tV = 0. (4)

Starting from Ω(t, z = 0) = 0, the ‘spectrogram’ Ω(t, z) is initially driven by the last non-linear
term in (4), while the Burgers-like (second) term of (4) subsequently leads to the gradient catastrophe
of Ω(t, z). The finite ‘time’ (distance, z) shock singularity of Ω(t, z) will be shown to be responsible for
a collapse singularity of the intensity envelope N(t, z).

4.2. Evolution Along the Characteristics

The singular behavior of the random wave can be described theoretically by solving Equations (3)
and (4) by the method of the characteristics [42]. We define w(z) = Ω(T(z), z), ξ(z) = ∂zΩ

(
T(z), z

)
,

τ(z) = ∂tΩ
(
T(z), z

)
, and φ(z) = N

(
T(z), z

)
, which can be shown to satisfy the set of coupled ordinary

differential equations (ODE):
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Ṫ(z) = σw(z), T(0) = t0, (5)

ẇ(z) = ξ(z) + σw(z)τ(z), w(0) = 0, (6)

ξ̇(z) = −∂2
ztV(T(z), z)− στ(z)ξ(z), ξ(0) = −∂tV(t0, 0) (7)

τ̇(z) = −∂2
t V(T(z), z)− στ2(z), τ(0) = 0, (8)

φ̇(z) = −στ(z)φ(z), φ(0) = N(t0, 0), (9)

where the dots denote the derivatives with respect to the evolution variable, Ṫ(z) = ∂zT(z).
The method of the characteristics allows for a major simplification of the problem since the partial
difference Equations (3) and (4) are reduced to a small number of ODEs (5)–(9) without approximations.
A significant advantage of the ODEs (3) and (4) is that they show that the PDE system (5)–(9)
exhibits finite ‘time’ singularities for the gradient of the momentum and the intensity. In addition,
the ODEs (5)–(9) specify how such singularities develop during the time evolution of the system,
see Equation (11) below.

The equations for the characteristics (5)–(9) look similar to those considered in the spatial domain
for the propagation of two-dimensional speckle beams [23]. There is however an important difference
with the spatial case: In the temporal case considered here, because of the causality condition inherent
to the temporal response function, the derivatives of R(t) are not continuous at t = 0. This aspect becomes
relevant by noting that the whole dynamics is driven by the gradient of the envelope of the incoherent
pulse, i.e., the variable τ(z) in Equation (8). In contrast with the spatial case, the effective potential V(t, z)
and its derivatives are not uniformly bounded. As a consequence, the first source term in the equation
for τ(z) takes the general form −2π∂2

t V(t, z) = R̄′(0)N(t, z)− R̄(0)∂tN(t, z) +
∫ ∞

0 R̄′′(θ)N(t + θ)dθ.
Considering the continuity of the response function (R̄(0) = 0) [43], we can write the evolution of the
potential along the characteristic T(z)

−2π∂2
t V(T(z), z) = R̄′(0)φ(z) +

∫ ∞

0
R̄′′(θ)N(T(z) + θ, z)dθ. (10)

The second term in the right-hand side is bounded (because R̄′′(t) is bounded and∫
N(t, z)dt = 2πN is constant). We anticipate that the first term is smaller than τ2(z) in Equation (8)

(see Equation (11)), so that it cannot prevent from the catastrophic singularity. We then obtain the
singular behaviors of τ(z) and φ(z) just before the singularity at z = z∞:

φ(z) ' 1
z∞ − z

, τ(z) ' −σ

z∞ − z
. (11)

Please note that the behavior of φ(z) is obtained by remarking that, irrespective of the dispersion
regime (normal or anomalous), we have from Equation (9) φ(z) = N(t0, 0) exp

(
|
∫ z

0 τ(s)ds|
)
.

To complete our study we have solved by numerical integration the complete set of ODE
(5)–(9)—note in this respect that the first term in the right-hand side of (7) involves partial derivatives
of the effective potential V(t, z) taken along the characteristics T(z), so that the numerical integration
requires the explicit evolution of V(t, z) which is obtained by solving the hydrodynamic Equations (3)
and (4). The evolutions of the characteristics T(z) are reported in Figure 3a for a set of initial conditions
T(0) = t0, which clearly show that the characteristics tend to approach each other nearby the shock
point. Correspondingly, the evolution of the momentum w(z) of the incoherent pulse for such a set of
initial conditions exhibit a self-steepening process followed by a shock singularity. Such a gradient
catastrophe is reflected by the evolution of τ(z) that exhibits a collapse singularity, which in turn
induces a collapse singularity of the intensity envelope of the incoherent pulse φ(z). We have also
verified that τ(z) and φ(z) exhibit a finite time singularity with the expected power-law divergence
given by (11), as illustrated in Figure 4.

The analysis of the characteristic ODE (5)–(9) also reveals that, contrary to the (defocusing) spatial
case where the response function is even and the field experiences two symmetric shock-singularities
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on the boundaries of the beam, in the temporal domain considered here the causality property of R(t)
breaks the time symmetry ±t, so that only one shock-collapse singularity is visible on the pulse evolution.
According to Equations (8) and (10), the function −∂2

t V(T(z), z) is large for a characteristic T(z) where
the intensity N(T(z), z) is itself large. Remarking that the intensity profile shifts toward t > 0, it turns
out that a single shock-collapse singularity develops for t > 0, which inhibits the development of
the singularity for t < 0. As a remarkable result, the initial incoherent pulse as a whole develops a
temporal-asymmetric collapse singularity in the normal dispersion regime.

Figure 3. Numerical integration of the coupled system of characteristic ODE (5)–(9): (a) Characteristics
T(z) for a set of initial conditions T(0) = t0. Corresponding evolutions of the momentum (chirp)
w(z) (b) that exhibits a shock singularity, i.e., a collapse singularity for the corresponding gradient
τ(z) (c), which in turn induces a collapse singularity for the envelope of the incoherent pulse φ(z)
(d) (σ = −1, τR = 300).
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Figure 4. Numerical integration of the coupled system of characteristic ODE (5)–(9): Evolutions during
the propagation of the gradient of the momentum τ(z) (a) and intensity envelope of the incoherent pulse
φ(z) (b) along a characteristic nearby the singularity. Their evolutions exhibit the power-law divergence
∼ (z∞ − z)−1 predicted by the theory in Equation (11) (dashed red lines) (σ = −1, τR = 300).

4.3. Dynamics after the Shock-Collapse Singularity

The hydrodynamic model (3) and (4) exhibits a finite ‘time’ singularity (11), which is regularized
by the NLS and Vlasov equations (1) and (2)—note that the regularization is not characterized by the
formation of rapid DSW oscillations. This is illustrated in Figures 5 and 6 that show the evolution
of the incoherent pulse after the shock-collapse singularity. The regularization becomes apparent
by remarking that the spectrogram nω(t, z) evolves in the two-dimensional phase-space (t, ω) so
that its evolution can become ‘multi-valued’, as evidenced in Figure 6. This is in contrast with the
function Ω(t, z) ruled by the hydrodynamic model (3) and (4) that undergoes the shock singularity
and which is inherently a single valued function. The derivation of a more complete hydrodynamic-like
model describing the regularization of the shock-collapse singularity is a difficult task related to a
long-standing mathematical problem, namely achieving a closure of the infinite hierarchy of equations
that govern the evolutions of ω-moments in transport kinetic equations [44,45]. It is important to note
in this respect that the wave-turbulence closure is usually justified in the weakly non-linear regime [46–49]
leading to the celebrated (Boltzmann-like) kinetic equation for optical waves [28], which describes
important phenomena such as light thermalization [50–55], wave condensation [28], or the dynamics
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of certain fiber lasers [56–59]. On the other hand, the closure of moments equations considered
here concerns the opposite strongly non-linear regime. This problem of regularization was discussed
in [23] through the analysis of higher-order truncations of the hierarchy of moments equations.
The analysis revealed that higher-order ω-moments become all of the same order of magnitude
nearby the singularity (11), which prevents a closure of the hierarchy and thus a reduced description
of the dynamics beyond the shock-collapse point.
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Figure 5. (a) Post-collapse dynamics: Numerical simulation of the Vlasov Equation (2) showing
the evolution of the intensity of the incoherent pulse N(t, z) at the propagation lengths z =

0, 80, 130, 180, 220, 250, 280, 310, 340, 370, 400, 430, 470, 500: The collapse-like behavior at z ' 220 is
regularized as evidenced by the saturation and subsequent relaxation of the amplitude of the incoherent
pulse (σ = −1, τR = 300). (b) Comparison of the simulations of the NLS equation (1) (light gray, black,
dark gray), and of the Vlasov Equation (2) at z = 0 (blue), z = 220 (red) nearby the shock-collapse
point, z = 500 (green)—the agreement between the NLS and Vlasov simulations is obtained without
adjustable parameters.

Figure 6. Phase-space representation of the post-shock-collapse singularity shown in Figure 2:
(a) Numerical simulation of the NLS Equation (1) showing the evolution of the spectrogram.
(b) Numerical simulation of the Vlasov Equation (2) showing the evolution of nω(t, z). The agreement
between the NLS and Vlasov simulations is obtained without adjustable parameters. Parameters are:
σ = −1, τR = 300, with the propagation lengths z = 240, 270, 320, 380 from left to right.

5. Discussion and Conclusions

In summary, we have shown that a highly non-instantaneous non-linearity is responsible for
a global collective behavior of an incoherent pulse, which is characterized by the development
of the CSCS. The theoretical analysis is based on a long-range Vlasov formalism that exhibits
interesting analogies with long-range gravitational systems [28,60,61]. The Vlasov equation has
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been reduced to a hydrodynamic model that has been solved by the method of the characteristics.
The corresponding set of coupled ordinary differential equations provide a detailed description of the
nature of the CSCS. This novel regime of incoherent wave propagation may shed new light on recent
experiments of high-power incoherent supercontinuum generation in optical fibers [62]. More generally,
we can envisage the experimental observation of the CSCS of incoherent waves owing to the recent
progress made on the fabrication of PCF filled with liquids displaying highly non-instantaneous
Kerr responses [30,31]. For example, in comparison to standard silica fibers, CS2 filled PCFs studied
in the reference [34] exhibit interesting properties of the response function: The ratio between the
instantaneous Kerr effect and the delayed Raman effect is 15:85, and in addition the response time can
be as large as 1.5 ps. At the wavelength of 1550 nm, our preliminary numerical simulations indicate
that if one injects incoherent pulses with a duration of 20 ps and a peak power of 1 KW, the incoherent
shockwaves should be generated and observed after a propagation length of about 0.5 m in this kind
of PCFs.

5.1. Toward Incoherent Rogue Waves?

We have seen that, as a consequence of the causality property of the response function, the intensity
of the incoherent pulse exhibits a temporally drifted collapse behavior featured by a pronounced
intensity peak. In a loose sense, this phenomenological behavior is reminiscent of a rogue-like wave
phenomenon. Extreme wave events have been widely investigated in the context of optics [63–66],
in particular in the presence of a non-instantaneous (Raman-like) non-linearity [67–71]. Note however
that, although rogue waves have been shown to emerge from a turbulent environment, so far, the rogue
wave itself has been always identified as being inherently a coherent localized entity [72–84]. In contrast,
here, it is the incoherent pulse as a whole that leads to the formation of an extreme high-amplitude
structure, a feature that may be interpreted in analogy with an incoherent rogue wave phenomenon.
Work is in progress in order to study the spontaneous emergence of these collective incoherent events
from an initial homogeneous random state of the field (i.e., with fluctuations that are statistically
stationary in time).

5.2. Coherent Initial Conditions

We underline that the collapse-like behavior of the incoherent pulse originates in the highly
non-instantaneous non-linearity. This can be seen by noting that in the limit of a (quasi-)instantaneous
non-linearity (V(t, z) → N(t, z)/(2π)) the hydrodynamic model Equations (3) and (4) recovers the
shallow-water equations [1], which do not exhibit collapse singularities. In this respect, we note
that the formation of the collapse singularity does not require an incoherent dynamic of the optical
field. This is illustrated in Figure 7 that shows the evolution of the field by starting from a purely
coherent initial pulse. As discussed in Refs. [14,15,85] in the spatial domain (non-local non-linearity),
the evolution of the coherent field can be described by effective equations that are analogous to the
hydrodynamic model (3) and (4), which precisely predicts the CSCS. Interestingly, the development
of the shock singularity has been recently discussed in analogy with the quantum squeezing effect
in phase-space [86], while its actual irreversible behavior has been discussed in relation to Gamow
vectors [87]. Note in Figure 7 that, by starting from a coherent pulse, the post-collapse dynamics
evidence the formation of an erratic dynamics of the field, as illustrated by NLS simulations in
Figure 7. In its long term evolution, the incoherent field is expected to self-organize into an incoherent
soliton [88], which would be sustained by the normal dispersion regime as discussed in Ref. [39,89].
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Figure 7. Coherent dynamics: Numerical simulation of the NLS Equation (1) showing the evolution
of the intensity |ψ|2(t, z) (a), and corresponding spectrogram (b), with the same parameters as in
Figures 1 and 2, except that the initial condition is a fully coherent pulse. The coherent field exhibits a
shock-collapse singularity and develops an incoherent behavior after the singularity. The corresponding
propagation distances are z = 0, 120, 200, 300 from left to right.

5.3. Anomalous dispersion

We have focused the presentation of our work into the case where the incoherent pulse propagates
in the normal dispersion regime. However, the analysis can easily be transposed to the anomalous
dispersion regime (σ = +1). As illustrated in Figure 8, the phenomenological behavior is very similar
to the normal dispersion regime, except that the incoherent pulse develops the CSCS toward the
negative temporal axis.
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Figure 8. Anomalous dispersion regime: Numerical simulations of the NLS equation (1) (gray line),
of the Vlasov Equation (2) (red line), and of the hydrodynamic-like Equations (3) and (4) (blue line).
In analogy with the normal dispersion regime (Figure 1), the evolution of the intensity of the field
develops a collapse singularity (a), while the momentum (chirp) develops a shock singularity (b).
The good agreement between the different models is obtained without using adjustable parameters.
Parameters are: σ = +1, τR = 300, with the propagation lengths z = 0, 80, 200 from left to right.
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