
applied  
sciences

Article

Target Speaker Localization Based on the Complex
Watson Mixture Model and Time-Frequency Selection
Neural Network

Ziteng Wang 1,2,*, Junfeng Li 1,2 and Yonghong Yan 1,2,3

1 Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, Chinese Academy
of Sciences, Beijing 100190, China; lijunfeng@hccl.ioa.ac.cn (J.L.); yanyonghong@hccl.ioa.ac.cn (Y.Y.)

2 University of Chinese Academy of Sciences, Beijing 100190, China
3 Xinjiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute

of Physics and Chemistry, Chinese Academy of Sciences, Urumchi 830001, China
* Correspondence: wangziteng@hccl.ioa.ac.cn

Received: 25 October 2018; Accepted: 19 November 2018; Published: 21 November 2018 ����������
�������

Abstract: Common sound source localization algorithms focus on localizing all the active sources
in the environment. While the source identities are generally unknown, retrieving the location of
a speaker of interest requires extra effort. This paper addresses the problem of localizing a speaker
of interest from a novel perspective by first performing time-frequency selection before localization.
The speaker of interest, namely the target speaker, is assumed to be sparsely active in the signal
spectra. The target speaker-dominant time-frequency regions are separated by a speaker-aware
Long Short-Term Memory (LSTM) neural network, and they are sufficient to determine the Direction
of Arrival (DoA) of the target speaker. Speaker-awareness is achieved by utilizing a short target
utterance to adapt the hidden layer outputs of the neural network. The instantaneous DoA estimator
is based on the probabilistic complex Watson Mixture Model (cWMM), and a weighted maximum
likelihood estimation of the model parameters is accordingly derived. Simulative experiments show
that the proposed algorithm works well in various noisy conditions and remains robust when the
signal-to-noise ratio is low and when a competing speaker exists.

Keywords: target speaker localization; Watson mixture model; time-frequency selection; deep neural
network

1. Introduction

Sound Source Localization (SSL) plays an important role in many signal processing applications,
including robot audition [1], camera surveillance [2], and source separation [3]. Conventionally,
SSL algorithms focus on the task of localizing all active sources in the environment and cannot
distinguish a target speaker from competing speakers or directional noises. Nevertheless, there is one
speaker of interest in particular that we want to pay attention to in some scenarios, such as when
attending to a host speaker or in voice control systems tailored to a master speaker. Retrieving the
location of this target speaker, which is defined as Target Speaker Localization (TSL), usually could not
succeed without the help of speaker identification [4] or visual information [5].

Popular SSL algorithms are the Generalized Cross-Correlation with Phase Transform (GCC-PHAT)
algorithm [6], the Steered Response Power (SRP)-PHAT algorithm [7], which is a generalization
of GCC-PHAT for more than two microphones, and the Multiple Signal Classification (MUSIC)
algorithm [8]. These algorithms estimate the Direction of Arrival (DoA) by detecting peaks in a
so-called angular spectrum. To facilitate localization of speech sources in noisy and reverberant
conditions, time-frequency bin weighting methods have been proposed to emphasize the speech
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components, especially the direct sound components, in the observed signals [9]. These techniques
include those based on the signal power [10], the coherent-to-diffuse ratio [11], and the speech presence
probability [12].

The motivation behind time-frequency weighting is the sparsity assumption of the signal spectra,
or in other words, the assumption that only one source is active in each time frequency bin [13,14].
As suggested in [15], even if the signal is severely corrupted by noises or interferences, there exist
target-dominant time-frequency regions that are sufficient enough for localization. It is also found
that the human auditory system may perform source separation jointly with source localization [16].
The same motivation lies behind some fairly recent studies that perform robust source localization
based on time-frequency masking [17–19], in which the authors propose the usage of Deep Neural
Networks (DNNs) to perform mask estimation first. The masks are used to weight the narrowband
estimates, and the combined algorithms achieve superior performance in adverse environments. Given
that mask estimation is a well-defined task in monaural speech separation and large progress has
been made with DNN [20], the combination of mask and the SRP-PHAT (or the MUSIC) algorithm is
natural and straightforward. Using neural networks, there are also other practices to localize speech
sources directly through spatial classification [21,22].

The methods discussed above are directly applicable to TSL if the target speaker is the only
speech source in the environment. When a competing speaker exits, multiple source localization
techniques [23] could be applied; however, the localization results remain non-discriminative, and
further post-processing for speaker identification is needed. TSL in a multi-speaker environment surely
requires prior information of the target, such as a keyword uttered by the speaker [24]. Nevertheless,
the point is that TSL could be addressed from a different perspective by first performing target speaker
separation before localization. The challenge hence is to separate the target speaker from noises and
competing interferences. The previous time-frequency masking-based localization algorithms focus on
separating speech sources from noise, while not all the speech-dominant bins would be representative
of the target speaker. Specifically, in this paper, a speaker-aware DNN is designed to extract the
target speaker-dominant time-frequency regions. We also introduce a statistical model, the complex
Watson Mixture Model (cWMM), to describe the observations and formulate the localization task as
weighted Maximum Likelihood (ML) estimation, rather than investigating the classical SRP-PHAT or
MUSIC algorithms.

The cWMM was recently proposed as an alternative to the complex Gaussian Mixture Model
(cGMM) for beamforming and blind source separation [25,26]. It is a mixture of Watson distributions.
It has also been applied for general source localization [27] and source counting [28] with different
spatial directions as states of the distribution. In this paper, we follow the cWMM-based localization
technique and apply it to TSL in combination with our time-frequency selection scheme. To extract
the target speaker, a Bidirectional Long Short-Term Memory (BLSTM) neural network is leveraged to
estimate binary target masks. A short speech segment containing only the target speaker is additionally
used as input to an auxiliary network for tuning the hidden layer parameters of the mask selection
neural network. In this way, the network obtains speaker-awareness, but remains speaker independent.
The output masks indicate the target time-frequency regions that are later integrated with the weight
parameter estimation of the cWMM. Simulative experiments are conducted using real recorded Room
Impulse Responses (RIRs), and the performance of the proposed method in various environments,
especially when a competing speaker exists, is reported.

This paper is organized as follows. Section 2 introduces the signal model and the cWMM
employed to describe the directional statistics. Section 3 details the proposed method including the
time-frequency bin selection neural network and the weighting parameter estimation of the cWMM.
Section 4 presents the experimental setup, the localization results with competing speakers and noises,
and discussions regarding the results. Section 5 concludes the paper.
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2. Statistical Model

In this section, the signal model in a general environment is first defined. To perform source
localization, the directional statistics are calculated from the observed signals, and then, the complex
Watson distribution is introduced to derive a maximum likelihood solution.

2.1. Directional Statistics

Let us consider a general reverberant enclosure. The target speaker signal S is captured by an
array of M microphones and possibly contaminated by competing interference I and background
noise N. In the Short-Time Fourier Transform (STFT) domain, the observed signal is written as:

Ym(t, f ) = Hs,m(t, f )S(t, f ) + Hi,m(t, f )I(t, f ) + Nm(t, f ) (1)

where t is the time index, f is the frequency index, and Hs,m, Hi,m are respectively the multiplicative
transfer functions from the target signal and the interference to the m-th microphone. We rewrite (1) in
the vector form:

y(t, f ) = S(t, f )hs(t, f ) + I(t, f )hi(t, f ) + n(t, f ) (2)

where y = [Y1, Y2, ..., YM]T is the observation vector, hs = [Hs,1, Hs,2, ..., Hs,M]T is the target
transfer function vector, hi = [Hi,1, Hi,2, ..., Hi,M]T is the interference transfer function vector, and
n = [N1, N2, ..., NM]T is the noise vector with T denoting transpose.

To infer the location of the target speaker from the observations, we rely on the directional
statistics, which is defined as:

z(t, f ) =
y(t, f )√
||y(t, f )||2

(3)

where || · ||2 denotes the l2 norm. z is the normalized observation vector of size M× 1 that lies on
the RM complex unit hypersphere. It is assumed that signals coming from different spatial directions
would naturally form different clusters [26]. Note that the normalizing operation keeps the level and
phase differences unchanged between microphones, which are widely-used features for localization.
The vector length is discarded because it is mainly caused by the source power.

2.2. Complex Watson Distribution

Divide the acoustic space into K spatial regions and assume that the source, either the target
speaker or the interference, is coming from one potential spatial region, TSL is then to infer the region
that has the highest target presence probability. To describe the unit-length directional statistics,
the complex Watson distribution is introduced. The probability density function is:

W(z; a, η) =
(M− 1)!

2πMK(1, M, η)
exp(η|aHz|2) (4)

where K(·) is the confluent hypergeometric function of the first kind, a is a spatial centroid satisfying
||a||2 = 1, and η is a real-valued concentration parameter that governs the smoothness of the
distribution [29]. Higher concentration values result in a peaky kernel, meaning that more weight
is put on observations that are close to the centroid, while lower values of η lead to smoother score
functions, however sacrificing resolution. This distribution features some good properties. Its value
is properly normalized, and it naturally accounts for spatial aliasing, because the distance score
|aHz|2, which is equivalent to the normalized response of a beamformer, does not change if individual
components of z are multiplied with ej2π . The observation vector is then modeled by a mixture of
Watson distributions as:

p(z(t, f )) =
K

∑
k=0

αk(t)W(z(t, f ); ak( f ), ηk( f )) (5)
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where the mixture weight αk(t) is the spatial presence probability in the k-th region at time t and
satisfies ∑K

k=0 αk(t) = 1. Note that we additionally use k = 0 to model the background noise, which has
an even probability of coming from all directions.

For each candidate region, ak and ηk can be determined through Maximum Likelihood (ML)
estimation given training data collected in advance [30]. They are stored as spatial dictionaries for the
training environment and applied in further localization tests. In the localization phase, the mixture
weights αk(t) are estimated by the maximization of ∏T

t=1 ∏F
f=1 p(z(t, f )), and the maximum peak in

the weights would coincide with the target source.

3. Proposed Method

In scenarios where competing speakers coexist with the target speaker, false detection would
arise when the target is not active or when the interference is too strong, because the probability of
the observation vector would show a high value in the direction of the competing speaker, and the
maximum of the mixture weights would not always correspond to the target speaker. The proposed
solution to this problem is to perform time-frequency selection first. Accordingly, the likelihood
function is modified to be:

T

∏
t=1

F

∏
f=1

δ(t, f )p(z(t, f )) (6)

where δ(t, f ) is an indicator of the target speaker activity at the (t, f ) bin. The indicator can take the
form of a binary mask [20]:

δ(t, f ) =

{
1, if |X(t, f )| > |V(t, f )|
0, else

(7)

where X denotes the desired target component, which can be the direct sound or the reverberant image
of the target speaker, and V denotes all the other undesired components in the observed signal. Here,
a decision threshold of 0 dB is used.

3.1. Time-Frequency Selection

To obtain the target time-frequency masks defined as in Equation (7), we propose a target speaker
extractor BLSTM network, which is illustrated in Figure 1. The network consists of one BLSTM layer
with 512 nodes followed by two fully-connected Feed-Forward (FF) layers, each with 1024 nodes.
This part takes the magnitude spectrum of the observed signal as input and is supposed to output the
masks of the target speaker. In our experiments, the Short-Time Fourier Transform (STFT) is performed
in 512 points, so the input and output dimensions of the network are both 257. For the last layer, a
sigmoid activation function is applied, which ensures that the outputs are in the range of [0,1].

Besides this main network, there is an auxiliary network designed to provide information of the
target speaker. The auxiliary network has two fully-connected layers each with 50 nodes and takes
a speaker-dependent utterance as input. The frame-level activations of the auxiliary network are
averaged over time and serve as utterance-level weights to adapt the second hidden layer outputs of
the main network. Mathematically, the computation is expressed as:

L(2) = ReLU(O(aux) � FF(L(1))) (8)

where L(l) denotes the activations of the l-th layer, ReLU(x) = max(0, x) is the non-linear activation
function, O(aux) = Average(aux(Starget)) denotes the utterance-averaged weights provided by the
auxiliary network, and � denotes element-wise multiplication. The function of this auxiliary
network resembles the Learning Hidden Unit Contribution (LHUC) technique for acoustic model
adaptation [31] and the speaker-adaptive layer technique for speaker extraction [32]. In these studies,
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it has been found that the hidden parameter weighting is better at preserving the speaker information
than that using the adaptation utterance as an extra input to the main network.

Given training speech examples, the whole network is optimized under the cross-entropy criterion.
The Adam method is applied to schedule the learning process. Weight decay (1e−5) and weight norm
clipping are used to regularize the network parameters. Note that both in the training phase and in
the test phase, the neural network is single-channel based, meaning that the target speaker extraction
relies only on the spectral characteristics, because the spatial information is not reliable when the
competing interference is also speech. Moreover, this setup is flexible, and it is applicable to arbitrary
array geometry. In the test phase, we suggest to apply a median pooling on the masks estimated from
different channels.

𝛿(𝑡, 𝑓)

𝑂(𝑎𝑢𝑥)

𝑆𝑡𝑎𝑟𝑔𝑒𝑡𝑌(𝑡, 𝑓)

𝐿(1)

𝐿(2)

BLSTM

FF

FF

Average

Figure 1. Architecture of the speaker-aware time-frequency selection neural network. The grey
components represent non-linear activations, which are ReLU(x) = max(0, x) for the feed-forward layers.

3.2. Weight Parameter Estimation

Once the time-frequency masks of the target speaker are estimated, they can be integrated in
the weight parameter estimation of the cWMM together with dictionaries ak and ηk. In known
environments, the spatial dictionaries can be trained using pre-collected data. Though accurate
localization is expected in this case, training data collection would be cumbersome. For a general test
environment, we consider the direct sound propagation vector [33] as the spatial centroid instead.
This vector depends on the array geometry only and is given by:

adirect
k ( f ) =

1√
M

[ejωτk,1 , ejωτk,2 , ..., ejωτk,M ]T (9)

where j is the complex unit, ω is the angular frequency, and τk,m is the observed delay of the direct
sound in the m-th microphone. τk,m = dT

k rm/c with dk the unit vector in the k-th coming direction,
rm ∈ R3 the coordinates of the m-th microphone, and c the sound velocity. The concentration parameter
ηk is decided through empirical analysis, and we set ηk = 5 here, as suggested in [27], which means
equal importance is put on different frequencies. For modeling the background noise, ηk is set to zero,
which leads to a uniform distribution.

The weight parameters are estimated by the maximization of the weighted likelihood function (6),
and this is achieved by the following gradient ascent-based updates [26]:

αit
k (t) = αit−1

k (t) + λ
F

∑
f=1

1

∑K
k=0 αit−1

k (t)wk(t, f )δ(t, f )
wk(t, f )δ(t, f ) (10)

αit
k (t) =

1

∑K
k=0 αit

k (t)
αit

k (t) (11)
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where αk(t) = 1
K+1 for initialization, wk(t, f ) = W(z(t, f ); adirect

k ( f ), ηk), the learning rate λ = 0.01,
and the maximum iteration itmax = 3. After the time-frequency selection, the maximum of the
mixture weights would correspond only to the target speaker. The processing pipeline of the proposed
algorithm is summarized in Figure 2.

FFT cWMM Peak
Detect

𝐚𝐚(𝑓𝑓) 𝜂𝜂(𝑓𝑓)

𝜶𝜶(𝑡𝑡) 𝐷𝐷𝐷𝐷𝐷𝐷

BLSTM based 
T-F Selection

𝛿𝛿(𝑡𝑡, 𝑓𝑓)

Obser-
vations

Figure 2. The processing pipeline of the proposed method.

4. Experiments

The experiments were conducted in a controlled environment where anechoic speech signals
were convolved with real-recorded impulse responses (available at https://www.iks.rwth-aachen.
de/en/research/tools-downloads/databases). The speech signals were from the Wall Street Journal
(WSJ) corpus [34] and sampled at 16 kHz. The impulse responses were measured in a room with a
configurable reverberation level. The reverberation times were set to be 160 ms, 360 ms, and 610 ms.
A linear microphone array configuration of eight microphones was used with microphone spacing
3-3-3-8-3-3-3 cm. The source position was set to be 1 m or 2 m away in the azimuth range of [−90◦, 90◦]
in a 15◦ step. An illustration of the setup is shown in Figure 3.

0∘

-90∘ 90∘

30∘

60∘

Mic Array 1 m 2 m

Figure 3. The evaluation setup. The black dots mark the positions where the impulse responses
are measured.

To generate the test data, speech signals were first randomly drawn from the WSJ development set
and the evaluation set. They were truncated to 1 s in length for evaluation. The target speaker and one
potential interfering speaker were then randomly placed at the black dot positions, as shown in Figure 3,
while it was ensured that they were not in the same direction. The microphone observations were a
superposition of the reverberant target speaker, reverberant interfering speaker, and background noise.
Two types of noise were tested, namely white Gaussian Noise (N0) and spatially-diffuse Noise (N1).
The Signal-to-Interference Ratios (SIRs) were set to be −5 dB, 0 dB, and 5 dB. The SIRs were set such
that the signal powers of the target speaker were respectively weaker than, equal to, and stronger than
that of the competing interference. The Signal-to-Noise Ratios (SNRs) were set to be 20 dB and 30 dB.
For each test case, we ran 200 simulations, and we report the results in two different metrics: the Gross

https://www.iks.rwth-aachen.de/en/research/tools-downloads/databases
https://www.iks.rwth-aachen.de/en/research/tools-downloads/databases


Appl. Sci. 2018, 8, 2326 7 of 13

Error Rate (GER, in %) and the Mean Absolute Error (MAE, in ◦). The GER measures the percentage
of DoA estimations whose error is larger than a threshold of 5◦, and the MAE measures the average
estimation bias [24].

For training the target time-frequency selection BLSTM, we used speech signals from the WSJ
training set and generated reverberant mixtures with random room and random microphone-to-source
distance configurations, following a similar procedure as in [35]. The simulated impulse responses
were obtained using a fast implementation of the image source method [36]. In total, there were 20,000
utterances generated for training. The reverberant target speech was used as the reference, and the
training target was defined as in Equation (7). The training procedure followed that as described
in Section 3.1. For the input to the auxiliary network, a 10-s anechoic utterance containing only the
target speaker was applied, which was found to be beneficial for speaker adaptation in the speech
recognition task [37]. Note that the clean utterance did not overlap with the test utterances, and it was
prepared in advance for each speaker and kept fixed all the time.

4.1. Oracle Investigation

In this part, an example is presented to illustrate the localization results and the effect of
time-frequency selection. One test utterance was arbitrarily picked with the target speaker located at
−45◦ and the interference located at 0◦. The SIR was 0 dB, and the SNR was 30 dB. The sub-figures
in Figure 4 are, respectively, (a) the observed mixture spectrum in the first channel, (b) the oracle
binary masks for the reverberant target speaker, which were calculated using the reference target and
interference signals, (c) the reference reverberant target speech, (d) the cWMM weight parameters
for each candidate spatial direction calculated from the multichannel mixture signal, (e) the cWMM
weights calculated from the masked mixture signal, and (e) the time-averaged cWMM weights before
(the blue curve) and after (the red curve) the binary mask-based time-frequency selection. It is clearly
shown that the target masks separated the target speaker from the mixture well and that the maximum
of the mixture weights corresponded to the interference before and to the target speaker after the
time-frequency selection.

Figure 4. Cont.
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Figure 4. An example for oracle investigation. The sub-figures are, respectively, (a) the mixture
spectrum, (b) the ideal binary mask of the target, (c) the reference spectrum, (d) the original cWMM
weights, (e) the cWMM weights after time-frequency selection, and (f) the averaged weights before
(orig) and after (after) processing.

4.2. Performance with Competing Speakers

The experimental results are summarized in terms of GER in Table 1 and in terms of MAE
in Table 2. We report the results of the SRP-PHAT algorithm, the original cWMM-based DoA
estimation algorithm (cWMM), the cWMM-based algorithm with the target Time-frequency Selection
BLSTM network (cWMM-TF), and the cWMM based algorithm using the Oracle target binary mask
(cWMM-ORC). A threshold of 0.6 was heuristically chosen to convert the network outputs to binary
values. K = 181 was set to evaluate the source azimuth in a 1◦ step. The results were averaged over
different SNRs.

Table 1. The GER (100%) of the algorithms in different test environments with competing speakers.
The bold numbers indicate the best results excluding cWMM-ORC for each SIR. TF, Time-Frequency;
ORC, Oracle.

Noise Type N0 N1

SIR −5 0 5 −5 0 5

160 ms

SRP-PHAT 0.90 0.56 0.30 0.82 0.64 0.28
cWMM 0.76 0.48 0.28 0.74 0.59 0.28

cWMM-TF 0.43 0.24 0.15 0.48 0.25 0.14
cWMM-ORC 0.09 0.08 0.07 0.07 0.10 0.05

360 ms

SRP-PHAT 0.83 0.47 0.34 0.82 0.51 0.34
cWMM 0.75 0.47 0.37 0.75 0.51 0.33

cWMM-TF 0.42 0.34 0.18 0.42 0.28 0.16
cWMM-ORC 0.08 0.06 0.09 0.06 0.07 0.10

610 ms

SRP-PHAT 0.78 0.56 0.29 0.82 0.62 0.25
cWMM 0.70 0.54 0.28 0.73 0.57 0.28

cWMM-TF 0.48 0.22 0.15 0.52 0.23 0.13
cWMM-ORC 0.11 0.08 0.07 0.08 0.10 0.08

It is shown that the GER and MAE scores followed similar trends. For both SRP-PHAT and
cWMM, there was a general performance degradation as the reverberant time increased, while a
special case was the −5 dB SIR, where the GER and MAE were highest in the 160-ms case. The reason
was possibly that the less reverberant the mixture was, the higher probability that the estimated
DoA corresponded to the stronger interference. Clearly, their performance improved rapidly as the
SIR increased. In the case of 0 dB SIR, there was around a 50% GER, meaning that the algorithms
could not distinguish the target speaker from the interference without any prior information and
just made a guess from the two competing directions, which should be at least 15◦ away because of
the experimental setup. As the SIR went up, the algorithms output the DoA of the stronger source
in the mixture, but still, the performance was poor. With the oracle target mask, the cWMM-ORC
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performed quite robustly in all the test cases and achieved a GER of 8% and an MAE of around 2◦.
The cWMM-ORC was somewhat the upper bound of the cWMM-TF algorithm. Using the masks
estimated from the BLSTM network, the cWMM-TF achieved on average 26% GER and 14.54◦ MAE in
the 0-dB SIR case, which were, respectively, a 51% and 55% relative reduction of the original scores
without time-frequency selection. The time-frequency selection processing suppressed the interference
and effectively benefited the localization accuracy.

Table 2. The MAE (◦) of the algorithms in different test environments with competing speakers.
The bold numbers indicate the best results excluding cWMM-ORC for each SIR.

Noise Type N0 N1

SIR −5 0 5 −5 0 5

160 ms

SRP-PHAT 62.49 34.38 13.14 54.82 36.32 12.86
cWMM 55.42 32.14 16.54 49.46 39.92 17.65

cWMM-TF 28.26 12.62 5.71 30.23 13.16 5.17
cWMM-ORC 1.82 1.69 1.71 1.55 1.92 1.55

360 ms

SRP-PHAT 58.43 28.98 18.26 51.80 31.41 17.53
cWMM 53.26 29.55 23.38 47.47 32.62 19.71

cWMM-TF 28.99 19.71 7.40 24.67 14.56 8.70
cWMM-ORC 2.54 1.53 1.59 1.70 1.75 1.85

610 ms

SRP-PHAT 50.92 37.30 15.28 58.21 36.51 13.65
cWMM 45.59 37.82 15.57 52.91 37.79 17.87

cWMM-TF 31.73 11.97 7.85 33.56 15.71 8.19
cWMM-ORC 2.97 1.87 1.61 1.87 2.06 2.07

4.3. Performance with Competing Noises

This subsection considers the localization performance with only competing noises, since this
would be the general case in the acoustic environment. The experiment also indicated the generalization
ability of the trained time-frequency selection neural network in unseen scenarios. The MAE results are
reported in Table 3 with a subset of the tested environments investigated using a typical reverberation
time of 360 ms. The SNRs were set to be 0 dB, 5 dB, and 10 dB. A directional Noise (N2) was also
included in evaluation. The noise signal was drawn from the Noisex92 database, and it was then
convolved with the measured impulse responses. The localization accuracies differed in different noisy
conditions, and as expected, the directional noise affected the performance badly for the SRP-PHAT
and cWMM algorithms. The time-frequency selection neural network was able to deal with this
case since the information of the target speaker was well kept in the adaptation utterance. Overall,
the performance of the algorithms was better than that when an interfering speaker existed. The white
noise scenario turned out to be the easiest test case, where the MAEs were around 2◦–4◦. Again,
the time-frequency selection proved its effectiveness.

Table 3. The MAE (◦) of the algorithms in different test environments with competing noises.

Noise Type N0 N1 N2

SNR 0 5 10 0 5 10 0 5 10

360 ms

SRP-PHAT 3.94 3.92 3.22 16.01 7.65 6.28 59.53 46.04 23.22
cWMM 2.70 1.84 1.30 28.08 10.28 5.55 53.41 38.65 24.03

cWMM-TF 2.18 1.97 1.52 10.22 6.01 3.95 23.81 12.97 10.12
cWMM-ORC 1.94 1.92 1.50 5.32 2.83 2.51 2.09 2.02 1.66

4.4. Discussion

One finding is that the cWMM-based localization algorithm performs generally better than the
SRP-PHAT algorithm. By looking closely, there are the following differences between the two methods.
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Rewriting the distance function in Equation (4), |aHz|2 = aHzzHa = 1
||y||2

aHyyHa, we see that the
cWMM-based algorithm also utilizes the cross-channel correlation, but with a global normalization
term rather than separately normalizing the correlation coefficients as in SRP-PHAT. The global
normalization keeps the original cross-channel level difference, while the separate normalization does
not. The cWMM-based localization algorithm applies a concentration parameter for weighting different
frequency contributions and properly normalizes its value. The SRP-PHAT algorithm generally treats
different frequencies equally.

The other finding is that the time-frequency selection plays an essential part in the localization
performance. Localizing a target speaker in a multi-speaker environment would not be successful
without additional post-processing using methods such as speaker identification [4] or visual
information [5]. The proposed method provides a different solution by first performing separation
relying on a reference utterance from the speaker and infers the target location using the established
non-discriminative localization methods. The idea of time-frequency weighting has proved its
effectiveness for general source localization [17], and it is further validated here. The task of target
speaker localization could benefit from this thanks to the recent advances made in monaural speech
separation with deep learning techniques [20].

5. Conclusions

The task of localizing a target speaker in the presence of competing interference and background
noise is investigated in this paper. A method combining a BLSTM-based target time-frequency selection
scheme with the cWMM-based localization algorithm is proposed. The time-frequency neural network
additionally relies on a reference utterance from the target and achieves speaker-awareness to predict
the target-dominant time-frequency regions in the signal spectra. After time-frequency selection, the
general cWMM-based localization method could be applied, and the localization results correspond
only to the target. Experiments are conducted in adverse conditions, and the performance of the
proposed algorithm remains robust in terms of the GER and MAE metrics.

Combing source separation and source localization as in this paper would facilitate speaker
tracking over time, which is another challenging task that could be investigated in future work.
For providing the prior information of the speaker to be localized, others speaker-dependent
representations, such as pitch and voiceprint, could be introduced to the time-frequency selection
neural network.
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Abbreviations

The following abbreviations are used in this manuscript:

cWMM Complex Watson Mixture Model
DNN Deep Neural Network
DoA Direction of Arrival
FF Feed-Forward layer
GCC-PHAT Generalized Cross-Correlation with Phase Transform
GER Gross Error Rate
LHUC Learning Hidden Unit Contribution
LSTM Long Short-Term Memory
MAE Mean Absolute Error
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ML Maximum Likelihood
MUSIC Multiple Signal Classification
RIR Room Impulse Response
SIR Signal-to-Interference Ratio
SNR Signal-to-Noise ratio
SRP Steered Response Power
SSL Sound Source Localization
STFT Short Time Fourier Transform
TSL Target Speaker Localization
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