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Featured Application: This paper proposes a new model for restoring polluted images under
impulse noise, which makes a contribution to the research in image processing and image
reconstruction.

Abstract: Models based on total variation (TV) regularization are proven to be effective in removing
random noise. However, the serious staircase effect also exists in the denoised images. In this study,
two-dimensional total variation with overlapping group sparsity (OGS-TV) is applied to images with
impulse noise, to suppress the staircase effect of the TV model and enhance the dissimilarity between
smooth and edge regions. In the traditional TV model, the L1-norm is always used to describe the
statistics characteristic of impulse noise. In this paper, the Lp-pseudo-norm regularization term
is employed here to replace the L1-norm. The new model introduces another degree of freedom,
which better describes the sparsity of the image and improves the denoising result. Under the
accelerated alternating direction method of multipliers (ADMM) framework, Fourier transform
technology is introduced to transform the matrix operation from the spatial domain to the frequency
domain, which improves the efficiency of the algorithm. Our model concerns the sparsity of the
difference domain in the image: the neighborhood difference of each point is fully utilized to augment
the difference between the smooth and edge regions. Experimental results show that the peak
signal-to-noise ratio, the structural similarity, the visual effect, and the computational efficiency of
this new model are improved compared with state-of-the-art denoising methods.

Keywords: overlapping group sparsity; Lp-pseudo-norm; accelerated alternating multiplier iterative
method; impulse noise denoising

1. Introduction

Image denoising is one of the most important research areas in the field of image processing, and it
has great value in both theoretical studies and engineering applications. Its usage spans the broad
fields of image restoration [1], detection [2], photoelectric detection [3], geological exploration [4],
remote sensing [5], and medical image analysis [6], among others [7,8]. With the development
of compressed sensing theory, image processing algorithms based on sparse representation and
constrained regularization have evolved into promising methods of image restoration [9]. Models
based on total variation (TV) regularization [10–12] are found to be effective in removing random
noise. The TV model has been successfully used in image restoration tasks such as denoising [13],
deblurring [14], and super-resolution [15]. Although TV regularization can recover sharp edges of
a degraded image, it also leads to some undesired effects and transforms the smooth signal into
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piecewise constants, the so-called staircase effect. Several models have been proposed by scholars to
make an improvement on the TV model [16–21]. One usual method is to replace the original TV norm
by a high-order TV norm. The high-order TV overcomes the staircase effect while preserving the edges
in the restored image. However, the high-order TV based methods may transform the smooth signal
to over-smoothing and take more time to compute. More details can be referred to in References [22].
In 2010, Bredies et al. proposed the total generalized variation (TGV) model [19]. The TGV model puts
constraints on both the first- and second-order gradients of an image, thus effectively attenuating the
staircase effect of the TV model. Still, it is difficult to both preserve the image details and suppress the
noise simultaneously in TGV. Furthermore, some scholars pay attention to fractional-order gradients
replacing integer-order gradients [23]. Their research shows that using a fractional differential operator
with 0 < v < 1 can appropriately process the noise and edge information, but it also has un-denoised
“spots” in the image.

Although these improved methods can alleviate the staircase artifacts, they might lead to “spots”
effects on the processed image. How to choose a good regularization functional is a key point in
imaging science, in order to balance the staircase artifacts and “spots” effects. Recently, Selesnick and
Chen proposed the total variation with overlapping group sparsity (OGS-TV) [24–28], which introduces
the concept of the group gradient into the TV model and takes into full consideration the dissimilarity
between smooth and edge regions. The OGS-TV model can distinguish the individual noise point
and image edge point, so it greatly alleviates the staircase effect. Based on this work, Liu et al. applied
this method in the removal of speckle noise. Wu and Du applied the OGS model in the field of
Magnetic Resonance (MR) image reconstruction [27]. In this paper, we introduce the OGS model into
the denoising of impulse noises.

In the typical denoising method, the L1-norm is commonly used as the fidelity term of impulse
noise. However, the solution to the L1-norm usually involves the soft-thresholding function,
which reduces large values by a constant amount. As a result, noise signals are estimated systematically
underestimated for large signal values [26]. To improve this shortcoming, many non-convex reconstruction
methods are proposed. Non-convex regularizers have also shown to exhibit a sparser solution than
the L1 regularizer [24,29,30]. Inspired by their research, we propose a total variation model based on
overlapping group sparsity and Lp-pseudo-norm shrinkage (called OGS-Lp for short). Compared
with the L1-norm, the Lp-pseudo-norm adds another degree of freedom to the model, which better
characterizes the sparsity features of the image [31].

To solve the problem, the alternating multiplier iterative method (ADMM) [32] and the
majorization-minimization (MM) algorithm [33] were used to split the complex problem into several
subproblems. Furthermore, an accelerated ADMM with a restart [34] is used to solve the new model
(OGS-Lp-FAST for short). In this way, a large amount of spatial-domain calculations are transferred
to the frequency domain, which significantly reduces the complexity of the algorithm and speeds up
its convergence.

The anisotropic total variation (ATV), isotropic total variation (ITV), total generalized variation
(TGV), overlapping group sparsity with L1-norm (OGS-L1), overlapping group sparsity with
pseudo-norm (OGS-Lp), and our method are compared experimentally using criteria such as peak
signal-to-noise ratio (PSNR), structural similarity (SSIM), and runtime. The model and algorithm
proposed here could further improve the image denoising performance.

The contributions of this study are as follows: (1) By introducing OGS into TV, a new regularization
was proposed, which incorporated the advantages of TV and OGS models. In the OGS-TV model,
the neighborhood difference of each point is fully utilized to augment the difference between the
smooth and edge regions. It could balance the staircase artifacts and “spots” effects well. (2) We adopt
the Lp-pseudo-norm instead of the L1-norm to describe the fidelity term of impulse noise, extending
the L1-norm-based OGS-TV to the OGS-Lp model. (3) The ADMM framework was employed to
solve the proposed model. In the ADMM framework, the complex multi-constraints optimization
problem is changed to several decoupled subproblems, which are easier to solve. Fourier transform
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technology is introduced to transform the matrix operation from the spatial domain to the frequency
domain, which avoids large-scale matrix calculations. (4) In order to achieve faster convergence speed,
the rapid ADMM with a restart process is adopted to improve the speed of the proposed algorithm.
This improved model is named OGS-Lp-FAST. The rate of convergence of the model increases from
O( 1

k ) to O( 1
k2 ).

This paper is organized as follows: Section 2 gives a review of the traditional TV model; Section 3
describes the incorporation of overlapping group sparsity and Lp-pseudo-norm shrinkage into the TV
model, and uses accelerated ADMM with a restart to solve the new model; Section 4 seeks to validate
the proposed algorithm with standard images, and compares it with four other models; and Section 5
summarizes this paper and proposes future work.

2. Traditional TV Model

An image could contain many types of noise. According to the distribution condition of probability
density function (PDF) of their amplitude, noises are classified into Gaussian noise, Rayleigh noise,
uniform noise, exponential noise, impulse noise, gamma noise, etc.

In this paper, the discussion focuses on impulse noise denoising of images. Impulse noise is
additive and is mainly caused by black-and-white bright and dark spots produced by image sensors,
transmission channels, decoding processes, etc. In 2004, Nikolova [11] proposed the use of a L1
data-fidelity term for impulse noise related problems. Since then, many research papers adopted this
model in their characterization of this type of noise [35–37]. The ATV model of impulse noise based on
this model is:

F = argmin
F
‖F−G‖1 + µRATV(F). (1)

where G ∈ RM×M is the image with noise and F ∈ RM×M is the denoised image. With ‖ ‖1 being the
L1-norm, the first term in Equation (1), i.e., argmin

F
‖F−G‖1 is called the fidelity term, and the second

term µRATV(F) is the sparsity regularization term, which includes the prior sparsity information of
the image. µ is a regularization parameter for weighing between the fidelity and regularization terms.
The image restoration problem can then be solved by finding the smallest value of F satisfying the
conditions, so that Equation (1) is valid. Since the regularization term of the anisotropic total variation
model needs to ensure the minimization of both horizontal and vertical gradients, RATV(F) can be
defined as

RATV(F) = ‖Kh ∗ F‖1 + ‖Kv ∗ F‖1 (2)

where * represents the convolution, and Kh = [−1, 1] with Kv =

[
−1
1

]
are the differential operators

used for convolution operations in horizontal and vertical directions, respectively.

3. Proposed Method

3.1. Overlapping Group Sparsity with L1 Norm (OGS-L1) Model

To reduce the staircase effect of the ATV model, Selesnick and Chen proposed the overlapping
group sparsity regularization term [5–7] in 2006, which expands the vertical and horizontal gradient
of pixels to the group gradient of N adjacent points (N is the size of the group). Setting a reasonable
threshold, the individual noise points and image edge points can be distinguished. This model
preserves the edge information of the image and mitigates the disadvantages of the staircase effect.
With reference to the work of Selesnick and Chen, Liu et al. extended the overlapping group sparsity
regularizer from one-dimensional to two-dimensional cases, then substituted it in the anisotropic total
variation model for the deconvolution and removal of salt and pepper noise [8].
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This model is centered at the pixel xi,j and extends into all directions, forming multiple staggered

and overlapped squares. The variable
∼
Xi,j,N,N ∈ RN×N is the N × N pixel matrix, centered at the

coordinates (i, j), as shown in Equation (3):

∼
Xi,j,N,N =


xi−Nl ,j−Nl xi−Nl ,j−Nl+1 · · · xi−Nl ,j+Nr

xi−Nl+1,j−Nl xi−Nl+1,j−Nl+1 · · · xi−Nl+1,j+Nr
...

...
. . .

...
xi+Nr ,j−Nl xi+Nr ,j−Nl+1 · · · xi+Nr ,j+Nr

, (3)

where Nl =
⌊

N−1
2

⌋
, Nr =

⌊
N
2

⌋
. and b c is the rounding-down operators. We define ϕ(X) to represent

the overlapping group sparsity functional of the two-dimensional array:

ϕ(X) =
N

∑
i=1

N

∑
j=1

∥∥∥∥∼Xi,j,N,N

∥∥∥∥
2
. (4)

The ATV model can then be extended to embody overlapping group sparsity regularization
(called OGS-L1 model for short), as shown in Equation (5):

F = argmin
F
‖F−G‖1 + µ[ϕ(Kh ∗ F) + ϕ(Kv ∗ F)], (5)

where the regularization term ϕ(X) =
N
∑

i=1

N
∑

j=1

∥∥∥∥∼Xi,j,N,N

∥∥∥∥
2
. is the group gradient. Equation (4) shows

that the OGS-TV model takes into full consideration the gradient information close to a pixel, so it
strengthens the dissimilarity between the smooth and edge regions of the image.

3.2. Overlapping Group Sparsity with Lp-Pseudo-Norm (OSG-Lp) Model

The L1-norm is commonly used as the fidelity term of impulse noise. However, the L1-norm is
only the convex relaxation of the L0-norm. The pth power of the Lp-norm (0 ≤ p ≤ 1, for simplicity,
we name it Lp-pseudo-norm) is another relaxation of the L0-norm. In fact, the L1-norm constraint is a
particular case of the Lp-pseudo-norm.

Recently, the Lp-pseudo-norm [38–42] has attracted much attention in academia. Woodworth and
Chartrand pointed out that the Lp-quasinorm is better for approximating the original L0-norm than
the L1-norm and developed an iterative Lp-quasinorm shrinkage (LpS) solving the problem [43].

The Lp-pseudo-norm makes an improvement on the sparsity-based shrinkage operator by
introducing another degree of freedom, thus giving the model a better ability to depict the sparsity of
an image in the gradient domain, as shown in Figure 1.

Lp-pseudo-norm contour lines are given in Figure 1, where p = 2 and p = 1 represent L2-
and L1-norms, respectively. Assuming that the image is contaminated by impulse noises with an
absolute difference of τ, Figure 2 shows the schematic plots of anisotropic total variation contour
lines RApTV(F) = ‖Kh ∗ F‖p

p + ‖Kv ∗ F‖p
p(0 < p ≤ 1) intersecting with the fidelity term. As shown in

Figure 2, the intersections of the contour lines with the fidelity term are more sparse for 0 < p < 1,
as shown in Figure 2b, than for p = 1, as shown in Figure 2a, therefore the robustness of the model
against noise is better.

Based on the above analysis, the advantages of Lp-quasinorm regularization are listed as follows:
(1) The LpS operator may converge to an accurate solution. (2) The Lp-quasinorm is more flexible
than the L1-norm. This might be useful to adapt the degree of sparsity to the signal being processed.
(3) The Lp-quasinorm feasible domain makes the solution robust to noise.
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Thus, the L1-norm-based OGS-TV could be extended to the Lp-pseudo-norm (abbreviated as
OGS-Lp) [38,39,44] and is expressed as follows:

F = argmin
F
‖F−G‖p

p + µ[ϕ(Kh ∗ F) + ϕ(Kv ∗ F)]. (6)
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4. Solution

4.1. Solving the OSG-Lp Model

The OSG-Lp model is treated as a minimization problem whose computation is given below.
In real-life images, the values of all pixels usually fall in a limited interval [a, b]. For calculation and
verification convenience, the image data are normalized so that they are all within [0, 1]. The operator
PΩ is first defined with Ω =

{
F ∈ RM×M

∣∣0 ≤ Fi,j ≤ 1
}

.

Ω
(
Fi,j
)
=


0 , Fi,j < 0,

Fi,j , Fi,j ∈ [0, 1]
1 , Fi,j > 1,

. (7)

To solve the proposed model, we employed the ADMM framework and changed the complex
problem into several subproblems. First, some intermediate variables were introduced to decouple
the subproblems. That is, Z1 = Kh ∗ F, Z2 = Kv ∗ F, Z3 = F−G, Z4 = F. then Equation (6) can be
reformulated into the following constrained optimization problem:

F = arg min
Fi,j∈Ω

‖Z3‖p
p + µ[ϕ(Z1) + ϕ(Z2)]

s.t. Z1 = Kh ∗ F, Z2 = Kv ∗ F, Z3 = F−G, Z4 = F.
(8)

According to the principle of the ADMM framework, the Lagrange multipliers and the quadratic
penalty term are needed to establish the augmented function. Then we have the following:

J(F, Z1, Z2, Z3, Z4, β1, β2, β3, β4) = ‖Z3‖p
p + µ[ϕ(Z1) + ϕ(Z2)]

−〈Λ1, (Z1 −Kh ∗ F)〉+ β1
2 ‖Z1 −Kh ∗ F‖2

2

−〈Λ2, (Z2 −Kv ∗ F)〉+ β2
2 ‖Z2 −Kv ∗ F‖2

2,
−〈Λ3, (Z3 − F + G)〉+ β3

2 ‖Z3 − F + G‖2
2

−〈Λ4, (Z4 − F)〉+ β4
2 ‖Z4 − F‖2

2

(9)

where Λ1, Λ2, Λ3, Λ4 are the Lagrange multipliers, and β1, β2, β3, β4 > 0 are the penalty coefficients.
〈A, B〉 is the inner-production operator of the matrixes A and B.

Introducing the scaled Lagrange multipliers Z̃1, Z̃2, Z̃3, Z̃4, which are also called dual variables.
Defined Z̃i(i = 1, 2, 3, 4) as following Z̃1 = 1

β1
Λ1, Z̃2 = 1

β2
Λ2, Z̃3 = 1

β3
Λ3,Z̃4 = 1

β4
Λ4. Add the

term βi
2

(
Z̃i

)2
− βi

2

(
Z̃i

)2
= 0(i = 1, 2, 3, 4) to Equation (9) to complete the formula item. Equation (10)

is obtained after rearrangement.

J(F, Z1, Z2, Z3, Z4, β1, β2, β3, β4)

= ‖Z3‖p
p + µ[ϕ(Z1) + ϕ(Z2)]

+ β1
2 ‖Z1 −Kh ∗ F‖2

2 − β1

〈
Z̃1, Z1 −Kh ∗ F

〉
+ β1

2

(
Z̃1

)2
− β1

2

(
Z̃1

)2

+ β2
2 ‖Z2 −Kv ∗ F‖2

2 − β2

〈
Z̃2, Z2 −Kv ∗ F

〉
+ β2

2

(
Z̃2

)2
− β2

2

(
Z̃2

)2

+ β3
2 ‖Z3 − F + G‖2

2 − β3

〈
Z̃3, Z3 − F + G

〉
+ β3

2

(
Z̃3

)2
− β3

2

(
Z̃3

)2

+ β4
2 ‖Z4 − F‖2

2 − β4

〈
Z̃4, Z4 − F

〉
+ β4

2

(
Z̃4

)2
− β4

2

(
Z̃4

)2
.

(10)

In Equation (10), the expressions

βi
2
‖Zi −A‖2 − βi

〈
Z̃i, Zi −A

〉
+

βi
2

(
Z̃i

)2
(i = 1, 2, 3, 4) , (11)
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satisfy the form of a2 − 2ab + b2 = (a− b)2, so Equation (10) can be written as Equation (12):

J(F, Z1, Z2, Z3, Z4, β1, β2, β3, β4)

= ‖Z3‖p
p + µϕ(Z1) + µϕ(Z2) +

β1
2 ‖Z1 −Kh ∗ F− Z̃1‖

2
2

+ β2
2 ‖Z2 −Kv ∗ F− Z̃2‖

2
2 +

β3
2 ‖Z3 − F + G− Z̃3‖

2
2

+ β4
2 ‖Z4 − F− Z̃4‖

2
2 −

β1
2

(
Z̃1

)2
− β2

2

(
Z̃2

)2
− β3

2

(
Z̃3

)2
− β4

2

(
Z̃4

)2
.

(12)

Because Z1, Z2, Z3, Z4, Z̃1, Z̃2, Z̃3, Z̃4 are mutually independent, so, they can be solved as some
independent subproblems according to the principle of the ADMM algorithm. These problems can be
solved by the iterative algorithm for minimizing Zi.

Defining Z(k)
i (i = 1, 2, 3, 4) represents the value of Zi after (k)− th iterations. For a given Z(k)

i ,

the next iteration Z(k+1)
i is generated as follows:

Z(k+1)
1 = argmin

Z1

µϕ(Z1) +
β1

2
‖Z1 −Kh ∗ F(k) − Z̃

(k)
1 ‖

2

2. (13)

Z(k+1)
2 = argmin

Z2

µϕ(Z2) +
β2

2
‖Z2 −Kv ∗ F(k) − Z̃

(k)
2 ‖

2

2. (14)

Z(k+1)
3 = argmin

Z3

‖Z3‖p
p +

β3

2
‖Z3 − F(k) + G− Z̃

(k)
3 ‖

2

2. (15)

Z(k+1)
4 = argmin

Z4

β4

2
‖Z4 − F(k) − Z̃

(k)
4 ‖

2

2. (16)

Each of these four equations are solved below:
(1) The Z(k+1)

1 and the Z(k+1)
2 are solved by the majorization-minimization (MM) algorithm [33],

which approximates the solution of the target problem by finding a well-behaving multi-variable
auxiliary function and constructing an iterative sequence.

First, suppose a minimization optimization problem with the following form:

min
v

P(v) =
{α

2
‖v− v0‖2

2 + ϕ(v)
}

, v ∈ RM2×1, (17)

where α > 0 and ϕ (v) satisfies ϕ(v) =
N
∑

i=1

N
∑

j=1

∥∥ṽi,j,N,N
∥∥

2. To avoid having to solve the complex

minimization problem P(v) directly, a function Q(v, u) for which Q(v, u) ≥ P(v) for all v, u could be
constructed. The equality sign holds if and only if u = v. Thus, the optimal solution of P(v) is the
minimum value of Q(v, u). Generally, an MM iterative algorithm for minimizing P(v) has the form:

v(n+1) = argmin
v

Q
(

v, v(n)
)

, (18)

It can be solved step-by-step in the following way.

The properties of the function ϕ(v) =
N
∑

i=1

N
∑

j=1

∥∥ṽi,j,N,N
∥∥

2 are first observed. It is known that the

equality sign holds when u = v, as shown in Equation (19):

1
2

(
1
‖u‖2

‖v‖2
2 + ‖u‖2

)
≥ ‖v‖2 , (19)
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which means ϕ(v) can be solved by constructing the function S(v) of Equation (20):

S(v, u) =
1
2

N

∑
i=1

N

∑
j=1

[
1∥∥ũi,j,N,N
∥∥

2

∥∥ṽi,j,N,N
∥∥2

2 +
∥∥ũi,j,N,N

∥∥
2

]
≥ ϕ(v) =

N

∑
i=1

N

∑
j=1

∥∥ṽi,j,N,N
∥∥

2 , . (20)

After a simple calculation [31], S(v, u) is rewritten as

S(v, u) =
1
2
‖D(u)v‖2

2 + C(u), (21)

to facilitate future calculations.
C(u) in the above equation is independent of v, and D(u) ∈ RM2×M2

is a diagonal matrix with its
elements defined as

[D(u)]m,m =

√√√√√ Nr

∑
i=−Nl

Nr

∑
j=−Nl

[
Nr

∑
k1=−Nl

Nr

∑
k2=−Nl

∣∣um−i+k1,m−i+k2

∣∣2]− 1
2 (

m = 1, 2, · · · , M2
)

, (22)

The entries of D can be easily computed by using MATLAB built-in function “conv2”. Putting
Equations (17), (21), and (22) together, the optimization problem P(v) can be written as

Q(v, u) =
α

2
‖v− v0‖2

2 + S(v, u) =
α

2
‖v− v0‖2

2 +
1
2
‖D(u)v‖2

2 + C(u). (23)

When v = u, Q(u, u) = P(u), to minimize P(v), the MM aims to iteratively solve

v(n+1) = argmin
v

α

2
‖v− v0‖2

2 +
1
2
‖D
(

v(n)
)

v‖
2

2
, n = 1, 2, 3 . . . (24)

with the solution

v(n+1) =

(
I +

1
α

D2
(

v(n)
))−1

v0 , n = 1, 2, 3 . . . , (25)

where I ∈ RM2×M2
is an identity matrix with the same size of D2

(
v(n)

)
, D2

(
v(n)

)
is also a diagonal

matrix which has the same form of Equation (22).
Observing functions of Equations (13) and (14), the subproblem Z1, Z2 conforms to the function in

Equation (17) and can be solved iteratively using Equation (26). Z(k+1)
i(n+1)(i = 1, 2) represents the (n)-th

iteration of the MM algorithm in the (k + 1)-th outer loop.

Z(k+1)
i(n+1) = mat

{[
I +

µ

βi
D2
(

Z(k+1)
i(n)

)]−1
z
(k+1)
i(0)

}
, (i = 1, 2), (26)

where mat plays the role of reshaping a vector to a matrix and z
(k+1)
i(0) is the vector form of Z(k+1)

i(0) .

The initial values of Z(k+1)
1(0) , Z(k+1)

2(0) in the above equation are:

 Z(k+1)
1(0) = Kh ∗ F(k) + Z̃

(k)
1

Z(k+1)
2(0) = Kv ∗ F(k) + Z̃

(k)
2

. (27)
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(2) Z(k+1)
3 could be solved by the famous soft thresholding shrinkage method [45] as shown below:

Z(k+1)
3 = argmin

Z3

‖Z3‖p
p +

β3
2 ‖Z3 − F(k) + G− Z̃

(k)
3 ‖

2

2

= shrinkage(F(k) −G + Z̃
(k)
3 , 1

β3
, p)

= sign
(

F(k) −G + Z̃
(k)
3

)
. ∗max

(
abs
(

F(k) −G + Z̃
(k)
3

)
−
(

1
β3

)
.̂(p− 2). ∗ abs

(
F(k) −G + Z̃

(k)
3

)
.̂(p− 1), 0

)
.

(28)

(3) The Z(k+1)
4 subproblem is computed as

Z(k+1)
4 = argmin

Z4

β4

2
‖Z4 − F(k) − Z̃

(k)
4 ‖

2

2 = min
(

1, max
(

F(k) + Z̃
(k)
4 , 0

))
, . (29)

(4) The F(k+1) subproblem is solved by substituting Z(k+1)
1 , Z(k+1)

2 , Z(k+1)
3 , Z(k+1)

4 into Equation (12)
and calculating for the variable F(k+1). Under the assumption of periodic boundary conditions, fast
Fourier transform is applied to both sides of the equation to perform the computation in the frequency
domain instead of a spatial domain, in order to reduce the computational complexity caused by matrix
multiplication. Matrix multiplication is converted to dot product operation, in other words, solving
the following normal equation:(

β1K∗h. ∗Kh + β2K∗v. ∗Kv + β31 + β41
)

. ∗ F(k+1)

= β1K∗h. ∗
(

Z(k+1)
1 − Z̃

(k)
1

)
+ β2K∗v. ∗

(
Z(k+1)

2 − Z̃
(k)
2

)
+β3

(
Z(k+1)

3 + G− Z̃
(k)
3

)
+ β4

(
Z(k+1)

4 − Z̃
(k)
4

)
,

(30)

where x is the frequency-domain representation of x, “.∗” stands for dot product, “*“ is the conjugate,
1 is the matrix whose entries are all 1, and F represents the two-dimensional fast Fourier transform
(FFT). Rearranging of the equation gives F(k+1) as

F(k+1) =

F−1

 β1K∗h.∗
(

Z(k+1)
1 −Z̃

(k)
1

)
+β2K∗v.∗

(
Z(k+1)

2 −Z̃
(k)
2

)
+β3

(
Z(k+1)

3 +G−Z̃
(k)
3

)
+β4

(
Z(k+1)

4 −Z̃
(k)
4

)
β1K∗h◦Kh+β2K∗v◦Kv+β31+β41

.
(31)

(5) The dual variables Z̃1, Z̃2, Z̃3, Z̃4 could be updated via the gradient ascent method.
Z̃
(k+1)
1 = Z̃

(k)
1 + γβ1(Kh ∗ F(k+1) − Z(k+1)

1 )

Z̃
(k+1)
2 = Z̃

(k)
2 + γβ2(Kv ∗ F(k+1) − Z(k+1)

2 )

Z̃
(k+1)
3 = Z̃

(k)
3 + γβ3(F(k+1) −G− Z3

(k+1))

Z̃
(k+1)
4 = Z̃

(k)
4 + γβ4(F(k+1) − Z(k+1)

4 )

. (32)

4.2. OGS-Lp-FAST Model

The denoising models based on OGS is more time consuming than the TV-based model. This is
mainly because that OGS model considers the gradient information of the neighborhood in a
reconstructed image, thus making the computation more complex. Thus, this is a shortcoming.

Goldstein et al. [12] proposed an accelerated ADMM algorithm with a restart that improves the
convergence rate of the ADMM algorithm from O( 1

k ) to O( 1
k2 ). Inspired by them, we adopted this

algorithm to improve the OGS-Lp model. This modified model is named OGS-Lp-FAST (“Ours” for
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short). The auxiliary variables Ui(i = 1, 2) and Ũi(i = 1, 2) are first adopted. Under this framework,
Zi(i = 1, 2, 3, 4) is updated in the following way:

Z(k+1)
1(n+1) = mat

{[
I + µ

β1
D2
(

v(n)
)2(

Z(k+1)
1(n+1)

)]−1
z
(k+1)
1(0)

}
Z(k+1)

2(n+1) = mat
{[

I + µ
β2

D2
(

v(n)
)(

Z(k+1)
2(n+1)

)]−1
z
(k+1)
2(0)

}
Z(k+1)

3 = shrinkage(F(k) −G + Z̃
(k)
3 , 1

β3
, p)

Z(k+1)
4 = min

(
1, max

(
F(k) + Z̃

(k)
4 , 0

))
,

. (33)

The initial values of Z(k+1)
1(0) , Z(k+1)

2(0) in the above equation are:

 Z(k+1)
1(0) = Kh ∗ F(k) + Ũ

(k)
1

Z(k+1)
2(0) = Kv ∗ F(k) + Ũ

(k)
2

. (34)

The dual variable Z̃i(i = 1, 2) can be updated as follows:

Z̃
(k+1)
1 = Ũ

(k)
1 + γβ1

(
Kh ∗ F(k) − Z(k+1)

1

)
Z̃
(k+1)
2 = Ũ

(k)
2 + γβ2

(
Kv ∗ F(k) − Z(k+1)

2

)
Z̃
(k+1)
3 = Z̃

(k)
3 + γβ3

(
F(k) −G− Z3

(k+1)
)

Z̃
(k+1)
4 = Z̃

(k)
4 + γβ4

(
F(k) − Z(k+1)

4

) . (35)

As image denoising is not a strong convex problem, the iteration needs to be restarted to ensure
the convergence of the algorithm. When Equation (33) is not satisfied, the algorithm is restarted.

c(k)i < ηc(k−1)
i (i = 1, 2), (36)

where c(k)i = β−1‖Z̃(k)
i − Ũ

(k)
i ‖

2

2 + β‖Z(k)
i −U(k)

i ‖
2

2 is the sum of the (k) − th primal residuals

β‖Z(k)
i −U(k)

i ‖
2

2 and the dual residuals β−1‖Z̃(k)
i − Ũ

(k)
i ‖

2

2, and η is a number close to 1. To prevent
frequent restarts, η = 0.97 is set.

When c(k)i < ηc(k−1)
i , the acceleration step size is set to εi, and the auxiliary variables Ui(i = 1, 2)

and Ũ
(k+1)
i (i = 1, 2) are updated as follows:

ε
(k+1)
i =

1+

√
1+4(ε(k)i )

2

2 (i = 1, 2)

U(k+1)
i = Z(k+1)

i +
ε
(k)
i −1

ε
(k+1)
i

(Z(k+1)
i − Z(k)

i )(i = 1, 2)

Ũ
(k+1)
i = Z̃

(k+1)
i +

ε
(k)
i −1

ε
(k+1)
i

(Z̃
(k+1)
i − Z̃

(k)
i )(i = 1, 2)

. (37)

which is updated according to the equations below upon restart:
ε
(k+1)
i = 1(i = 1, 2)

U(k+1)
i = Z(k+1)

i (i = 1, 2)

Ũ
(k+1)
i = Z̃

(k+1)
i (i = 1, 2)

c(k+1)
i = η−1c(k)i (i = 1, 2)

. (38)
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Up to this point, all subproblems of the proposed model are solved. The OGS-Lp-FAST algorithm
just described is summarized as Algorithm 1.

The F sub-problem should be updated as

F(k+1) =

F−1

 β1K∗h.∗
(

U(k+1)
1 −Ũ

(k+1)
1

)
+β2K∗v.∗

(
U(k+1)

2 −Ũ
(k+1)
2

)
+β3

(
Z(k+1)

3 +G−Z̃
(k+1)
3

)
+β4

(
Z(k+1)

4 −Z̃
(k+1)
4

)
β1K∗h◦Kh+β2K∗v◦Kv+β31+β41

.
(39)

Algorithm 1 OGS-Lp-FAST pseudo-code

Input: image G with noise
Output: denoised image F
Initialize:

k = 1, n = 0, Z(k)
i = 0, Z̃

(k)
i = 0(i = 1, 2, · · · , 4), β1, β2, β3, β4, µ, p, η ,

U(k)
j = 0, Ũ

(k)
j = 0(j = 1, 2), γ, tol, c1 = in f , F(k) = G, Max

1: for k = 1 : Max
2: If : c(k+1)

i < ηc(k)i :

3: Z(k+1)
i , (i = 1, 2, 3, 4), are updated with Equations (33) and (34)

4: Z̃
(k+1)
i (i = 1, 2, 3, 4) are updated with Equation (35)

5: ε
(k+1)
i , U(k+1)

j , Ũ
(k+1)
j (j = 1, 2) is updated with Equation (37)

6: F(k+1) are updated with Equation (39)
7: E = ‖F(k+1) − F(k)‖2/‖F(k)‖2
8 Else
9: Restart as in Equation (38)
10: End If
11: If E < tol Break;
12: End For
13: Return F(k) as F

5. Experimental Results and Analyses

In this section, eight typical grayscale images with a size of 256 × 256 pixels are chosen to
validate the denoising performance of the Lp-OSG-TV-FAST method. The test images are as shown
in Figure 3. The image “House” is downloaded from http://sipi.usc.edu/database/database.php?
volume%92=%92misc&image=5top. The images “Lena“ and “Pepper” are from http://decsai.ugr.
es/cvg/dbimagenes/. The images “Woman”, “Girl”, and “Reagan” are from http://www.hlevkin.
com/default.html#testimages. The images “Milk drop” and “Shoulder” are from http://www.cs.cmu.
edu/~cil/v-images.html. The versions of the images in our paper are other special formats which are
converted by Photoshop from the sources above.

The method proposed here is compared with ATV, ITV, TGV, OSG-L1, and OGS-Lp methods,
and is evaluated objectively in terms of the peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), runtime, and other experimental indicators [45]. Simulations are performed on MATLAB
R2014a platform running in a hardware environment of Inter(R) Core (TM) i7-6700@3.4GHz CPU and
16 GB memory.

http://sipi.usc.edu/database/database.php?volume%92=%92misc&image=5top
http://sipi.usc.edu/database/database.php?volume%92=%92misc&image=5top
http://decsai.ugr.es/cvg/dbimagenes/
http://decsai.ugr.es/cvg/dbimagenes/
http://www.hlevkin.com/default.html#testimages
http://www.hlevkin.com/default.html#testimages
http://www.cs.cmu.edu/~cil/v-images.html
http://www.cs.cmu.edu/~cil/v-images.html
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5.1. Evaluation Method

In the denoising field, the common evaluating criteria including PSNR, SSIM, and runtime.
The PSNR and SSIM [46] are defined in Equations (40) and (41):

PSNR(X, Y) = 10lg
(MAX(X))2

1
N2

N
∑

i=1

N
∑

j=1
(Xij − Yij)

2
, (40)

where X denotes the original image, Y is the reconstructed image, and MAX(X) represents the largest
gray value in the original image.

SSIM(X, Y) =
(2uXuY + (Lk1)

2)(2σXY + (Lk2)
2)

(u2
X + u2

Y + (Lk1)
2)(σ2

X + σ2
Y + (Lk2)

2)
, (41)

where uX is the mean of X; uY is the mean of Y; σ2
X is the variance of X; σ2

Y is the variance of Y; σXY is
the covariance between X and Y; and L = 512, k1 = 0.05, k2 = 0.05. The parameter L = 255.

5.2. Sensitivity of the Parameters

In this section, an important parameter of the proposed algorithm, the group size K, is tested
and compared to evaluate its overall effect on the algorithm. PSNR and SSIM are used as criteria
to evaluate the algorithm objectively. Three images (“Girl”, “House”, and “Lena”) with 30% noise
level are selected, on which K is made to vary continuously from 1 to 10. The other parameters are
adjusted to the optimum. PSNR and SSIM values are recorded and plotted into graphs, as shown in
Figures 4 and 5. In Figure 4, PSNR and SSIM increase with the increase of K and reach their maximum
at K = 5. Further increases in K leads to decreased PSNR values. Thus, the neighborhood information
of an image has a positive impact on the performance of the algorithm. With K set to appropriate
values, the edge information of the image is better preserved, and the noise resistance is improved.
However, K should not be too large either, or nearby regions with drastic pixel changes could be taken,
which will result in decreased PSNR and SSIM.

Then, we tested how to select a good regularization parameter µ for different images. We started
with the value of µ from a low value then increased the parameters empirically as the level of noise
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improved to get the best visual effect. For example, for the “Girl” image corrupted by impulse noise
from 20% to 50%, µ = 0.14, 0.15, 0.15, 0.18, respectively.Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 22 
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Figure 5. Comparison of structural similarity (SSIM) under different K values (Noise Level = 30%).
The test images (“Girl”, “House”, ”Lena”) are corrupted by 30% impulse noise.

In the selection of the parameter p, the p value is set between 0 and 1. On the premise of fixing
other parameters, we increase p by 0.1 step. After several rounds of experiments, we select the optimal
when the image gets the best visual effect.

The optimal parameters for different images with the noise level from 20% to 50% are given in
Table 1.

Table 1. The optimal parameters for different images with the noise level from 20% to 50%.

Image House Lena Woman Milk Drop Girl Shoulder

Parameter
µ/p µ/p µ/p µ/p µ/p µ/p

Level

20% 0.14/0.45 0.15/0.45 0.15/0.65 0.14/0.65 0.14/0.65 0.14/0.65
30% 0.15/0.45 0.15/0.65 0.15/0.7 0.16/0.65 0.15/0.65 0.15/0.65
40% 0.15/0.45 0.16/0.65 0.15/0.7 0.19/0.65 0.15/0.65 0.15/0.65
50% 0.18/0.55 0.17/0.65 0.2/0.7 0.2/0.65 0.18/0.55 0.18/0.55

5.3. Testing and Comparing the Denoising Performance of Different Algorithms

Six images are selected from the original images of Figure 3 for testing, on which impulse noise
at levels from 20% to 50%, to compare the denoising effects of ATV, ITV, TGV, OGS-L1, OGS-Lp,
and Ours algorithms (six in total). To ensure the objectiveness and fairness of the evaluation, the above
algorithms all adopt the following iterative condition:
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‖F(k+1) − F(k)‖2 · ‖F(k)‖
−1
2 < 10−4. (42)

Regularization parameters of these algorithms are adjusted to ensure the best denoising effect
of each, which ensured the fairness of the test. For methods based on the OGS model, the group size
is set to K = 5. The test results on different images are given in Tables 2–5. The best indicator values
are labeled as black and bold. By observing the data in each table, the following conclusions could
be made:

1. With the introduction of different levels of noise to the images, our model generates higher
PSNR and SSIM values for the reconstructed images than other methods, indicating its superior
denoising effect. The recovered images also resemble the original ones more.

2. The proposed model works better at lower noise levels. For example, at a 20% noise level,
as shown in Table 2, the PSNR value of the “House” image (37.72 dB) given by our model is
5.91 dB higher than that given by the ITV model (31.81 dB) and 5.4 dB higher than that of the
TGV model (32.32 dB). Even at high noise levels, our model still performs better than the others,
which shows the clear advantages that total variation with overlapping group sparsity has over
the classic anisotropic TV model.

3. Compared to OGS-L1, our proposed method incorporates the Lp-pseudo-norm shrinkage,
which adds another degree of freedom to the algorithm and improves the depiction of the
gradient-domain sparsity of the images, achieving a better denoising effect. For example, at a
20% noise level, as shown in Table 2, the PSNR value of the “Girl” image (32.34 dB) given by
our model is 1.67 dB higher than that given by the OGS-L1 model (30.67 dB). Even at a noise
level of 50%, as shown in Table 5, the PSNR value of the “Girl” image (27.35 dB) given by our
model is still 0.90 dB higher than that given by the OGS-L1 model (26.45 dB). This proves that
the Lp-pseudo-norm is more suitable as a regularizer for describing the sparsity of images than
the L1-norm.

4. In terms of the runtime of the six models, the OGS-based method is more time consuming than
ATV, ITV, and TGV. This is mainly because the OGS model considers the gradient information
of the neighborhood in an image undergoing reconstruction, thus making the computation
more complex.

5. Comparing the values of PSNR and SSIM in Tables 2–5, OGS-Lp-FAST and OGS-Lp have the
same denoising effect. However, by observing the value of runtime of all testing images, we find
that convergence is sped up in the OGS-LP-FAST method with the use of accelerated ADMM with
a restart. For example, at a 20% noise level, as shown in Table 2, the time value of the “Woman”
image (8.69 s) given by the OGS-Lp-FAST model is 7.53 s less than that given by the OGS-L1
model (16.22 s).

Table 2. Numerical comparison of our proposed method and other models (images are corrupted
by impulse noise of 20%). ATV: anisotropic total variation; ITV: isotropic total variation; TGV: total
generalized variation; OGS-L1: overlapping group sparsity with L1-norm; OGS-Lp: overlapping group
sparsity with pseudo-norm.

Level Image Method
The Output Seismic Signal

PSNR (dB) SSIM Time (s)

20% Lena

ATV 28.71 0.8854 4.81
ITV 28.83 0.8936 2.45
TGV 28.63 0.8966 9.59

OGS-L1 29.79 0.9115 16.34
OGS-Lp 31.47 0.9474 13.94

OGS-Lp-FAST 31.55 0.9482 8.64
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Table 2. Cont.

Level Image Method
The Output Seismic Signal

PSNR (dB) SSIM Time (s)

House

ATV 32.31 0.8871 3.09
ITV 31.81 0.8888 1.84
TGV 32.32 0.9135 8.38

OGS-L1 33.04 0.9127 15.27
OGS-Lp 37.47 0.9667 12.45

OGS-Lp-FAST 37.72 0.9679 10.48

Shoulder

ATV 35.32 0.9636 5.42
ITV 35.33 0.9649 3.56
TGV 35.29 0.9256 14.98

OGS-L1 37.00 0.9719 17.77
OGS-Lp 38.89 0.9829 16.06

OGS-Lp-FAST 38.92 0.983 14.61

Girl

ATV 29.45 0.8868 4.53
ITV 30.05 0.894 3.22
TGV 30.14 0.8907 9.58

OGS-L1 30.67 0.8995 13.48
OGS-Lp 32.29 0.9365 14.17

OGS-Lp-FAST 32.34 0.9371 11.69

Milk Drop

ATV 32.32 0.8973 4.83
ITV 31.02 0.9039 3.63
TGV 30.48 0.894 8.59

OGS-L1 33.35 0.911 16.39
OGS-Lp 35.76 0.9533 13.42

OGS-Lp-FAST 35.87 0.9538 8.58

Woman

ATV 29.45 0.8868 4.53
ITV 29.65 0.9015 3.73
TGV 29.84 0.8853 8.98

OGS-L1 30.35 0.908 16.03
OGS-Lp 31.71 0.9395 16.22

OGS-Lp-FAST 31.7 0.9398 8.69

Table 3. Numerical comparison of our proposed method and other models (images are corrupted by
impulse noise of 30%).

Level Image Method
The Output Seismic Signal

PSNR (dB) SSIM Time (s)

30%

Lena

ATV 27.08 0.829 5
ITV 27.06 0.837 2.88
TGV 27.23 0.8319 8.16

OGS-L1 27.59 0.8543 9.56
OGS-Lp 29.19 0.9035 15.72

OGS-Lp-FAST 29.21 0.9039 7.48

House

ATV 30.4 0.8717 3.8
ITV 30.16 0.8545 2.17
TGV 30.82 0.8862 11.61

OGS-L1 31.5 0.8807 7.77
OGS-Lp 35.03 0.9432 13.8

OGS-Lp-FAST 35.13 0.9444 10.77

Shoulder

ATV 34.48 0.9551 4.95
ITV 34.33 0.9556 3.94
TGV 34.74 0.9493 22

OGS-L1 35.34 0.9599 16.97
OGS-Lp 36.5 0.9633 18.88

OGS-Lp-FAST 36.47 0.9628 5.88
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Table 3. Cont.

Level Image Method
The Output Seismic Signal

PSNR (dB) SSIM Time (s)

Girl

ATV 28.17 0.8586 5.17
ITV 28.53 0.8737 3.31
TGV 28.82 0.8422 8.84

OGS-L1 29.11 0.8818 8.88
OGS-Lp 30.42 0.9155 15.64

OGS-Lp-FAST 30.41 0.9148 12.84

Milk Drop

ATV 30.24 0.8788 4.95
ITV 30.1 0.8681 2.33
TGV 29.42 0.8878 11.45

OGS-L1 31.08 0.8836 9.33
OGS-Lp 32.7 0.9261 16.88

OGS-Lp-FAST 33.19 0.9274 10.64

Woman

ATV 27.86 0.8534 4.27
ITV 28.43 0.866 2.83
TGV 28.32 0.844 9.53

OGS-L1 29.05 0.8725 11.59
OGS-Lp 30.15 0.9063 17.25

OGS-Lp-FAST 30.13 0.9047 10.89

Table 4. Numerical comparison of our proposed method and other models (images are corrupted by
impulse noise of 40%).

Level Image Method
The Output Seismic Signal

PSNR (dB) SSIM Time (s)

40%

Lena

ATV 25.85 0.796 5
ITV 25.8 0.8009 3.11
TGV 26.2 0.8041 10.27

OGS-L1 26.22 0.8151 11.25
OGS-Lp 27.64 0.8683 18.88

OGS-Lp-FAST 27.67 0.8675 9.81

House

ATV 28.5 0.8433 4.94
ITV 28.69 0.8356 2.31
TGV 29.21 0.8284 9.48

OGS-L1 29.31 0.8566 11.95
OGS-Lp 32.84 0.9182 13.77

OGS-Lp-FAST 32.92 0.9189 12.8

Shoulder

ATV 32.4 0.9328 4.86
ITV 32.54 0.9357 3.86
TGV 32.8 0.9345 24.81

OGS-L1 32.62 0.9310 16.36
OGS-Lp 33.25 0.9510 20.66

OGS-Lp-FAST 33.24 0.9509 17.61

Girl

ATV 27.19 0.8348 4.94
ITV 27.33 0.8447 3.09
TGV 27.86 0.8135 12.11

OGS-L1 27.88 0.8526 11.78
OGS-Lp 28.87 0.8861 18.05

OGS-Lp-FAST 28.86 0.8847 12.69

Milk Drop

ATV 27.51 0.8307 3.97
ITV 28.1 0.8424 3.19
TGV 28.09 0.8521 12.97

OGS-L1 29.34 0.8569 10.27
OGS-Lp 30.56 0.8938 16.94

OGS-Lp-FAST 30.46 0.8933 13

Woman

ATV 26.97 0.8338 4.67
ITV 27.13 0.8366 3.63
TGV 27.34 0.7708 9.58

OGS-L1 27.7 0.8483 13.13
OGS-Lp 28.27 0.8722 18.45

OGS-Lp-FAST 28.29 0.8716 13.11



Appl. Sci. 2018, 8, 2317 17 of 21

Table 5. Numerical comparison of our proposed method and other models (images are corrupted by
impulse noise of 50%).

Level Image Method
The Output Seismic Signal

PSNR (dB) SSIM Time (s)

50%

Lena

ATV 23.44 0.7353 6
ITV 23.56 0.7457 4.14
TGV 25.05 0.7631 13.44

OGS-L1 25.08 0.7612 15.86
OGS-Lp 25.74 0.8264 19.06

OGS-Lp-FAST 25.72 0.8262 11.67

House

ATV 26.48 0.8046 3.61
ITV 27.09 0.8139 2.88
TGV 27.88 0.8264 15.14

OGS-L1 27.85 0.8245 10.05
OGS-Lp 31.24 0.8932 16.41

OGS-Lp-FAST 31.15 0.8923 14.61

Shoulder

ATV 30.99 0.9137 4.91
ITV 31.07 0.9168 3.59
TGV 31.93 0.8954 24.31

OGS-L1 30.99 0.9137 16.5
OGS-Lp 31.94 0.9161 19.45

OGS-Lp-FAST 32.05 0.9277 17.72

Girl

ATV 25.1 0.7761 5.58
ITV 25.73 0.7977 3.3
TGV 26.75 0.814 15.67

OGS-L1 26.45 0.811 14.16
OGS-Lp 27.32 0.846 19.28

OGS-Lp-FAST 27.35 0.8463 15.91

Milk Drop

ATV 26.19 0.8082 4.92
ITV 26.51 0.8188 3.42
TGV 27.01 0.8349 19.05

OGS-L1 27.61 0.8351 14.67
OGS-Lp 28.65 0.868 17.8

OGS-Lp-FAST 28.59 0.8682 14.11

Woman

ATV 25.84 0.8049 5.11
ITV 25.24 0.7939 3.67
TGV 25.99 0.685 10.84

OGS-L1 26.29 0.8143 13.95
OGS-Lp 26.56 0.8165 18.19

OGS-Lp-FAST 26.61 0.8169 14.02

To verify our proposed method further, we compared the image details restored by different
algorithms. Figure 6 shows four images (“Woman”, “Pepper”, “Girl”, and “House”) with impulse
noise from 20% to 50%. The enlarged details of the images restored by ATV, ITV, TGV, OGS-L1,
and OGS-Lp-FAST algorithms are displayed for comparison.

In terms of the visual effect of the restored images, ATV denoising produces apparent blocking
artifacts in the images. In the “Pepper” image ATV recovers, we can easily find two heavy noise pixels.

The ITV method also shows significant staircase effect. In the “House” image it restores, the edge
of the image is not well preserved when the noise pollution is high.

For the denoising results of TGV, the blocking artifacts in the images are sufficiently suppressed,
but local heavy noise spots are still observable.

Finally, by comparing the four images, we can easily see the visual improvement in the images
by using our method. Even at high noise pollution, our method protects the edge information of the
image very well, and at the same time, avoids the staircase effect.
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noise, respectively.

6. Discussion and Conclusions

In this work, we study a new regularization model by applying TV with OGS and Lp-pseudo-norm
shrinkage for the image polluting under impulse noise. We provided the efficient algorithm
OGS-Lp-FAST under the ADMM framework. This algorithm is rooted in overlapping group
sparsity-based regularization, and incorporated the comparisons made with ATV, ITV, TGV, OGS-L1,
and OGS-Lp models for validation of our proposed method. The following conclusions are drawn
from the experimental results:
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1. An overlapping group sparsity (OGS)-based regularizer is used to replace the anisotropic total
variation (ATV), to describe the prior conditions of the image. OGS makes full use of the similarity
among image neighborhoods and the dissimilarity in the surroundings of each point. It promotes
the distinction between the smooth and edge regions of an image, thus enhancing the robustness
of the proposed model.

2. Lp-pseudo-norm shrinkage is used in place of the L1-norm regularization to describe the fidelity
term of images with salt and pepper noise. With the inclusion of another degree of freedom,
Lp-pseudo-norm shrinkage reflects the sparsity of the image better and greatly improves the
denoising performance of the algorithm.

3. The difference operator is used for convolution. Under the ADMM framework, the complex
model is transformed into a series of simpler mathematical problems to solve.

4. Appropriate K values could effectively improve the overall denoising performance of the model.
In practice, this parameter needs to be adjusted. If it is too small, the neighborhood information is
not utilized completely. If the value is too big, too many dissimilar pixel blocks will be included,
impairing the denoising result.

5. The adoption of accelerated ADMM with a restart accelerates the convergence of the algorithm.
The running time is reduced.

6. In this paper, we focus on impulse noise removal, but the model is also applicable to other types
of noise removal that we will further study in future work.
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