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Featured Application: This study highlights a novel application of peridynamics to rail surface
defects by improving the computational method for fracture mechanics. Rail squats is a rail
surface defect that can consume over 70% of track maintenance budget. This novel application
of peridynamics will enable a better preventative and predictive track maintenance strategy,
enhancing public safety while saving hundreds of million euros annually.

Abstract: Rail surface defects are a serious concern for railway infrastructure managers all around
the world. They lead to poor ride quality due to excess vibration and noise; in rare cases, they can
result in a broken rail and a train derailment. Defects are typically classified as ‘rail studs’ when
they initiate from the white etching layer, and ‘rail squats’ when they initiate from rolling contact
fatigue. This paper presents a novel investigation into rail squat initiation and growth simulations
using peridynamic theory. To the best of the authors’ knowledge, no other comprehensive study
of rail squats has been carried out using this approach. Peridynamics are well-suited for fracture
problems, because, contrary to continuum mechanics, they do not use partial-differential equations.
Instead, peridynamics use integral equations that are defined even when discontinuities (cracks,
etc.) are present in the displacement field. In this study, a novel application of peridynamics to
rail squats is verified against a finite element solution, and the obtained simulation results are
compared with in situ rail squat measurements. Some new insights can be drawn from the results.
The outcome exhibits that the simulated cracks initiate and grow unsymmetrically, as expected
and reported in the field. Based on this new insight, it is apparent that peridynamic modelling
is well-applicable to fatigue crack modeling in rails. Surprisingly, limitations to the peridynamic
analysis code have also been discovered. Future work requires finding an adequate solution to the
matter-interpenetration problem.
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1. Introduction

Rail surface defects are a critical safety concern for railway infrastructure owners and operators
all over the world. They undermine the safety and operational reliability of both moderate- and
high-speed trains in passenger suburban, metro, urban, mixed-traffic, and freight rail systems.
Furthermore, the cost of rail replacements due to such defects has become a significant portion of the
whole track maintenance costs, especially in European countries, e.g., Austria, Germany, and France [1].

Traditionally, two different defects are classified: rail studs and rail squats [2]. Rail studs initiate
from the white etching layer (WEL) due to wheel slides or excessive traction and grow horizontally
3–6 mm below the rail surface. Rail squats propagate from surface cracks initiated by rolling contact
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fatigue (RCF), and grow at similar depth of 3–6 mm below the rail surface. Both defects are shown in
Figure 1. As a result, the rail surface becomes depressed and passing wheels create excess vibration,
noise, and impact loads. This leads to uncomfortable rides for passengers [3], and in cases where
impact forces exceed acceptable limits the safety of track components can be compromised [3–7]. Rail
squats and studs have been observed in all arrays of track geometries and gradients, in all types of
track structures, and in all operational rail traffics. Squats are often found in tangent tracks, in high rails
of moderate-radius curves, and in turnouts with vertical, unground rails. Due to the high potential
damage caused by rail squats and studs, several research and development projects have been initiated
around the world to investigate the causes of, and feasible solutions to, these defects.
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Computational rail squat and stud modeling has been the topic of several studies. A finite-
element (FE) analysis with a two-dimensional (2D) elastic-plastic model under the assumption of 
plane strain was used to investigate crack growth from the WEL in [8]. The researchers found that 
the crack growth direction in the interface between the base material and the WEL is determined by 
the discontinuity of a material rather than the stress state, and that cracks tend to grow along the 
interface between the WEL and the rail material, because it is comparatively hard for a crack to 
propagate into the rail material. Field observations and a numerical analysis in [9] showed that squats 
initiate as a result of differential wear and differential plastic deformation. Numerical simulations in 
[10] have also shown that the growth of squats is related to some eigenmodes of the wheel–track 
interaction system and the high-frequency vibration at wheel–rail contact plays an important role. 
The probability of rail squat initiation from surface defects based on a transient stress analysis was 
studied in [11] using an FE model of the vehicle–track interaction. The results showed that when a 
defect is smaller than 6 mm, its chance to grow into a squat is very small, and when it is larger than 
8 mm and in the middle of the running band, the chance is large. RCF occurring on Chinese high-
speed rails and wheels was investigated in [12]. Based on field observations and a numerical 
simulation, it was concluded that indentations seem to be the main cause of RCF. If relatively small 
but deep indentations exist, then peak von Mises stress can occur both on the surface and at the 
bottom of the crack, but stress at the bottom is likelier to create RCF cracks [13,14]. 

The development of rail squats is most commonly studied using the finite-element method, which is 
based on the classical continuum mechanics theory. It uses spatial derivatives, which do not exist when 
the displacement field is discontinuous, i.e., when cracks are present. So, as a remedy, techniques of 
fracture mechanics must be used; however, their major drawback is that the crack path must be known a 
priori. Due to such limitations, independent crack branching is difficult to implement. 

Peridynamic (PD) theory [15,16] was created as an alternative to continuum mechanics for 
problems with cracks, voids, and other discontinuities. PD uses integral, not partial-differential, 
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Computational rail squat and stud modeling has been the topic of several studies. A finite-element
(FE) analysis with a two-dimensional (2D) elastic-plastic model under the assumption of plane strain
was used to investigate crack growth from the WEL in [8]. The researchers found that the crack growth
direction in the interface between the base material and the WEL is determined by the discontinuity
of a material rather than the stress state, and that cracks tend to grow along the interface between
the WEL and the rail material, because it is comparatively hard for a crack to propagate into the rail
material. Field observations and a numerical analysis in [9] showed that squats initiate as a result of
differential wear and differential plastic deformation. Numerical simulations in [10] have also shown
that the growth of squats is related to some eigenmodes of the wheel–track interaction system and
the high-frequency vibration at wheel–rail contact plays an important role. The probability of rail
squat initiation from surface defects based on a transient stress analysis was studied in [11] using an
FE model of the vehicle–track interaction. The results showed that when a defect is smaller than 6
mm, its chance to grow into a squat is very small, and when it is larger than 8 mm and in the middle
of the running band, the chance is large. RCF occurring on Chinese high-speed rails and wheels
was investigated in [12]. Based on field observations and a numerical simulation, it was concluded
that indentations seem to be the main cause of RCF. If relatively small but deep indentations exist,
then peak von Mises stress can occur both on the surface and at the bottom of the crack, but stress at
the bottom is likelier to create RCF cracks [13,14].

The development of rail squats is most commonly studied using the finite-element method,
which is based on the classical continuum mechanics theory. It uses spatial derivatives, which do
not exist when the displacement field is discontinuous, i.e., when cracks are present. So, as a remedy,
techniques of fracture mechanics must be used; however, their major drawback is that the crack path
must be known a priori. Due to such limitations, independent crack branching is difficult to implement.

Peridynamic (PD) theory [15,16] was created as an alternative to continuum mechanics for
problems with cracks, voids, and other discontinuities. PD uses integral, not partial-differential,
equations and deformation instead of strain to compute internal forces. Since integral equations are
defined even when the displacement field is discontinuous, this theory is well-suited for fracture
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studies. Contrary to FE analysis, in PD cracks initiate automatically and grow according to some
prescribed damage law. The crack path does not have to be set at the beginning of a simulation,
resulting in a more natural crack growth with branching. This theory has a large potential in fracture
problems, and has been used to study damage in fiber-reinforced laminated composites [17–19],
glass [20,21], wood [22], concrete [23–25], and steel [26].

In this study, rail squats are simulated using ordinary state-based peridynamic theory (PD).
This technique is the recent fundamental development from the original bond-based PD theory.
The state-based PD has made a significant advancement in capturing sufficient behaviors of real
materials. To the best of the authors’ knowledge, and based on a critical review of the open literature,
this paper is the first to present a comprehensive study of rail squat initiation and growth using
peridynamic theory. We have presented some initial findings in [13], but this paper describes the full
development of the model, the calibration of its parameters, and an application of coordinate-variable
loads. Simulation results are compared to field measurements from [14]. The insight from this study is
novel and can help further improve the technique for applications of the new theory of peridynamics
to real-world problems, and help to enhance better prognostics of rail squats. Overall, the insight
enhances an alternative computational method for fracture mechanics.

2. Methods

2.1. State-Based Peridynamic Theory

A brief overview of state-based peridynamic theory is presented in the following paragraphs. An
extended overview can be found in [27–29]. A peridynamic body consists of some number of nodes
each uniquely described by its volume Vi, density ρi, and position vector in the reference configuration
xi. An example of a 2D body is shown in Figure 2. Node xi interacts with other nodes xj through
bonds (relative position vectors) ξ ij = xj − xi. These interactions are limited to a range called the
horizon δ. Nodes xj that are connected to xi are called the family of xi, Hxi . When a body deforms,
node xi experiences displacement ui and moves to its deformed position yi = xi + ui. The bond in
the deformed configuration is yj − yi. This deformation creates a bond force density vector tij that
depends on the collective deformation of all nodes in Hxi and an opposite bond force density vector tji
that depends on the collective deformation of Hxj . Bond forces are force densities (force per volume),
not stresses (force per area), because each node describes some volume. The bond deformation vectors
are stored in an array called the deformation state

Yxi =


y1 − yi

...
yn − yi

, (1)

similarly, the force density vectors are stored in an array called the force state

Txi =


ti1
...

tin

. (2)
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The bond force density vectors are computed using bond deformations:

T(xi) = T(Y(xi)), (3)

where the function T(xi) is a material model. It is common to state T(xi)
〈
xj − xi

〉
or T(xi)

〈
ξ ij
〉

and
when referring to the force density vector tij in a bond ξ ij = xj − xi, and similarly for deformation state
and deformed bond vectors. The peridynamic equation of motion in the integral form is

ρ(xi)
..
u(xi, t) =

∫
Hxi

(
T(xi)

〈
xj − xi

〉
− T

(
xj
)〈

xi − xj
〉)

dVxj + b(xi) (4)

where ρ(xi) is the density,
..
u(xi, t) is the acceleration, and b(xi) is the external force density.

The contribution of a bond to the force density at a node can be weighed using an influence
function ω(xi). They have been introduced in [16], and their role is further explored in [30]. The value
of an influence function can depend on the length, direction, or other bond properties. It can also be
used to introduce damage; remove the interaction between two nodes by setting the influence function
to 0, i.e., break the bond, when some damage criterion is reached. The simplest damage criterion could
be the critical stretch, in which a bond breaks when it is stretched past some critical value sc:

ω(xi) =

 1, i f sij < sc

0, i f sij ≥ sc
, sij =

∣∣∣yj − yi

∣∣∣− ∣∣xj − xi
∣∣∣∣xj − xi

∣∣ =

∣∣Y〈ξ ij
〉∣∣− ∣∣ξ ij

∣∣∣∣ξ ij
∣∣ , (5)

where sij is the bond stretch. Then, the damage at a node can be defined as a ratio between the broken
and the initial number of bonds [31]:

φ(xi) = 1−

∫
Hxi

ω(xi)dVxj∫
Hxi

dVxj

. (6)

The PD fatigue damage model used in this study was introduced in [32] and used in [33–35].
Other researchers have also developed fatigue damage models [36,37]; however, these models use
bond-based peridynamic theory and simulate only the crack growth phase. A small overview of the
model is given here for completeness; Equations (7) through (11) were first presented in [32].
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A body undergoes some cyclic deformation between two extremes + and −, then bond strains at
each extreme are s+ij , s−ij and the cyclic bond strain εij is:

s+ij =

∣∣Y+
〈
ξ ij
〉∣∣− ∣∣ξ ij

∣∣∣∣ξ ij
∣∣ , s−ij =

∣∣Y−〈ξij
〉∣∣− ∣∣ξ ij

∣∣∣∣ξ ij
∣∣ , εij =

∣∣∣s+ij − s−ij
∣∣∣. (7)

For each bond, a variable called the “remaining life” λij
(
xi, ξ ij, N

)
is defined. It degrades at each

loading cycle N, and a bond breaks when the remaining life is reduced to zero:

λij(N) ≤ 0. (8)

At the beginning, when N = 0:
λij(0) = 1, (9)

at each cycle in the crack nucleation phase (phase I), the change of λ is given by

dλij

dN
(N) =

{
−AI

(
εij − ε∞

)mI , i f εij > ε∞

0 , i f εij ≤ ε∞
, (10)

where ε∞ is the fatigue limit under which no fatigue damage occurs, and AI , mI are parameters for
phase I. In phase II, the remaining life changes according to:

dλij

dN
(N) = −AI Iε

mI I
ij , (11)

where AI I , mI I are parameters for phase II.
The transition from phase I to phase II is handled by applying the phase I model to bonds

connected to xi until there is a node xj in Hxi with damage

φ
(
xj
)
≥ φc, (12)

where φc is the damage at which phase II begins. Then, reset the remaining life of bonds connected to
xi to 1 and switch to the phase II model.

2.2. Computational Model

The fatigue damage model was implemented in the open-source PD program Peridigm [38,39].
If the quasi-static analysis acceleration term in (4) is zero, then the peridynamic equation of motion in
the discreet form is approximated as:

∑
Hxi

(
T[xi, t]

〈
xj − xi

〉
− T

[
xj, t

]〈
xi − xj

〉)
∆Vxj + b(xi, t) = 0. (13)

Two techniques introduced in [32], including implicit strain simulation and time mapping, have
been used to speed up the simulations. They are illustrated in Equations (14) through (17). In the case
of high-cycle fatigue, the bond strains are below the elastic limit, so an elastic material model can be
used. In such cases, the strain in a bond would change linearly between + and − loading conditions,
so it is possible to simulate only the + loading condition and compute

s− = Rs+, R =
P−

P+
, (14)

where R is the loading ratio, and P is the applied load at each extreme. Then, the cyclic strain is
given by:

ε =
∣∣s+ − s−

∣∣ = ∣∣(1− R)s+
∣∣. (15)
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The loading ratio R = 0 was used for all simulations. Using linear time mapping ([32] also
introduces exponential time mapping, but it was not used in this study), the simulation time t relates
to the current cycle through

N =
t
τ

, (16)

where τ is a constant. Then, the remaining life at step n in a bond ξ ij is given by

λn−λn−1

∆t = −A
(

εn
ij

)m

∆λ
∆t = ∆λ

∆N
∆N
∆t

→ λn = λn−1 − tn − tn−1

τ
A
(

εn
ij

)m
. (17)

In PD, unlike in a fracture mechanics model with a pre-crack, it is almost impossible to develop
a sharp crack surface; instead, a damaged zone is developed. For example, if damage at a node is 0.5,
it could mean that 25% of the bonds on the opposite sides of a node are broken, and it could also mean
that 15% are broken on one side and 35% on the other.

Crack growth in phase II is faster than that in phase I, so switching to phase II sooner would
lead to faster crack growth and more conservative results. In this study, the emphasis is placed on the
consideration of the most conservative case, i.e., switching to phase II at the lowest damage when it
can be thought that a crack has appeared. Such a situation would happen when all of the bonds on
one side of a node are broken, but other bonds remain intact. The 2D case, if the horizon is 3 times
the distance between the nodes, is shown in Figure 2. An equivalent case in three dimensions (3D)
would have 47 broken bonds and 75 unbroken bonds, i.e., damage of 0.385. Therefore, the fatigue
model transitions from phase I to phase II when the damage at a node reaches φc = 0.385.

2.3. Model of a Rail

Initially, a model of a whole UIC60 rail head had been developed. However, due to the required
fine discretization, computational resources, and time constraints, only a part of the rail head
has been modeled. Mesh was firstly created in the Ansys FE program using 3D eight-node solid
elements. Afterwards, element centroid coordinates and their volumes were exported and converted
to Peridigm’s mesh file, and both models are shown in Figure 3. The dimensions of the model were
0.03 × 0.024 × 0.03 m with a node size of h = 0.0005 m and the horizon of δ = 0.0015 m. The load
area, see Section 2.5. Boundary conditions, was about 0.013 × 0.013 m, which means that the distance
between the edge of the model and the load area was about 8δ. A cartesian left-handed coordinate
system was used, and the center of the model’s bottom face was located at the origin. The top face was
made of R = 300 mm and R = 80 mm arcs, as in the specifications of the UIC60 rail.

Since the top surface was curved and mapped meshing was used, the nodes were not perfectly
cubic. However, the difference between the average node volume and the volume of a cubic node
is only 1.17% (see Table 1). This is relevant when converting the applied loads from stress to force
density, but since the difference is small, the impact is negligible.

A Linear Peridynamic Solid (LPS) [16] material model was used. The material properties were:
density 7850 kg/m3, Poisson’s ratio 0.3, and Young’s modulus 189.9 GPa, obtained from [40]. The LPS
model is the peridynamic equivalent to the elastic material model in continuum mechanics. It has been
selected because the applied loads do not cause the material to exceed its yield strength.
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Figure 3. A model of a rail: (a) an Ansys model with solid elements; (b) peridynamic (PD) mesh-free
discretization with the load area highlighted.

Table 1. The cubic versus the smallest, largest, and average node volume.

Parameter Volume, m3 % Difference

Cubic 1.25000 × 10−10 0.00%
Min 1.18960 × 10−10 −4.83%
Max 1.29750 × 10−10 3.80%

Average 1.26464 × 10−10 1.17%

To verify the peridynamic model, the displacement in the X and Y directions in an undamaged
state has been compared against an FE model. The same model was used for verification of the
Peridigm’s mesh creation. Movements are restricted in all directions for all nodes within 1δ from the
bottom. Two loadings—vertical pressure and surface shear traction—are applied to the load area at
the top of the rail head. Both loadings are applied as functions in terms of node x and z coordinates;
for the exact functions, please see Section 2.5 Boundary conditions. In the FE model, the pressure has
been applied as distributed pressure on the top face of solid elements in the load area, and traction has
been applied as horizontal forces acting on the top three layers of nodes within the load area.

Figure 4 shows the X and Y displacement in the cross-section along the centerline of the rail,
and Table 2 presents the maximum and minimum displacement values. It is clear that a very good
agreement between models can be found. In fact, if the difference in extreme displacement values
would be within ±10%, the displacements would be similar in the cross-sections. Figure 4 definitely
shows a similar displacement distribution between the FE and PD models. The maximum displacement
values between the FE and PD models are −6.95% and 7.92% for the X and Y directions, respectively.
The difference in the minimum Y displacement is 7.48%. In the X displacement, however, it is 20.61%,
which is more than what should be considered a good agreement. Though the relative difference in the
X displacement is large, it should not negatively influence the simulation results, because the region
with low X displacement is far from the load area, and, therefore, far from the area of interest with the
growing cracks. Additionally, the absolute difference is very small, i.e., only 1.71 × 10−7 m. It should
have no effect on the PD model’s accuracy.
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obtain damage model parameters in [32]. Although [40] presents quite old data, it contains ε-N 
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Figure 4. The displacement in the cross-section of an undamaged model: (a) the Y displacement finite
element (FE) model; (b) the Y displacement PD model; (c) the X displacement FE model; (d) the X
displacement PD model. Deformations are increased 50 times.

Table 2. Maximum and minimum displacement values in the X and Y directions from the finite-element
(FE) and Peridynamic (PD) simulations.

Value
X Y

FE, m PD, m Difference FE, m PD, m Difference

Max 2.03 × 10−5 1.90 × 10−5 −6.95% 2.35 × 10−6 2.55 × 10−6 7.92%
Min −6.59 × 10−7 −8.30 × 10−7 20.61% −4.69 × 10−5 −5.07 × 10−5 7.48%

2.4. Fatigue Damage Model Parameters

This study adopts the rail steel data from Figures 4 and 5 in [40], and follows the procedure
to obtain damage model parameters in [32]. Although [40] presents quite old data, it contains ε-N
(strain-life), K-da/dN (Paris law), and material properties data. This is beneficial, because it assures
that the data are for the same material. Other fatigue data sources have been considered [41–46],
but either have only the S-N curves available, contain less data points, or do not have both ε-N and
K-da/dN plots. The fatigue damage model parameters are shown in Table 3.

Table 3. Fatigue damage model parameters.

Phase I Phase II

A 426.00 25,237.48
m 2.77 4.00
ε∞ 0.00186 –
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The parameters for phase I (AI , mI , ε∞) are found from functions fitted to the ε-N plot (see
Figure 5). The fitted power law function takes the same form, y = axb, as the phase I damage model in
(10). So, parameter mI is the inverse of slope b:

b = − 1
mI

(18)

and parameter AI is calculated from the value of intercept:

a =
−logAI

mI
⇒ AI =

1
amI

. (19)

The fatigue limit of rail steel was determined from the function:(
∆ε

2
− ε∞

)ξ

N = C, (20)

where ∆ε
2 is the strain amplitude, ε∞ is the fatigue limit, N is the number of cycles, and ξ, C

are constants.
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A Paris law plot is required to find the parameters for phase II. In this study, R = 0.05, and moist
air data from Figure 5 in [40] were used. The plot is replicated in Figure 6. The fatigue damage model
in (11) has the same form as the Paris law for crack growth:

da
dN = c∆KM, (21)

where da
dN is the crack growth speed, c, M are constants, and ∆K is the cyclic stress intensity factor.

∆K is proportional to the bond strain at the crack tip (in [32] called εcore); therefore, mI I = M, so this
parameter can be obtained directly from a Paris law plot. The remaining parameter AI I , however,
cannot. Instead, a simulation with some trial value A′I I has to be run to obtain the trial crack growth

speed
(

da
dN

)′
. Then, the real AI I value can be found from [32]:

AI I = A′I I

da
dN

( da
dN )

′ . (22)
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To find AI I , a single edge notch (SEN) specimen with a pre-crack in uniaxial tension is simulated.
The stress intensity at a crack tip is given by:

KI = σ
√

πaF
( a

b

)
, (23)

F
( a

b

)
= 1.122− 0.231

( a
b

)
+ 10.550

( a
b

)2
− 21.710

( a
b

)3
+ 30.382

( a
b

)4
, (24)

where σ is the applied stress, a is the crack length, and b is the specimen width. The crack tip’s location
was defined as the maximum x coordinate at which all nodes through the depth of the model have
damage of at least 0.385.
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The model’s size is 0.05 × 0.008 × 0.003 m. It has been discretized with 150,000 nodes with
a spacing of 0.0002 m using the mesh-free method described in [31]. The horizon is set to a little over
3 times the nodal spacing: 0.0006001. The model has a 0.005-m-long pre-crack on the left side to ensure
that Equation (23) is applicable. A force density of 6.25 × 1010 N/m3 (equivalent to 50 MPa) has
been applied to nodes within one δ of both the top and bottom, and damage is disabled for nodes
within 3δ from the top and bottom, to avoid unphysical behavior near the boundary conditions. Crack
growth speed data only from phase II are required, so switching to phase II at low damage reduces
the simulation time. The damage required for transition from phase I to phase II has been, therefore,
set to 0.017. For the trial simulation, A′I I = 1e6 and mI I = 4.00. An LPS material model with the same
parameters as for the rail head simulation is used. The first simulation (with A′I I) ran for 163,100 cycles,
after which the crack turned upward, so Equation (23) is no longer accurate; the second simulation
runs for 13,275,999 cycles until the crack splits in two. Figure 7 shows the simulation with AI I at cycle
309,999 (top) and step 13,275,999 (bottom). The number of cycles is large because a low applied stress
causes fatigue damage to increase slowly.

Since a crack grows in discrete jumps between nodes, the crack growth speed between two cycles
m and n with such jumps has been calculated as the difference in crack length divided by the difference
between the current cycle and the cycle at which the previous jump occurred:(

da
dN

)′
=

an − am

Nn − Nm
, (25)

where a is the crack length, and N is the number of cycles. Then, the
(

da
dN

)′
values are interpolated to

match the ∆K values from the experimental data and AI I is calculated using Equation (22). In total,
22 AI I values have been calculated. These values vary greatly, and the coefficient of variation is 0.7134;
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therefore, an average value has been used. A repeated simulation with AI I and not A′I I (see Figure 6)
exhibits a very good agreement with the first part of the experimental data. It was not possible to
determine agreement with the latter part of the data, because the simulated crack splits into two and
Equation (18) could no longer be used. A better approach (with less variance between the calculated
AI I values) might be to use the real crack growth rate da

dN not from experimental data, but from the
fitted Paris Law function. This approach will be explored in future research.

The model of a rail head uses coarser discretization than the model of an SEN specimen. Since
the horizon has been kept at three node spacings for both, the actual value of the horizon is different
in both simulations: 0.0015001 and 0.0006001, respectively. A change in horizon does not change the
AI , mI , mI I parameters (see chapter 4.3 in [32] for details), but AI I has to be scaled with the horizon.
Equation (29) in [32] provides the means to do that:

AI I(δ) = ÂI Iδ
mII−2

2 → AI I(δ) = 16, 823, 863× 0.0015001
4−2

2 = 25, 237.48, (26)

where ÂI I is independent of δ.
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are increased 10 times.

2.5. Boundary Conditions

Since nodes describe some volume, boundary conditions (BCs) must also be applied to some
volumes. A BC layer thickness equal to the horizon was recommended in [47]. In [13], the researchers
similarly applied loads only to a single layer of nodes on top of the rail head, and such an approach
lead to poor results. BC nodes separated from the rest just after 26 thousand cycles, due to the low
number of bonds over which the applied loads were distributed.

Displacement in all directions was fixed for nodes within one δ from the bottom. Additionally,
damage was disabled for nodes within 3δ from the bottom to avoid the concentration of unphysical
damage near the BC layer.

Train wheel load data from [48] have been used in this study. The wheel–rail contact area (Figure 4f
in [48]) is centered at the coordinate origin, see Figure 3b, and approximated with an ellipse with
a half-axis a = 0.0066 m, c = 0.006386 m. Two different train wheel loadings are used: vertical pressure
and surface shear traction. They are applied to a 1δ thick layer on top of the rail head.
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The vertical force density, in N/m3, from the elastic pressure (data from Figure 5f in [48]) can be
computed from a modified ellipsoid’s formula:

p =
1.116× 109

h

√
1− x2

0.00662 −
z2

0.0063862 , (27)

where p is the force density (N/m3), x, z are node coordinates (m), and h is the node size (m). Since
loads are applied to a 1δ (three node spacings) thick layer, the computed value at a position (x, z) has
been divided by 3 and applied to each of three nodes under this position.

Shear traction forces are taken from Figures 5 and 6 in [48], where they are given as a stress
distribution over an area. Mesh-free discretization requires that loads are applied to discrete nodes,
so the shear traction data over the whole load area had to be described by some function from which an
exact value at a node could be calculated. Only half of the load area is considered, because the traction
data were symmetric. Half of the load area is divided into four parts along the z axis, see Figure 8,
and the shear traction values in each part are described by a tri-linear function, see Figures 8 and 9.
Stress values from [48] can be plotted with symbols in Figure 8 and fitted with tri-linear functions from
which the exact shear traction force value at each node could be calculated. Since loads are applied to
a three-node-thick layer, the calculated stress values must be converted to force density and divided
by 3 before being applied to nodes.
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3. Results

This problem has been simulated on a computing cluster at Riga Technical University using
4 × 36 cores. Each simulation was run for 42,884 cycles, after which the solver failed to converge.
The results are shown in Figure 10 (cross-section in the longitudinal direction) and Figure 11
(cross-section in the transversal direction).

The simulation results are compared with the rail squat field measurements in [14]. Cracks have
been measured at specified grid points on a tangent rail over a span of 3 years using a handheld
ultrasonic testing device with the accuracy range of ±0.1 mm. The field measurement results can be
seen in Figures 12 and 13.
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and (d) 42,884 cycles.

Two loadings—pressure and shear traction—have been applied to the model. The magnitude
of the shear traction is not symmetric around the coordinate origin, even although the load area is.
Traction is then applied in the positive x direction, and the values change as shown in Figures 8 and 9.
This can cause damage to develop slightly asymmetrically against the y-z plane, which is best seen
in Figure 10a. Damage develops faster on the positive side of the x axis (the right side in Figure 10).
Against the x-z plane, in Figure 11, damage developed symmetrically, because both the pressure and
the shear traction are symmetric. The same asymmetric crack growth has been observed in the field
measurements (see Figure 13). In reality, such asymmetry happens because the shear traction from
a wheel rolling forward is applied in the rolling direction.

Figure 11a clearly shows that damage first develops close to the location of maximum pressure
(the middle of the rail in transversal direction). In addition, the maximum damage remains under
the same area (see Figure 11b–d). This is consistent with the field measurements shown in Figure 12.
Cracks are deeper closer to the center of the rail head and shallower closer to the sides. This shows
that they first initiated and have been growing for longer under the rolling surface.

The simulation ended unexpectedly quickly, because the fatigue resistance of a rail without
any defects should definitely be above 42,884 cycles. Loads have thus been applied to a three node
(one horizon) thick layer on top of the rail head. As bonds extending to nodes below this layer are
broken, the applied loads are no longer transferred downwards and the loaded nodes simply moved
through the layers below them; this can be seen in the c and d parts of Figures 10 and 11. This is the
so-called “matter-interpenetration” problem, and usually it is solved through different contact models.
The simplest model—short-range force—was introduced in [31], and a better description is available
in [39,49]. Other contact models and properties are presented in [50–53].
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While a shot-range force contact mode is available in Peridigm, it has been implemented only
for explicit and not quasi-static simulations and it does not consider contact between nodes that are
bonded initially. As damage develops, it is important that the contact model reconsiders the contact
between two nodes that were bonded initially but are not anymore. This limitation has been explored,
and it is possible to resolve it. Future work will concentrate on how to efficiently pass data between
Peridigm’s damage and contact models.
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4. Discussion and Concluding Remarks

This study used a new approach to rail squat simulation: the peridynamic theory. It describes the
derivation of model’s parameters, and illustrates how to apply a variable loading that is dependent on
a node’s location. The simulation successfully captures the initiation of, and initial, rail squat growth.
Due to limitations of the simulation, a larger crack at this stage could not be simulated. However,
the simulation results are in excellent agreement with field measurements for the crack initiation phase.

Damage initiates and grows faster close to the location of maximum pressure; similar crack
growth has been measured in the field. Additionally, the computational model reveals that the squat
damage first grows in the direction of the applied shear traction, and the same has been shown in
field measurements.

The computational model experiences a matter-interpenetration problem, where damaged nodes,
no longer connected with bonds, move freely through each other, without considering possible contacts.
This problem can be solved by applying a contact model; however, contact models in Peridigm do
not consider the contact between nodes that were bonded initially. To solve this problem, bond
damage data needs to be passed between the damage model and the contact model. Future work will
focus on re-developing parts of Peridigm’s code, so that data can be passed between its damage and
contact models.
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