
applied  
sciences

Article

Vector-Based Eddy-Current Testing Method

Cheng Li 1,†, Runcong Liu 1,†, Shangjun Dai 1, Nianmei Zhang 2 and Xiaodong Wang 1,*
1 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences,

Beijing 101408, China; licheng415@mails.ucas.edu.cn (C.L.); liuruncong@ucas.ac.cn (R.L.);
daishangjun14@mails.ucas.ac.cn (S.D.)

2 College of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China;
nmzhang@ucas.ac.cn

* Correspondence: xiaodong.wang@ucas.ac.cn; Tel.: +86-010-6967-1757
† These authors contributed equally to this work and should be considered co-first authors.

Received: 14 October 2018; Accepted: 6 November 2018; Published: 19 November 2018
����������
�������

Abstract: We present a type of eddy-current testing (ECT) method based on measuring the reaction
of the Lorentz force by using a small permanent magnet (PM) as the probe. The means of
measuring impedance is superseded by measuring force. By analyzing the variations in different
components of the reaction of Lorentz force, the defects characteristics within the measured conductor
can be revealed. The results indicate that the vector-based eddy-current testing method obtains
good quantitative results and precisely evaluates the lift-off effect during measurement along
two orthogonal directions. Numerical simulations are performed to provide supports for the
experimental results. The method described in this paper may have great potential for use in
industrial nondestructive testing applications.

Keywords: eddy current testing; Lorentz force; magnetic field; lift-off effect

1. Introduction

Current technological developments typically require materials with improved properties.
Therefore, methods of detecting and locating defects both on the surface and inside these materials
without causing damage are becoming increasingly important. The widely applied industrial methods
for addressing those demands are called non-destructive testing (NDT) methods, including the
methods of eddy current testing (ECT), radiography testing, ultrasonic testing, magnetic particle
testing, penetrant testing and so on. The ECT (Figure 1) is a specialized NDT method for testing
conductor material and has been widely used in inspections of aerospace structures and engines,
equipment in the nuclear industry, fossil fuel power facilities and pipelines, wires, and plates in
the manufacturing process [1–4]. The ECT method can also be applied in tasks applicable to many
industries such as thickness measurements, quality inspections, coating applications and surface
treatments. Compared with other NDT methods, the ECT method has many advantages such as high
detection sensitivity, no requirement for a coupling agent, and suitability for the on-line detection
of work pieces. Moreover, this method is appropriate for magnetic and non-magnetic conductors at
common or high temperatures. However, as the frequency increases, the eddy current tends to be
distributed on the surface due to the skin effect, therefore comprehensive considerations are required
to determine the input parameters for the ECT method.

The principle of the ECT is shown in Figure 1. An exciting coil with an alternative current is
placed on one side of the material, and a pick-up coil is placed on the other side. In some cases, it
is impossible to place the exciting coil and pick-up coil on two sides of sample, they can be set on
the same side. The magnetic field generated by the exciting coil will induce eddy current j inside
the material, which also induces an alternative magnetic field. The magnetic field generated by the
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exciting coil and inducing eddy current are detected by measuring the impedance of the pick-up coil.
When a defect is present, the induced eddy current will change correspondingly and yield to a signal
change in the pick-up coil. Note that a phase difference occurs between the exciting coil and pick-up
coil as shown in Figure 1a,b. By identifying this signal, the defect in the test sample can be identified
as well [5,6].Appl. Sci. 2018, 8, x 2 of 11 
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defects induced in an aluminium plate [7]. Espina-Hernández estimated the crack’s dimension in 
aluminium based on two extracted parameters from the GMR output voltage [8]. Ramos also 
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consisting of PMs based on speckle pattern interferometry [16]. 

However, the traditional ECT method has a few disadvantages. For example, the output signal 
of the traditional ECT method is very sensitive to the distance between the probe and the test 
sample; thus, the signal can be disturbed easily in practice by factors such as varied coating 
thicknesses, irregular samples surface or operator movement (lift-off). Gui proposed an approach 
using normalization and two reference signals to reduce the lift-off problem using pulsed eddy 
current techniques, and this approach is primarily suitable for sub-surface corrosion detection, 
whereas it is unsuitable for detection of surface defect [17]. C. Mandache and J. H. V. Lefebvre 
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Magnetic sensors (AMR (anisotropic magnetoresistance), Hall and GMR (giant
magnetoresistance)) have been introduced in the ECT system in recent years to provide improved
sensitivity and allow for lower frequencies during testing. Postolache designed and implemented
neural network classification schemes to establish a reduced number of features for two types of
defects induced in an aluminium plate [7]. Espina-Hernández estimated the crack’s dimension in
aluminium based on two extracted parameters from the GMR output voltage [8]. Ramos also proposed
a velocity induced eddy current testing (VIECT) excited by a permanent magnet (PM) or a DC coil,
in which relative motion occurs between the sample and the excitation [9].

Uhlig proposed the Lorentz force eddy current testing (LET) method that utilizes a PM to test the
defects, which induces eddy current by the relative motion. They use a force sensor to measure the
reaction of the Lorentz force acting on the PM [10–12]. Wang used a laser cantilever magnet (LCM)
system to measure the Lorentz force [13–15] and Dai detected cracks by array probes consisting of PMs
based on speckle pattern interferometry [16].

However, the traditional ECT method has a few disadvantages. For example, the output signal of
the traditional ECT method is very sensitive to the distance between the probe and the test sample; thus,
the signal can be disturbed easily in practice by factors such as varied coating thicknesses, irregular
samples surface or operator movement (lift-off). Gui proposed an approach using normalization and
two reference signals to reduce the lift-off problem using pulsed eddy current techniques, and this
approach is primarily suitable for sub-surface corrosion detection, whereas it is unsuitable for detection
of surface defect [17]. C. Mandache and J. H. V. Lefebvre proposed that the lift-off intersection (LOI)
can be used to eliminate the lift-off noise [18]. Yin arranged the exciting and pick-up coils in a special
range and found that the output signal phase only slightly varied in space with the liftoff value [5].
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In this paper, we introduce the Lorentz force principle into the ECT system and present
a vector-based ECT method [19]. After building our test system, we successfully obtained reproducible
measurements of the reaction of the Lorentz force. By carefully analyzing different components, more
detailed information can be extracted regarding defects and lift-off.

2. Methods

The principle of our method is shown in Figure 2 and briefly reviewed as follows: An eddy
current is induced by the exciting coil and then an alternative current of sinusoid form is applied.
A PM interacts with the eddy current and functions as the probe. Similar to the process in ECT and
LET, defects in the test sample would induce a redistribution of the eddy current, thus leading to a
change in the Lorentz force on the conductor. The Lorentz force is a vector, with all its components
reflecting different features of the eddy current and its reaction force acts on the PM. A laser cantilever
magnet (LCM) system, similar to the laser-cantilever-tip system used in Atomic Force Microscopy
(AFM) [20], is applied to measure all components of this force via displacement measurements. Just as
the traditional ECT, the PM and exciting coil can be on the same side or on both sides, the form with
the PM and exciting coil on both sides are used to illustrate the principle in Figure 2. The detailed form
of the net force is discussed as follows.
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Figure 2. Principle of the vector-based eddy current testing method. Fc is the magnetostatic force.
(a) Testing sample without a defect. FL is the reaction of the Lorentz force acting on the PM without
a defect; (b) Testing sample with a defect. F′L is the reaction of the Lorentz force acting on the PM with
a defect. 1. Exciting coil; 2. PM; 3. Copper plate; 4. Defect.

By applying an alternating input current I = I0 sin ωt to the exciting coil, the exciting coil
generates a magnetic field, which can be described as follows:

Bp = B(x, y, z) sin ωt (1)

As the PM interacts with this primary magnetic field, the exciting coil exerts a magnetostatic
force on the PM. This magnetostatic force has the same phase as the primary magnetic field, and its
dependence on time can be simply described as follows:

Fc(t) = Fc(x, y, z) sin ωt (2)
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According to Maxwell’s equations and Ohm’s law, this alternating magnetic field induces an
eddy current inside the conductor. σ is the electrical conductivity of the sample, and the eddy current
satisfies the following:

∇× j = −σ
∂B
∂t

(3)

Thus, its dependence on time can be written as follows:

j(t) = j cos ωt (4)

Note that Bp and j have a π/2 phase difference.
The interaction between the PM’s static magnetic field and the eddy current produces the Lorentz

force acting on the conductor, equally obvious but less widely recognized is the fact that by virtue
of Newton’s law, an opposite force (reaction force) acts on the PM [11]. In our study, this force is
time-dependent and has the same phase as the eddy current, thus can be described as following form:

FL = FL(x, y, z) cos ωt (5)

Thus, the total force acting on the PM is described as follows:

FPM(t) = Fc(x, y, z) sin ωt + FL(x, y, z) cos ωt (6)

Note that, although both Fc and FL are dependent on the magnetic field generated by the exciting
coil, there is no direct relation between them and they both proportional to the input current I. If
the PM and the coil are on the same side, Fc can be more significant because of the reduced distance
between them. For the sake of readily operation, our experiment set them on the different sides with
the conductor.

For any component i (x, y or z) of this force, we have the following:

FPMi(t) = Fci sin ωt + FLi cos ωt =
√

F2
ci + F2

Li sin(ωt + ϕ) (7)

where ϕ = arctan(FLi/Fci). We can calculate the above relation through the trigonometric functions.
Thus, the force acting on the PM also has a sinusoidal form, leading to an oscillation motion for the
PM. When a defect is present, the Lorentz force part undergoes a small disturbance.

F′L = FL + δ (8)

Here F′L is the reaction of the Lorentz force with the defect. δ is the small disturbance. Because
this disturbance is minor, the net force acting on the PM in any direction can be described as follows:

FPMi
′(t) =

√
F2

ci + F′Li
2 sin(ωt + ϕ′) ∼ (

√
F2

ci + F2
Li +

FLi√
F2

ci + F2
Li

δi) sin(ωt + ϕ′) (9)

where ϕ′ = arctan(F′Li/Fci).
In the LCM system, the displacement of the PM is considered proportional to the force on it.

Therefore, the force given by Equation (9) causes the PM to oscillate, and defects can be detected by
observing change in the amplitude of the PM oscillation. Note that, similar to the tapping mode of
AFM [19], the oscillation generated by the force is optimized for detecting near the resonance frequency
of the cantilever (200 Hz in our experiment setup).

In our experiments, this force is measured by measuring the displacement of the cantilever, and
the output is voltage signals as shown in Figure 3. The displacement of the cantilever is considered
to be proportional to the force acting on it in a certain range, where our measuring range is involved.
Therefore, the force is proportional to the measured voltage.



Appl. Sci. 2018, 8, 2289 5 of 11
Appl. Sci. 2018, 8, x 5 of 11 

 
Figure 3. (a) Experimental setup: 1. Computer; 2. Moving stage controller; 3. Oscilloscope; 4. 
Direct-current power supply; 5. Defect (mimicked by the through-holes); 6. Exciting coil; 7. Test 
sample; 8. PM; 9. Cantilever; 10. Laser displacement sensor. During the experiment, the test sample 
moves in the x-direction while displacement of cantilever is measured; (b) Setup for measuring the 
z-direction force; (c) Setup for measuring the x-direction force. 

3. Experimental Setup 

Our experimental setup is shown in Figure 3. The exciting coil (6) and the PM (8) are placed on 
two sides of the test sample (7). The sample is placed on a stage, and can move in one direction via 
the controller (2). PMF  represents the force exerted on the PM (8), and it is measured by an LCM 
system (8, 9 and 10) [20–23] due to its high sensitivity and quick response. Two components of the 
force are measured by changing the alignment of the LCM system and then repeating the 
procedure: One component is perpendicular to the sample surface (z) (Figure 3b), and the other is 
parallel to the sample and is the same as the direction of the defect movement (x) (Figure 3c). 

The PM is composed of NbFeB with a size of 1 mm × 1 mm × 1 mm. The cantilever is made of 
stainless steel (12CrNi177) with a size of 7 mm × 1.2 mm × 40 μm (length × width × thickness). The 
sample board is made of copper (σ = 5.9 × 107 S/m) with a thickness of 1 mm. The sample board 
contains through-holes of various diameters (0.3~2 mm) to simulate defects. The sample board is 
placed on a stage that can be controlled to move in the x-direction at a speed of 2.45 mm/s (with an 
accuracy of positioning of 0.005 mm, and a range of 25 mm). Note that the slow relative movement 
between the sample and the magnetic field at this speed induces a negligible eddy current. A 
precision translation stage is used to adjust the position of the PM to guarantee the same 
measurement conditions. The distance between the PM and the surface of the testing sample is d = 
0.5 mm, which is called lift-off distance. 

During the experiment, a sinusoid current (200 Hz) is applied to the exciting coil, which causes 
oscillation of the cantilever. The reason for choosing this frequency is to adapt to the LCM system 
so that the cantilever beam is in a sensitive state. Moreover, a low frequency can provide a better 
penetration depth, which is 4.6 mm. This oscillation is detected by a Microtrak3 displacement 
sensor (made by the MTI company, New York, USA), which has a measuring range of ±5 mm and a 
resolution of 1.25 μm. The error caused by the cantilever’s deformation is in a range of 0.05~0.1%, 
which is negligible. The test sample moves uniformly in one direction driven by the stage, so that 
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4. Direct-current power supply; 5. Defect (mimicked by the through-holes); 6. Exciting coil; 7. Test
sample; 8. PM; 9. Cantilever; 10. Laser displacement sensor. During the experiment, the test sample
moves in the x-direction while displacement of cantilever is measured; (b) Setup for measuring the
z-direction force; (c) Setup for measuring the x-direction force.

3. Experimental Setup

Our experimental setup is shown in Figure 3. The exciting coil (6) and the PM (8) are placed
on two sides of the test sample (7). The sample is placed on a stage, and can move in one direction
via the controller (2). FPM represents the force exerted on the PM (8), and it is measured by an LCM
system (8, 9 and 10) [20–23] due to its high sensitivity and quick response. Two components of the
force are measured by changing the alignment of the LCM system and then repeating the procedure:
One component is perpendicular to the sample surface (z) (Figure 3b), and the other is parallel to the
sample and is the same as the direction of the defect movement (x) (Figure 3c).

The PM is composed of NbFeB with a size of 1 mm × 1 mm × 1 mm. The cantilever is made
of stainless steel (12CrNi177) with a size of 7 mm × 1.2 mm × 40 µm (length × width × thickness).
The sample board is made of copper (σ = 5.9 × 107 S/m) with a thickness of 1 mm. The sample board
contains through-holes of various diameters (0.3~2 mm) to simulate defects. The sample board is
placed on a stage that can be controlled to move in the x-direction at a speed of 2.45 mm/s (with an
accuracy of positioning of 0.005 mm, and a range of 25 mm). Note that the slow relative movement
between the sample and the magnetic field at this speed induces a negligible eddy current. A precision
translation stage is used to adjust the position of the PM to guarantee the same measurement conditions.
The distance between the PM and the surface of the testing sample is d = 0.5 mm, which is called
lift-off distance.

During the experiment, a sinusoid current (200 Hz) is applied to the exciting coil, which causes
oscillation of the cantilever. The reason for choosing this frequency is to adapt to the LCM system
so that the cantilever beam is in a sensitive state. Moreover, a low frequency can provide a better
penetration depth, which is 4.6 mm. This oscillation is detected by a Microtrak3 displacement sensor
(made by the MTI company, New York, USA), which has a measuring range of±5 mm and a resolution
of 1.25 µm. The error caused by the cantilever’s deformation is in a range of 0.05~0.1%, which is
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negligible. The test sample moves uniformly in one direction driven by the stage, so that different areas
of the sample are scanned by the exciting coil PM system. A MDO3022 Tektronix oscilloscope collects
the data from the displacement sensor as the scanned area moves, and thus provides information
regarding oscillation as a function of the defect position.

To better understand the mechanics of our system and interpret the experimental results,
numerical simulation work based on the finite element method is performed to study the force
acting on the PM. The simulation work is carried out in a commercial software package of COMSOL
Multiphysics 5.3 under the following conditions: the exciting coil and PM are aligned to each other
(both located at origin in x-y plane) and placed on two sides of the sample conductor as the set
of the experiment; the sample contains a defect, which is moving along the x-axis; the parameters
(size, position etc.) in the simulation are the same as those in experiments and the amplitude of the
force acting on the PM is calculated as the defect moves.

4. Results and Discussion

4.1. Data Processing

Figure 4 presents a sample of the data collected by the oscilloscope. The period of the oscillation
is 5 ms, which matches the frequency of the input to the exciting coil. Note that this frequency
is slightly inconsistent with the resonance frequency of the LCM system to avoid noise from
frequency disturbance.
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Figure 4. Original measured signal shown on the oscilloscope and its amplitude (inset). (a) The stable
amplitude indicates stable amplitude of the force acting on the PM; (b) The amplitude is increasing,
indicating the amplitude of the force is disturbed.

As discussed in the method section, the change in oscillation amplitude is proportional to the
change in the Lorentz force caused by defects. Thus, we obtain the difference value between the
maximum and the minimum value in each period. Based on these data, we plotted the amplitude
as a function of time for the later data analysis as shown at the top right figure. Note that, time can
be converted to a position by multiplying preset motion speed (2.45 mm/s). By plotting the points
obtained from all cycles, the inset graph is obtained.

4.2. Force Acting on the PM

In our experiment, we measured two components of the force acting on the PM. One is
perpendicular to the sample surface (z), and the other is parallel to it and the same as the direction that
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the defect moves along (x). The y-component is not measured because the defect is always located
along the x-axis in our measurement, thus significant change is not observed in the y-component of
the force due to symmetry. Figure 5 shows the measured force as the defect is at different positions
and in Figure 6 the distribution of the Lorentz force density in the z-direction is shown and the arrows
represent the direction of the Lorentz force density in x-y plane. In both Figures 5 and 6, x = 0 refers to
the position where the defect aligned with the PM.
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Figure 5a shows the z-component of the force acting on the PM. The z-component is the
perpendicular component of the Lorentz force and yields the most significant results. Two peaks
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can be observed although only one defect is present. The reason for the two peaks is illustrated in
Figure 6. Because of the geometry of the exciting coil, when no defect is present, the Lorentz force
density distribution inside the sample yields the shape of a “ring” and a locally minimal value appears
at the center of the “ring” (Figure 6a). When the defect is present, the signal will increase as the defect
moves close to this “ring”, the signal reaches the maximal value as the defect is on top of this “ring”
(Figure 6b,c). The signal then decreases as the defect moves to the local minimal value (Figure 6d).
The leaving process of the defect is completely symmetrical with the change of the z-direction Lorentz
force density during the process of entering, leading to a second peak. The experimental and numerical
results are consistent with each other as shown in Figure 5a, and the positions of two peaks are
nearly identical with a slight difference caused by experimental error. The reason for the asymmetric
experimental result is that the lift-off distance is changed caused by the uneven surface of the testing
copper plate. Thus, because of the changed lift-off distance the eddy current is not symmetric in the
measurement process, and the force acting on the PM is different at the positions of the two peaks.

Compared with the perpendicular direction (z), force measured in the horizontal direction has not
been fully studied. Figure 5b shows the x-component of the force acting on the PM. The measured force
is 0 at x = 0 and has two opposite peaks around it. The direction of this x-component Lorentz force
density can be either positive or negative as the arrows indicate in Figure 6a, therefore, the defect could
cause the net x-component of the Lorentz force density to be either positive or negative (Figure 6b,c).
Note that when there is no defect or the defect is located at x = 0, the Lorentz force density in the
x-component has a symmetric feature and thus the net force is zero (Figure 6a,d). The experimental
results agree with the simulation results as shown in Figure 5b.

By measuring the reaction of the Lorentz force, the size of the defects can also be quantitatively
evaluated. Figure 7 shows the measured force acting on the PM for defects of various sizes. Here
defects are simulated by through holes. As shown in Figure 7a, in the z-direction, more intensive
signals can be obtained for larger defects. Note that for a large defect, the two peaks we observed
in Figure 5a overlap with each other. We calculate the areas under the corresponding curves by
integrating the voltage above the baseline (baseline voltage = 0.285 V in Figure 7a) and the results
are shown in Figure 8. The graph shows a strong linear correlation between the integral and the
volume information of defects within experimental error. This correlation is confirmed by theoretical
analysis in the range where the size of the defect is comparable or smaller than the PM probe (1 mm3).
Therefore, the z-component of our force can be used to quantitatively determine the size of the defect
thin test sample with small defect.
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approximately linearly with the different defect volumes.

In the x-direction, we observed stronger signals for larger defects, which is similar to the
observations in the z-direction but with a different feature. We may utilize this feature specific
to the horizontal component to evaluate the lift-off effect, which will be discussed next.

4.3. Distinguish and Precisely Evaluate Lift-off Effect

Lift-off effect is one of the major problems of the ECT method and is caused by the electromagnetic
field weakening or strengthening due to variation of the lift-off distance. Signals caused by such lift-off
are usually difficult to distinguish from those caused by those defects. However, as discussed, the
Lorentz force in the horizontal direction has a specific feature different than that in the vertical direction,
this feature has different sensitivity to defects and lift-off factors such as the varied coating thicknesses,
an irregular sample surfaces or an operator movement. This feature can be utilized to reflect the extent
of the lift-off.

The simulation results of the measured force in the z and x-direction are shown when a sample
without and with a defect undergoes a “lift-off” as shown in Figure 9. Figure 9a, we see that in the
z-direction a lift-off forms a signal which could be difficult to distinguish from signals refer to defect
in practice. Nevertheless, in the x-direction no signal is detected, indicating that the x-component
is resistant to lift-off. When a lift-off occurs with a defect (Figure 9b), the z-component is disturbed
by the lift-off, note that in Figure 5a the experimental curve has a similar shape as the Fz simulation
result in Figure 9b. However, the signal of the x-component is still mostly unaffected as compare to
that in Figure 5b. It is confirmed that a lift-off occurs in our experiment. The above results show that,
horizontal components are much insensitive to lift-offs compared to vertical component, and some
curves of the Lorentz force in the x-direction is invisible because there is much overlap among these
forces, namely they vary very consistently. Consequently, we can take advantage of this feature to
identify lift-offs.
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5. Conclusions

In conclusion, we propose that the eddy current change induced by the defect can be depicted
more clearly by measuring the reaction of the Lorentz force vector. Based on that, we developed an
altered ECT method by introducing a probe PM and the LCM measuring system. In our method,
two components of Lorentz force acting on the probe PM are measured, respectively. The vertical
component (z) of the force gives a quantitative estimation of the defect size for a thin sample with
small defects, and the horizontal component (x) of the force has a specific feature that is insensitive to
the lift-off effect, which can be used to distinguish defects from “lift-off”.

In future work, the current system may be improved in the following aspects: to further decrease
the sizes of exciting coil till less than 1 mm and to optimize the dimensions and the shape of the
LCM system may improve the sensitivity and obtain a high resolution of the defects; To investigate
the intrinsic mechanic oscillating relationship between the input frequency and the LCM system;
to improve force measurement means, i.e., adapting 3-axis force sensor, in order to obtain the force
acting on the PM with three components of the reaction of the Lorentz force simultaneously.
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