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Abstract: To combat the uncertainty of the multiple factors affecting roadway surrounding rock
stability, five initial indexes are selected for reduction according to concept lattice theory: rock
quality designation (RQD), uniaxial compressive strength (Rc), the integrity coefficient of rock mass,
groundwater seepage, and joint condition. The aim of this study is to compute correlation coefficients
among various indexes and verify the effectiveness of lattice reduction. Alpha stable distribution is
used to replace the commonly used Gauss distribution in probabilistic neural networks. A prediction
model for the stability of roadway surrounding rock is then established based on a concept lattice
and improved probabilistic neural network. 100 groups of training sample data are plugged into
this model one by one to examine its rationality. The established model is employed for engineering
application prediction with ten indiscriminate sample groups from the Jianlinshan mining area of the
Daye iron mine, revealing accuracy of up to 90%. This demonstrates that our prediction model based
on a concept lattice and improved probabilistic neural network has high reliability and applicability.

Keywords: roadway surrounding rock stability; attribute reduction; reduced concept lattice;
symmetrical Alpha stable distribution; probabilistic neural network

1. Introduction

With the gradual improvement in global economic development, the prices of mineral products
have increased markedly whilst ore demand has remained stable. Mining enterprises have also become
more confident in their production [1]. Recently, mineral resources stored in shallow areas have been
declining. The consumption of mineral resources has forced people to mine deeper underground,
where high ground stress, high karst water pressure, and high ground temperatures are more apparent.
Mining underground involves frequent disasters, including rock bursts, water inrush, roof cave-ins,
surface collapse, and roadway deformation or collapse [2–5].

Mine roadways are important channels for ore transportation, mine ventilation, pedestrians,
etc. The stability of the roadway surrounding rock is closely related to mine safety and efficient
production [6]. Though rock bolts have been often used to increase structural stability [7–9], data show
that the deformation, cave-in, and collapse of mine roadways occur frequently in China; in the last
10 years, the cost of roadway support in Chinese mines has increased approximately 13 times [10].
Nearly 40% of tunnels require support due to excessive deformation, which seriously affects the
normal production of mines [11]. Therefore, a stability analysis of roadway surrounding rock is a
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prerequisite for the effective design and construction of roadways and for choosing adequate support
forms and parameters.

The stability of roadway surrounding rock has the characteristics of being non-linear and
time-varying as well as the uncertainty and inaccuracy of state and parameter measurement, which
makes the type of roadway surrounding rock a typical random and fuzzy problem. With the
recent advances in structural health monitoring [12–14], the main methods for surrounding rock
stability analysis include theoretical analysis, numerical analysis, evaluation, and prediction [15–17].
Research on the stability prediction of roadway surrounding rock now involves comprehensive
models combining qualitative and quantitative multi-factors and multi-indexes. Previous studies have
proposed fuzzy mathematics [18], support vector machine (SVM) [19], neural network [20], and other
methods. Fuzzy cluster taxonomy considers the ambiguity of each index for a more scientific and
accurate classification. However, the subjectivity related to determining the weight of the classification
index has a large influence on the forecast result. SVM classification can effectively handle non-linear
mapping between sample indexes and is adaptable to small samples; however, the classification
effect is significantly influenced by the choice of parameters. The unascertained clustering method
considers concealment of the correlation between classification indexes; however, the index selection
is problematic. The back propagation (BP) neural network method requires adequate computation
samples and easily arrives at the local optimal solution. The key aspect of stability predictions for
roadway surrounding rock is the selection of evaluation indexes, which is not considered in the above
methods. The key and premise of stability prediction of roadway surrounding rock depend on the
selection of evaluation indicators. Even though the stability of roadway surrounding rock is examined
from the structural theory, all the above methods lack research on the influence of the selection
of evaluation indicators on the accuracy of the model and thus cannot effectively determine the
concealment and uncertainty of correlation between the evaluation indicators of roadway surrounding
rock stability. Concept lattice theory has great advantages in knowledge discovery, rule mining and
knowledge reduction [21–23]. Using concept lattice reduction theory to achieve reduction of stability
evaluation index of surrounding rock can not only improve the effectiveness of evaluation index
selection and accuracy of model, but also provide a reference for the prediction of surrounding rock
stability in similar geological environment.

Neural network model has great advantages in dealing with nonlinear classification evaluation
and prediction of problems, and it is widely used [24–26]. Neural network classification method can
solve the problem of strong subjective factors and experience alone in the past, which is conducive
to increasing accuracy of reflecting the nonlinear relationship between the stability of roadway
surrounding rock and evaluation index. Compared with the BP neural network, the probabilistic
neural network (PNN) has the advantages of simple procedure, fast convergence, and no local optimal
value [27,28]. However, the probabilistic neural network model layer uses a Gaussian function as an
activation function; that is, limited training data must be independent and identically distributed.
In practice, the evaluation index of surrounding rock stability does not completely obey a Gaussian
distribution. When the correlation between each index is uncertain, a probabilistic neural network is
not necessarily satisfactory for a stability classification of the surrounding rock mass. The symmetric
alpha-stable distribution has a broader mathematical expression than the Gaussian distribution, and
its radial symmetry can also act as a radial basis function. Currently, improvement of the structure,
kernel function and combination model enhances the applicability of neural network model [29–31].

Conceptual lattice reduction theory can be adapted to the uncertainties of correlation among the
evaluation indexes. However, it possesses poor anti-noise ability. The improved probabilistic neural
network model can have advantages in data training. Therefore, a combined model for predicting
the surrounding rock stability in roadway based on conceptual lattice and symmetric alpha stable
distribution probabilistic neural network is established. The model provides a new method for the
stability evaluation of surrounding rock. In summary, this study involves the following novel aspects:
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(1) To combat the uncertainty and concealment of the correlation between the prediction indexes of
surrounding rock stability, a model based on grid multi-layer attribute reduction is established to
reduce the attributes of the evaluation index, optimize the index, and improve model efficiency.

(2) The synthetic minority over-sampling technique (SMOTE) is used to synthesize new training
samples, so that the numbers of training samples are balanced. Introduction of symmetrical
alpha stable distribution instead of Gaussian distribution as the basis function of the probabilistic
neural network model gives the model a broader meaning of expression.

(3) Concept lattice multi-level attribute reduction involves more efficient index optimization,
however its promotion ability and anti-noise ability are poor. Since the probabilistic neural
network has advantages in data training, a concept lattice and symmetrical alpha stable
distribution probability neural network model for roadway surrounding rock stability prediction
should be superior.

The remainder of the paper is organized as follows. Section 2 shows the definition of concept
lattice and the method of attribute reduction of concept lattice. Section 3 proposes a probabilistic
neural network model based on symmetric Alpha-stable distribution and the optimization of the
model’s parameters by using genetic algorithm. Section 4 introduces the establishment of a Stable
Prediction Model of Roadway Surrounding Rock Base on Concept Lattice Reduction and a Symmetric
Alpha Stable Distribution Probability Neural Network. Section 5 represents the practical engineering
application of the composite model. Section 6 summarizes the results of the analysis.

2. Reduced Concept Lattice

2.1. Basic Notion of the Concept Lattice

A concept lattice, also regarded as a formal concept analysis, is widely used in several fields due
to its excellent properties in knowledge reduction and rule extraction [32–34]. Each node of the concept
lattice is a formal concept composed of two parts: extension (or object) and intension (or attribute).
Extension can directly reflect the generalization and specialization relationship among these concepts
through the Hasse diagram.

A formal context K = (E, G, I) consists of two sets: E (object set) and G (attribute set), and a
relationship, I, between the two. In the object set A ∈ P(E) of a formal context, the attribute set,
B ∈ P(G), defines the mapping, f and g:

f (A) = { g ∈ G|∀e ∈ A, (e, g) ∈ I }
g(B) = { e ∈ E|∀g ∈ B, (e, g) ∈ I }

}
(1)

where g and e are the elements of the attribute set, G, and the object set, E, respectively. A pair (A, B)
from the formal context that satisfies the two mappings above is a concept; we denote A the extent and
B the intent of the concept (A, B).

For concept (A1, B1) and (A2, B2), if A1 ⊆ A2 or B2 ⊆ B1, then we denote (A1, B1) the son
concept or sub-concept and (A2, B2) the parent concept or hypernotion. Furthermore, lattices induced
by all partial order relations of the hypernotion-sub-concept from the formal context represent the
concept lattice.

2.2. Attribute Reduction Based on the Concept Lattice

Suppose there is a decision table [35,36]: S = (E, C∪D, {Va|a ∈ C∪D}, {Fa|a ∈ C ∪ D}), in
which E is the set of objects, C is the set of condition attributes, C = {C1, C2, · · · , Cl}, D is the set of
decision attributes, Va is the range of attribute a, and Fa is the mapping from object E to domain Va.
In addition, when multiple decision attributes are contained in D, we can convert it to its equivalent
form so that a decision attribute includes multiple threshold values. To simplify the purpose, we
assume that D = {d}.
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Let G = ∪
a∈C∪D

Va, I = {(e, e(a))|e ∈ E, a ∈ C ∪ {d}}, then (E, G, I) is the formal context

corresponding to the decision table. To facilitate the narrative, element g of ∪
a∈C∪D

Va denotes the

attribute of the formal context (E, G, I), attribute for short; element g of ∪
a∈C

Va denotes the condition

attribute, abbreviating set ∪
a∈C

Va to VC; and element g of ∪
a∈D

Va is denoted the decision attribute,

abbreviating set ∪
a∈D

Va to VD. If two object concepts (A1, B1) and (A2, B2) share the same parent

concept (A, B), and the connotation of the parent concept (A, B) contains no decision attributes,
however it satisfies

VD ∩ B1 6= φ ∨VD ∩ B2 6= φ (2)

then we say that the public parent concept (A, B) is the discriminable concept of concept (A1, B1)

and (A2, B2). For concept (A, B), if the condition attribute Cl of the original decision table satisfies
VCl ∩ B2 = φ, then the set of all condition attributes Cl that satisfy this condition is called the loss
attribute of concept (A, B) with respect to the original decision table.

The attribute reduction method based on the concept lattice aims to construct a complete concept
lattice, find the discriminable concepts and loss attributes within the lattice, and delete the set
containing loss attributes from the power set of condition attributes, finally obtaining the reducible
attribute set. The attribute set contains all combinations of condition attribute types.

3. Probabilistic Neural Network Model Based on Symmetric Alpha Stable Distribution

3.1. Alpha Stable Distribution

The α-stable distribution, being the limiting distribution of the sum of infinite random variables
with infinite possibility variance and independent distribution, is the only type of distribution pattern
that complies with the generalized central limit theorem. It is a Gaussian distribution in a broad
sense, however its probability density function has a thicker trailing, which can describe broader data,
including those not satisfying the central limit theorem. Therefore, it has a more universal meaning.

In this section, we peruse the α-stable distribution and its CF, Suppose that −∞ < x < ∞ and
x is distributed according to a stable law, i.e., x ∼ S (α, β, γ, δ), is completely determined by four
parameters; α is the characteristic exponent and it determines the shape of the distribution, (0 < α ≤ 2),
β is the index of skewness, (− 1 ≤ β ≤ 1), γ is the dispersion or scale parameter of the distribution,
(γ > 0), and δ is the location parameter, (δ ∈ R). The case β = 0 which is correspond to the symmetric
α-stable distribution. α-stable distribution is usually provided by taking the inverse Fourier transform
of its CF; however, a closed-form formula does not exist for its density function. The CF of the α-stable
distribution is defined as the following [37],

ϕ(ω; α, β, γ, δ) = E
(

ejωX
)
=

{
exp

{
−γ|ω|α

(
1− jβsign(ω) tan πα

2
)
+ jδω

}
, α 6= 1

exp
{
−γ|ω|

(
1 + jβ 2

π sign(ω) ln|ω|
)
+ jδω

}
, α = 1

(3)

where sign(·) is the sign function. From the above equation, it is found that the expression for α-stable
CF has a discontinuity at α = 1. The symmetric steady state distribution map in the state of β = 0 is
shown in Figure 1 and the asymmetrical steady state distribution map in the state of β = 1 is shown in
Figure 2.
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3.2. Probabilistic Neural Network

A probabilistic neural network is a type of feed forward neural network developed from a radial
basis function network with hierarchical structures for the input layer, model layer, summation layer,
and decision layer. The main computation steps are as follows:
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(1) Input layer

There are n neurons in the input layer, representing the dimensions of the input samples:

X = (x1, x2, · · · , xn)
T (4)

(2) Model layer

The model layer contains h hidden neurons, meaning that h is the sum of training samples in
each category. For input samples, the layer will compute the Euclidean distance between it and each
training sample, and utilize a Gaussian probability-density function to learn the similarity, as shown in
Formula (5).

zk = exp
(
−‖X−Yk‖/2σ2

)
(5)

where X stands for unclassified input samples; Yk is the training sample; ‖X−Yk‖ is used to find
the Euclidean distance between unclassified input sample X and training sample Yk, and σ is the
smoothing factor.

(3) Summation layer

The summation layer is used to cumulate the probability of the output of training samples
belonging to the same category in the model layer, where the estimated probability density function is
derived from Formula (5), where hj is the sample number that belongs to category j in the training
samples. The summation layer units sum all the outputs of the model layer in the same category,
without considering those of other categories.

outj =

hj

∑
k=1

zk (6)

(4) Decision layer

For the output of the summation layer, the competitive layer takes the largest posterior probability
density as the output of the whole system. The output represents the neuron with the largest probability
density function of one category as 1, signifying its corresponding category as the one to be identified.
The output of the other output neurons is 0; i.e.,

yj =

{
1, outj = max

{
outj, j = 1, 2, · · · , m

}
,

0, others.
(7)

3.3. Improved Probabilistic Neural Network

Improvement of the probabilistic neural network is based on the fact that the input dimension of
the probabilistic work directly affects the accuracy, a large number of training samples are required,
and the expression range of the basis function gaussian distribution is limited.

(1) Optimize the probabilistic neural network structure

This study uses a reduced concept lattice to reduce the input indexes of PNN, eliminate, as far
as possible, those input indexes with a close relationship, reduce the dimension of the PNN input,
optimize the structure of PNN, improve its efficiency of pattern recognition, compute correlation
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coefficients among different indexes (see Formula (8)) according to the related theory of Pearson, and
finally verify the reduction effect.

r =

N
∑
i

(
xpi
− xp

)((
xqi
− xq

))
√

N
∑
i

(
xpi
− xp

)2 N
∑
i

(
xqi
− xq

)2

, xp =
1
N

N

∑
i

xpi , xq =
1
N

N

∑
i

xqi , p, q = 1, 2, · · · , n (8)

Several questions arose after reduction; for instance, the number of training samples was small,
and the number of training samples belonging to various categories was not the same. Such inequality
of data may affect the accuracy of the output results. Thus, the SMOTE algorithm was used to insert
new samples among a few samples with similar positions to ensure balance.

(2) Improve the radial basis function of the probabilistic neural network

When α = 2 and β = 0, the alpha stable distribution is consistent with the Gaussian distribution,
indicating that the Gaussian distribution is a special form of the alpha stable distribution. To improve
the radial basis function of the probabilistic neural network, we use the probability density function of
the symmetric alpha stable distribution (SαS) to replace the Gaussian distribution function of PNN and
use it as the output of the model layer. This involves weighing and summing the vector of the input
node and calculating the Euclidean distance between this vector and the vector of the sample input,
before finally obtaining the similarity between this model and the standard model after operation of
the SαS activation function. Because the probability density function of an alpha stable distribution
has closed expressions only in special cases, we utilize the MATLAB [38] toolbox function for the
calculation, as follows:

z = stblpd f (‖X− Yk‖, α, β, γ, µ) (9)

This formula is used as the output of the model layer, in which β = 0, µ = 0 and parameter α, γ

must be estimated.

(3) Utilize the genetic algorithm to compute parameter α, γ

Common methods to estimate the parameters of the SαS distribution include the maximum
likelihood estimation method, the sample quantiles method, the negative-order moments method, and
the logarithm method. The genetic algorithm is a type of heuristic search algorithm based on swarm
intelligence [39]. Because common methods used to estimate parameters of the SαS distribution are
always complex, the genetic algorithm can optimize the parameter α, γ. The fitness function is defined
as follows:

f = 1− K
N

+ W (10)

where N is the total number of training samples, K stands for the total number of training samples that
have been predicted accurately, and W is a constant with a range from 0 < W < 0.1.

To summarize, the detailed prediction model for roadway surrounding rock stability based on
concept lattice reduction and a symmetric alpha stable distribution probabilistic neural network is
shown in Figure 3.
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4. Prediction Model for Roadway Surrounding Rock Stability

4.1. Selection of Evaluation Indexes for Roadway Surrounding Rock Stability

In order to reasonably determine evaluation indexes for the stability of roadway surrounding
rock, we referred to nearly 80 academic papers involving the classification, evaluation, and prediction
of roadway surrounding rock stability from the Chinese Journal of Rock Mechanic and Engineering,
Rock and Soil Mechanics, Chinese Journal of Geotechnical Engineering, etc. (Table 1). The results
are plotted in Figure 4. According to principles such as independence and data availability in index
selection, we employed five indexes whose chosen frequency was greater than 20 as evaluation indexes
for the stability of roadway surrounding rock.

These indexes are: rock quality designation (reflection of structural joints’ characteristics), uniaxial
compressive strength (maximum compressive stress reached before failure under uniaxial compression
load), integrity coefficient of rock mass (square of the ratio of compressional wave velocity to rock
mass), groundwater seepage (groundwater seepage capacity related to precipitation and permeability
coefficient of rock mass), and joint condition (joint referring to a small fault structure with no significant
displacement on both sides of rock mass after stress fracture). Moreover, after reviewing published
literature according to data availability and field investigations, we present the classification standards
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for roadway surrounding rock stability in Table 2 [40], and divide the stability of roadway surrounding
rock into five grades: stable I, relatively stable II, basically stable III, unstable IV, and extremely
unstable V. In addition, surrounding rock data obtained from 20 underground projects chosen to
establish training samples are shown in Table 3.

Table 1. Partial literature list.

Number Article Journal

1 Stability classification of adjoining rock of underground engineering
based on Hopfield network

Chinese Journal of
Geotechnical Engineering

2 Research on surrounding rock evaluation of underground
engineering based on extension method

Chinese Journal of Rock
Mechanics and Engineering

3 Set pair analysis—variable fuzzy set model for evaluation of
stability of surrounding rock

Chinese Journal of
Geotechnical Engineering

4 A novel extension evaluation model of surrounding rock stability
based on connection cloud

Chinese Journal of
Geotechnical Engineering

5 Classification of stability of surrounding rock using cloud model Chinese Journal of
Geotechnical Engineering

6 A fuzzy comprehensive evaluation methodology for rock burst
forecasting using microseismic monitoring

Tunnelling and Underground
Space Technology

7 Stability and availability evaluation of underground strategic
petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China Energy

8
Decoupled explosion in an underground opening and dynamic

responses of surrounding rock masses and structures and induced
ground motions: A FEM-DEM numerical study

Tunnelling and Underground
Space Technology

. . . . . .
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Table 2. Classification standards for roadway surrounding rock stability.

Category
Rock Quality
Designation

(RQD)

Uniaxial
Compressive

Strength (Rc/MPa)

Integrity
Coefficient of

Rock Mass

Groundwater
Seepage/(L/(min·10 m))

Joint
Condition

Stable, I [90, 100] [150, 200] [0.75, 1.00] [0, 5) [9, 10]
Relatively stable, II [75, 90) [100, 150) [0.55, 0.75) [5, 10) [7, 9)
Basically stable, III [50, 75) [60, 100) [0.30, 0.55) [10, 25) [4, 7)

Unstable, IV [25, 50) [30, 60) [0.15, 0.30) [25, 125) [2, 4)
Extremely unstable, V [0, 25) [0, 30) [0.00, 0.15) [125, 250] [0, 2)

4.2. Data Discretization

In Table 3, we define the domain U = {1,2, . . . ,20}, rock quality designation (RQD), uniaxial
compressive strength (Rc), integrity coefficient of rock mass, groundwater seepage, and joint condition
as belonging to condition attribute C. Meanwhile, decision attribute D represents the stability
grade of the roadway surrounding rock. According to the classification standard of evaluation
indexes for roadway surrounding rock stability in Table 1, we discretize the evaluation indexes and
construct a knowledge expression system, as the statistics shown in Table 3, where the evaluation
indexes are categorized into stability grades from 1–5. Different index categories lead to different
corresponding stability grades; thus, this enables knowledge discovery of the relationship between
indexes and decisions.

Table 3. Training sample data and knowledge expression system.

Sequence
Number

Rock Quality
Designation

(Grade)

Uniaxial
Compressive

Strength (Grade)

Integrity
Coefficient of Rock

Mass (Grade)

Groundwater
Seepage
(Grade)

Joint
Condition

(Grade)
Grade

1 96 (1) 200.0 (1) 0.97 (1) 5 (1) 9 (1) I
2 93 (1) 152.0 (1) 0.99 (1) 3 (1) 8.3 (2) I
3 98 (1) 140.0 (2) 0.95 (1) 9 (2) 8 (2) I
4 90 (1) 170.0 (1) 0.96 (1) 9 (2) 7.5 (2) I
5 88 (2) 185.5 (1) 0.89 (1) 6 (2) 8 (2) II
6 73 (3) 176.4 (1) 0.80 (1) 8 (2) 7 (2) II
7 92 (1) 158.2 (1) 0.94 (1) 6 (2) 7 (2) II
8 76 (2) 181.9 (1) 0.92(1) 9 (2) 8 (2) II
9 79 (2) 126.0 (2) 0.67 (2) 7 (2) 7.5 (2) II

10 74 (3) 40.0 (4) 0.38 (3) 10 (2) 6 (3) III
11 59 (3) 97.0 (3) 0.43 (3) 15 (3) 6.7 (3) III
12 65 (3) 70.0 (3) 0.60 (2) 9 (2) 6 (3) III
13 69 (3) 65.0 (3) 0.50 (3) 9 (2) 5 (3) III
14 48 (4) 25.0 (5) 0.22 (4) 20 (3) 4 (4) IV
15 74 (3) 25.0 (5) 0.15(4) 20 (3) 3 (4) IV
16 33 (4) 78.0 (3) 0.27 (4) 20 (3) 1.6 (4) IV
17 35 (4) 25.0 (5) 0.40 (3) 12 (3) 5 (4) IV
18 18 (5) 20.0 (5) 0.03 (5) 20 (3) 1 (5) V
19 20 (5) 20.0 (5) 0.20 (4) 12 (3) 3 (5) V
20 14 (5) 35.0 (4) 0.20 (4) 15 (3) 3 (5) V

4.3. Construction of Concept Lattice

When a concept lattice is applied in the knowledge system for knowledge discovery, it corresponds
to a single-valued formal context. Formal context is a type of data table, which can be divided into a
more detailed decision table according to the grades shown for all indexes in Table 3. It is clear from
Table 3 that the five evaluation indexes and the actual stability of the roadway surrounding rock all
contain five categories; thus, there are 30 columns in the formal context, which means that there are 30
items of condition attributes and decision attributes. The formal context corresponding to Table 3 is
shown in Table 4.

In Table 4, a, b, c, d, e, f represent the rock quality designation (RQD), uniaxial compressive
strength (Rc), rock-mass integrity index, groundwater seepage, and joint condition, as well as the
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actual stability of roadway surrounding rock, respectively, while a_1–a_5 represent the five categories
of rock quality designation (RQD) from stable to extremely unstable according to the classification
standards. The symbol “×” signifies the object that has this attribute. The concept included in Table 3
can be found by the concept lattice search method described in Section 2. By graphing the concept
lattice and utilizing the concept lattice software Lattice Miner 1.4 [41,42], we generate the concept
lattice corresponding to the formal context, as shown in Figure 5. Due to the vast amounts of data, this
figure only demonstrates the labels of six nodes as examples.

Table 4. Formal context corresponding to the knowledge expression system.

Object a_1 a_2 a_3 a_4 a_5 b_1 b_2 b_3 . . . f_1 f_2 f_3 f_4 f_5

1 × × ×
2 × × ×
3 × × ×
4 × × ×
5 × × ×
6 × × ×
7 × × ×
8 × × ×
9 × × ×

10 × ×
11 × × ×
12 × × ×
13 × × ×
14 × ×
15 × ×
16 × × ×
17 × ×
18 × ×
19 × ×
20 × ×

Based on the basic theory of a concept lattice described in Section 2.1 and concept lattice graphs,
each node in Figure 5 then represents one concept, and different colors show the different number of
objects contained within the node. The greater the number of objects, the darker the color. The label
on the node, which is the concept of the node, shows information on the attributes and objects, and
the lines among various nodes represent the generalization and specialization relationship between
different nodes. Meanwhile, the relationship between the upper concept and the lower concept on
either end of the line equates to the relationship between the parent concept and the child concept, and
the concept on top is the largest parent concept.

4.4. Reduction Indexes

It can be learned from Figure 5 and Formula (2) that ({11,14,15,16,17,18,19,20}, {d_3}), ({11,12,13,16},
{b_3}) are discriminable concepts. Similarly, according to the Hasse diagram of the concept lattice
corresponding to the formal context and Formula (2), all discriminable concepts and loss attributes can
be found (Table 5).

From Table 5, we see that the attributes corresponding to the discriminable concepts above are
{abcde, abce, abcd, bcde, acde, acde, abe, abd, abc, abc, abc, bde, cbe, bce, ace, ace, abe, ac, ab, ab,
de, ae, bd, b, d, b, a, Ø}. According to the definition of a concept lattice, if an attribute is irreducible,
then the set containing it must also be irreducible. Therefore, {a, b, d} is the simplest form of loss
attribute. Deleted sets containing loss attributes from the power set of indexes and power sets are
{abcde, abcd, abce, abde, acde, bcde, abc, abd, abe, acd, ace, bcd, bce, cde, ade, bde, ab, ac, ad, ae, bc,
bd, be, cd, ce, de, a, b, c, d, e}. We then obtain the largest reducible index sets {ce, c, e}. Attribute c, e
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can be reduced, meaning that both the integrity coefficient of the rock mass and the joint condition are
reducible indexes.

Table 5. Discriminable concepts and their loss attributes.

Sequence Number Discriminable Concept Corresponding Loss Attribute

1 ({1,2, . . . , 20}, Ø) abcde
2 ({11,14,15,16,17,18,19,20}, {d_3}) abce
3 ({10,11,12,13,14,17}, {e_3}) abcd
4 ({6,10,11,12,13,15}, {a_3}) bcde
5 ({10,20}, {b_4}) acde
6 ({11,12,13,16}, {b_3}) acde
7 ({9,12}, {c_2, d_2}) abe
8 ({10,11,13,17}, {c_3,e_3}) abd
9 ({16,18}, {d_3,e_5}) abc

10 ({11,14,17}, {d_3,e_3}) abc
11 ({3,4,5,6,7,8,9}, {d_2,e_2}) abc
12 ({1,2,3,4,7}, {a_1,c_1}) bde
13 ({11,15}, {a_3,d_3}) cbe
14 ({6,10,12,13}, {a_3,d_2}) bce
15 ({14,15,17,18,19}, {b_5,d_3}) ace
16 ({11,16}, {b_3,d_3}) ace
17 ({14,15,16,19,20}, {c_4,d_3}) abe
18 ({3,9}, {b_2,d_2,e_2}) ac
19 ({15,19,20}, {c_4,d_3,e_4}) ab
20 ({11,17}, {c_3,d_3,e_3}) ab
21 ({1,2,4,7}, {a_1,b_1,c_1}) de
22 ({14,15,19}, {b_5,c_4,d_3}) ae
23 ({2,3,4,7}, {a_1,c_1,e_2}) bd
24 ({4,5,6,7,8}, {a_1,c_1,d_2,e_2}) b
25 ({2,4,7}, {a_1,b_1,c_1,e_2}) d
26 ({3,4,7}, {a_1,c_1,d_2,e_2}) b
27 ({15,19}, {b_5,c_4,d_3,e_4}) a
28 ({4,7}, {a_1,b_1,c_1,d_2,e_2}) Ø

Calculations of the correlation coefficients between rock quality designation (RQD) and the
uniaxial compressive strength, the integrity coefficient of rock mass, groundwater seepage, and joint
condition, using Formula (8), yielded 0.7696, 0.8492, −0.7025, and 0.8593, respectively. According to
their absolute value, the data were sorted as follows: 0.8593 > 0.8492 > 0.7696 > 0.7025, which indicates
a closer relationship between rock quality designation (RQD) and the integrity coefficient of rock
mass and joint condition than that between rock quality designation (RQD) and uniaxial compressive
strength and groundwater seepage. In the same way, the correlation coefficients between uniaxial
compressive strength (Rc) and the integrity coefficient of rock mass, groundwater seepage, and joint
condition were 0.9310, −0.7301, 0.8376, respectively, signifying that uniaxial compressive strength
(Rc) is more strongly associated with the integrity coefficient of rock mass and joint condition than
with groundwater seepage. The correlation coefficient between the integrity coefficient of rock mass
and joint condition is 0.9216, indicating a close relationship. In addition, the integrity coefficient of
rock mass and joint condition have more significant correlations with other indexes; hence, it is more
reasonable to use the rock-mass integrity index and joint condition as reduction indexes.
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4.5. Establishment of Improved Probabilistic Neural Networks Model

Using index data after sample reduction as the input, we then utilized MATLAB to establish
the prediction model for the stability of roadway surrounding rock based on the concept lattice and
improved probabilistic neural network. In this process, the SMOTE algorithm equalized 20 groups of
training samples and generated 80 groups of data, resulting in 20 training sample groups of different
grades. The output of the model is either stable I (1, 0, 0, 0, 0), relatively stable II (0, 1, 0, 0, 0), basically
stable III (0, 0, 1, 0, 0), unstable IV (0, 0, 0, 1, 0), or extremely unstable V (0, 0, 0, 0, 1).

According to the method described in Section 3.2, we used the genetic algorithm to compute
parameter α, γ and set W as 0.01, then obtained the fitness curves shown as Figure 6. For the smallest
fitness, we obtained the optimal solution with values of α and γ of 0.2848 and 1.5963, respectively.

By inputting the 1st to 100th group of model training sample data back into the stability prediction
model for roadway surrounding rock using the improved probabilistic neural network, the resulting
prediction accuracy rate was 100%, indicating that the prediction model is stable and reasonable.
Figure 7 shows the training effect of SαS − PNN and the error graph.
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5. Practical Engineering Applications

The Daye iron deposit occurs in a fractured zone. In general, the contact-zone between
rock and ore is unstable with joint development, and the ore body aquifer has characteristics of
karstification and fracture development, causing difficulty with roadway excavation and support.
After consulting published literature and performing on-site surveys, we selected 10 groups of
roadway surrounding rocks from the Jianlinshan mining area of the Daye iron mine as samples
for discrimination, investigation, collection, and counting of the stability evaluation indexes, and built
judgement samples of roadway surrounding rocks from the Daye iron deposit, as shown in Table 6.
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Table 6. Judgement samples of roadway surrounding rocks from the Daye iron mine.

Number of
Roadway

Rock Quality
Designation

(RQD)

Uniaxial
Compressive

Strength (Rc/MPa)

Integrity
Coefficient of

Rock Mass

Groundwater
Seepage/(L/(min·10 m)

Joint
Condition Grade

1 55 98 0.5 10 5 III
2 40 60 0.3 12 5 IV
3 20 20 0.3 12 3 V
4 96 135 0.8 9 9 I
5 50 100 0.5 10 6 III
6 42 63 0.5 10 3 III
7 100 150 0.7 10 8 I
8 78 125 0.6 10 5 II
9 30 80 0.6 20 6 IV

10 25 35 0.3 20 2 V

By incorporating the statistics of the indiscriminate samples in Table 5 into the concept lattice of
roadway surrounding rocks stability and the prediction model of the improved probabilistic neural
network, this paper reports the prediction result of laneway surrounding rock stability shown in
Figure 8 and the prediction accuracy rate for all prediction models shown in Table 7. The results show
that the accuracy rate of prediction is 90%, which is coincident with the actual engineering situation.
The accuracy rate of prediction result before index reduction is 80%, and that of non-improved
probabilistic neural network prediction model is 70%, and that of mean value method is 50%.
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Table 7. Statistics of prediction results of roadway surrounding rock stability.

Name of
Prediction

Model

Concept Lattice Reduction and
Symmetric Alpha Stable

Distribution Probability Neural
Network

Symmetric Alpha
Stable Distribution
Probability Neural

Network

Probabilistic
Neural Network

Mean Value
Method

Accuracy of
prediction

results
90% 80% 70% 50%

In summary, the prediction model of roadway surrounding rock stability, based on concept lattice
and improved probabilistic neural network, can better satisfy the practical requirements of engineering,
and provide a new method for the prediction of roadway surrounding rock stability.

6. Conclusions

(1) The proposed method uses five indexes: rock quality designation (RQD), uniaxial compressive
strength (Rc), the integrity coefficient of rock mass, groundwater seepage, and joint condition as
initial evaluation indexes, constructs a concept lattice according to training samples, generates a
corresponding Hasse diagram, then uses concept lattice reduction to reduce the initial evaluation
indexes. The reduced indexes are RQD, Rc, and groundwater seepage. By calculating correlation
coefficients between the evaluation indexes, we prove the effectiveness of reduction.

(2) Our method uses a symmetrical alpha stable distribution to replace the commonly used Gauss
distribution in the probabilistic neural network and optimize parameter α, γ of the alpha stable
distribution with a genetic algorithm, resulting in α and γ values of 0.2848 and 1.5963. This makes
the enhanced probabilistic neural network more adaptable and improves the accuracy rate of the
model prediction result.

(3) Taking the roadway of the Jianlinshan mining area in the Daye iron mine as an example, we
applied the prediction model for roadway surrounding rock stability based on the concept lattice
and improved probabilistic neural network. The accuracy rate was up to 90%, which is 20%
higher than the accuracy rate of the prediction model based on the original probabilistic neural
network. In other words, the proposed prediction model can meet the demands of practical
engineering and provides a new method for predicting the stability of roadway surrounding rock.
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