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Abstract: Systems with many equilibrium points have attracted considerable interest recently.
A chaotic system with a line equilibrium has been studied in this work. The system has infinite
equilibria and exhibits coexisting chaotic attractors. The system with an infinite number of equilibria
has been realized by an electronic circuit, which confirms the feasibility of the system. Based on such
a system, we have developed a new S-Box generation algorithm. With the developed algorithm,
two new S-Boxes are produced. Performance tests of S-Boxes are performed. The tests have shown
that proposed S-Boxes have good performance results.
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1. Introduction

Systems with chaotic behaviour have been discovered and studied for many years [1–4].
In general, there are countable equilibrium points in conventional chaotic systems [5]. By applying a
systematic examination, Sprott found 18 simple chaotic flows with one or two equilibrium points [6].
The well-known Lorenz system has one saddle and two unstable saddle-foci [1]. Similarly, other typical
chaotic systems with three equilibrium points are Chen system [7], Lü system [8], Yang systems [9,10]
and so on [11]. Dynamical analysis and electronic circuit design of a chaotic system with four
equilibrium points were reported in [12]. Dadras and Momeni proposed a chaotic system with
five equilibrium points [13]. Furthermore, a method to construct chaotic systems with any preassigned
number of equilibria was presented by Wang and Chen [14].

Recently, researchers have shown an increased interest in chaotic systems with an infinite
number of equilibrium points such as systems with a line equilibrium [15], systems with circular
equilibrium [16], or systems with square equilibrium [17], etc. It is noted that memristor-based systems
often have a line of equilibrium points [18]. It is interesting that Chen et al. have found nine discrete
chaotic systems with one-line equilibria and applied them for image encryption [19]. Chaotic systems
with infinite equilibria and their applications should be further investigated.

It is now well established from a variety of studies that chaos is useful for designing S-Box, which is
the vital nonlinear confusion part in encryption algorithms [20–23]. Nonlinear chaotic algorithm
for designing substitution-boxes was presented [24]. S-Box generation algorithms were designed
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with chaotic maps [20,25], the Lorenz system [21,26], or the chaotic scaled Zhongtang system [27].
Ozkaynak and Yavuz developed S-boxes using a time-delay chaotic system [28]. In addition,
a new eight-term chaotic system with two equilibrium points was introduced and employed in
a novel S-Box [23]. Creating S-Box structures based on chaotic systems with infinite equilibria is an
attractive topic. Previous research has established that S-Box is the only nonlinear part using in block
encryption algorithms. S-Box is considered as the most fundamental structure of block encryption
algorithms [29–32]. As a result, a well-designed S-Box structure makes the encryption resistant against
various attacks. The application of S-Boxes in cryptography is reported for wireless sensor network [33],
image encryption scheme [34], color image watermarking [35], and copyright protection [36].

The aim of this work is to study a chaotic system with an infinite number of equilibrium points
and its S-Box generating application. In Section 2, we introduce the system and its dynamics. Circuit
implementation of the system is presented and experiential results are reported in Section 3. In Section 4,
a new S-Box generation algorithm is proposed. Finally, Section 5 concludes our work.

2. Chaotic System with a Line Equilibrium

In this work, we consider the seven-term autonomous system in the following form:
ẋ = y,
ẏ = −ax− by + yz,
ż = −cxy− x2 + y2,

(1)

in which x, y, z are state variables. In system (1), a, b, c are three positive parameters (a, b, c > 0). It is
easy to verify that system (1) is invariant under the coordinate transformation:

(x, y, z)→ (−x,−y, z). (2)

We can find the equilibrium of system (1) by solving:

y = 0, (3)

− ax− by + yz = 0, (4)

− cxy− x2 + y2 = 0. (5)

Therefore, it is easy to see that system (1) has a line equilibrium:

E(0, 0, z). (6)

Interestingly, system (1) exhibits chaotic behavior for a = 1.5, b = 0.5, and c = 5 (see Figure 1).
Calculated Lyapunov exponents and corresponding Kaplan–Yorke dimension of the system with
infinite equilibria are L1 = 0.1406, L2 = 0, L3 = −1.3768, and DKY = 2.1021. In our simulations,
we have used the well-known Runge–Kutta 4th-order method [37] and Lyapunov exponents have
been obtained by applying the Wolf’s method [38].
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Figure 1. Phase portraits of the system with infinite equilibria in (a) x − y plane; (b) x − z plane;
and (c) y− z plane for a = 1.5, b = 0.5, c = 5, and initial conditions (x (0) , y (0) , z (0)) = (0.5, 1, 0.5).

We have changed the value of the parameter c to discover the dynamics of system (1).
Other parameters are kept as a = 1.5, b = 0.5 while the initial conditions are (x (0) , y (0) , z (0)) =
(0.5, 1, 0.5). The bifurcation diagram and corresponding maximum Lyapunov exponents of system (1)
are displayed in Figures 2 and 3. As can be seen in Figures 2 and 3, there are windows of periodic
dynamics and chaos. For c > 5.65, the system with infinite equilibria only displays limit cycles as
illustrated in Figure 4.

Figure 2. Bifurcation diagram of system with infinite equilibria (1) for a = 1.5, b = 0.5 and c ∈ [5, 6.5].
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Figure 3. Maximum Lyapunov exponents of system with infinite equilibria (1) when changing the
parameter c from 5 to 6.5.
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Figure 4. Limit cycles of the system with infinite equilibria for a = 1.5, b = 0.5, and initial conditions
(x (0) , y (0) , z (0)) = (0.5, 1, 0.5): (a) c = 5.95, and (b) c = 6.25.

Previous research has established that multistability is a desirable property of the nonlinear
system [39–42]. Coexistence of multiple attractors has been found in diffirent chaotic systems [43–45].
Interestingly, when changing the value of the parameter c, we have observed the presence of coexisting
attractors in system with infinite equilibria (1). For example, coexistence of chaotic attractors is
illustrated in Figure 5 for a = 1.5, b = 0.5, c = 5.5, and initial conditions (x (0) , y (0) , z (0)) =

(±0.5,±1, 0.5).
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Figure 5. Coexisting attractors of the system with infinite equilibria in: x− y plane (a,b), x− z plane
(c,d), and y− z plane (e,f) for a = 1.5, b = 0.5, c = 5.5, and initial conditions (x (0) , y (0) , z (0)) =

(±0.5,±1, 0.5).

3. Circuit Realization of the Chaotic System

In this section, we present briefly the electronic realization of the chaotic system with infinite
equilibria. The schematic of the circuit is designed with common electronic component as shown
in Figure 6. The circuit includes nine resistors, three capacitors, four operational amplifiers and
four multipliers. It is noted that the circuit is based on operational amplifiers [46,47], which are
configured as integrator amplifiers and an inverting amplifier. The circuit is powered by +15 V and
−15 V. In order to realize the system for parameters a = 1.5, b = 0.5, and c = 5, we have selected
R1 = 400 kΩ, R2 = 266 kΩ, R3 = 800 kΩ, R4 = R8 = R9 = 40 kΩ, R5 = R6 = 100 kΩ, R7 = 8 kΩ
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and C1 = C2 = C3 = 1 nF. As denoted in Figure 6, the voltages over three capacitors are X, Y, and Z,
which correspond to three state variables x, y and z.

The chaotic system with infinite equilibria was implemented on an electronic card as illustrated in
Figure 7. The oscilloscope phase portrait results are shown in Figure 8. The agreement of the theoretical
results (Figure 1) and obtained experimental results (Figure 8) verifies the feasibility of the system with
infinite equilibria.

Figure 6. The circuit schematic of the chaotic system with infinite equilibria, which is designed by
using common electronic components.

(a)

(b)

Figure 7. The implemented circuit of the chaotic system with infinite equilibria: (a) the measurement
of the circuit by using the oscilloscope, (b) the electronic card.
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(a)

(b) (c)

Figure 8. Measured phase portraits of the real circuit in (a) X−Y plane, (b) X−Z plane, and (c) Y−Z plane.

4. S-Box Generation Algorithm and Its Performance Analysis

Chaotic systems are widely used in cryptographic studies because of their high randomness,
rich dynamical properties and high sensitivity to initial conditions [48–55]. S-Box is one of the most
main structures used in block cipher algorithms [56]. S-Box structures with strong cryptographic
features make cryptography very resistant to attack. In the literature, there are studies using different
methods for S-Box production [21,23,24,26,27,57]. S-Box structures are one of the most important
components used in encryption algorithms. S-Box operations provide confusion as a nonlinear
component in encryption algorithms and thus a powerful S-Box structure with good performance
values is very important for strong encryption. The sub-byte operation is performed by using S-Box.
In this study, high random number generation capabilities of the chaotic system are used in the
design of S-Box algorithm. In this way, S-Boxes are produced with higher performance characteristics.
The advantage of the proposed method provided is that the S-Box structures are obtained with less
processing load. Numerous S-Boxes can be produced using different initial values and parameters.
As a result of performance tests, it is shown that S-Boxes with high performance characteristics will be
used in cryptographic operations for secure communication. S-Box structures are used in different
applications for secure communication systems, such as personal area communication, wireless sensor
network and medical device connectivity. The S-Box can be used as a component or key expansion
operations in encryption algorithms. In addition, S-Box structures are frequently used in text, image,
video encryption and embedded system applications.

In this section, a new S-Box generation algorithm is presented with a light processing load using
the introduced chaotic system with infinite equilibria. Performance tests are performed on the S-Boxes
generated by the S-Box algorithm. The performance evaluation of the generated S-Boxes is made by
comparing with the reported S-Boxes in the literature. Algorithm 1 shows the pseudo code of the
S-Box generation algorithm.

Following the entry of the initial conditions and system parameters of the chaotic system in the
S-Box generation algorithm, the appropriate sampling step is determined and the chaotic system is
solved by the RK-4 numerical analysis method. The float values are obtained by solving the chaotic
system. Until the 256 unique values required for the S-Box are generated, the system continues to
generate values. By applying rem and f ix operations on the float numbers obtained from the chaotic
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system, the value in the first three digits of the generated float value is obtained after the comma.
The obtained values are maintained in the 0–255 range by applying mod 256 operation. The values
(first three digits after the comma) obtained from the x and z phases are subjected to bitxor processing
to obtain a new decimal value (decnum). If the new decimal value is already generated in the S-Box,
this value is discarded. If it is not in the S-Box, it is added to the S-Box. In this way, a unique
256 value generation is provided in the range of 0–255. The generated 256-element S-Box is converted
into 16 × 16 matrix and S-Box performance tests are applied. In the pseudo code in Algorithm 1,
the generation is given to be performed over the x and z phases. In practice, however, the generation
of S-Box is carried out using different surpluses and tests are carried out. Two S-Boxes with good test
results are proposed and performance test results are given in our work.

Algorithm 1 S-Box generator algorithm pseudo code

1: Start
2: i = 1; sbox = [];
3: Entering system parameters→ (a = 1.5, b = 0.5, c = 5)
4: Entering initial condition→ (x0 = 0.5, y0 = 1, z0 = 0.5)
5: Determination of the appropriate value of ∆h(0.05)
6: Solving the chaotic system using RK-4 algorithm and obtaining time series
7: while (i < 257) do
8: x = mod( f ix(rem(ys(1), 1) ∗ 103), 256);
9: z = mod( f ix(rem(ys(3), 1) ∗ 103), 256);

10: decnum = bitxor(x, z)
11: if (Is there decnum in S-Box = yes) then
12: Go step 7.
13: else {Is there decnum in S-Box = no}
14: sbox[i]← decnum
15: i++;
16: end if
17: end while
18: sbox← reshape(sbox,16,16)
19: Implementation of S-Box Performance Tests
20: Ready to use 16*16 chaos based S-Box
21: End

Tables 1 and 2 show S-Boxes generated by the S-Box algorithm. The S-Box 1 presented in Table 1
is generated using the y and z phases of the chaotic system. The production of S-Box 2 presented
in Table 2, x and z phases are preferred. Analysis of Nonlinearity, Strict avalanche criterion (SAC),
Output bits independence criterion (BIC), Differential Approximation Probability (DP) and Linear
Approximation Probability (LP) analyses are performed on the proposed S-Boxes. The performance test
results are summarized in Table 3. In addition to the proposed S-Box performance results, the results
of some S-Box studies in the literature are also given in Table 3.

Nonlinearity [58] is one of the most important criteria within the S-Box evaluation criteria. It is
found that the nonlinearity values of the proposed S-Box 1 are 106, 104, 104, 104, 106, 108, 110 and 108
while the nonlinearity values of the proposed S-Box 2 are 108, 106, 106, 106, 106, 106, 108, and 108.
As can be seen from Table 3, the proposed S-Box 1 nonlinearity max, min, avg values are 110, 104 and
106, respectively. The nonlinearity max, min and avg values are 108, 106 and 106, respectively. The AES
S-Box nonlinearity value has the best value in the literature. Other studies in the literature are
attempting to produce S-Boxes with equal or better nonlinearity values. When the performance test
results in Table 3 are compared, it is seen that proposed S-Boxes have the best max, avg and min values
after the AES S-Box.

One of the tests used in the performance evaluation of S-Boxes is the independence of output bits
method developed by Webster and Tavares [59]. In this method, S-Box is evaluated on two criteria.
The BIC-SAC value refers to the relationship between the independence of the output bits and the
Strict avalanche criterion. BIC-Nonlinearity examines the relation between the independence of output
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bits and nonlinearity. BIC-SAC and BIC-Nonlinearity values of the proposed S-Boxes in Table 3 are
given. When these values and the values of the S-Boxes in the literature are examined, it is seen that
the proposed S-Boxes have a good BIC-SAC value and have a BIC-Nonlinearity value lower than the
AES BIC-Nonlinearity value but better than the other studies in the literature.

Table 1. The proposed S-Box 1.

21 77 79 5 165 241 6 12 102 144 168 192 250 11 49 195
206 252 101 249 94 98 108 3 29 219 64 172 119 46 65 126
142 13 178 90 236 17 132 55 137 200 162 143 85 0 140 243
141 222 234 23 4 193 148 247 155 58 44 122 92 158 50 82
182 36 204 128 20 254 89 60 1 242 106 181 110 80 93 56
133 91 199 183 248 42 138 226 48 7 166 244 120 146 107 188
41 33 57 116 87 218 170 197 220 53 111 210 246 184 39 156
61 185 202 18 201 164 117 123 47 190 203 24 171 253 157 169
14 72 112 27 51 186 95 177 212 43 66 115 229 35 233 124

153 232 180 54 104 215 69 129 78 81 163 84 209 75 38 31
176 149 88 231 139 96 240 151 239 22 37 59 174 161 154 71
205 230 225 73 34 16 237 223 109 245 191 74 9 113 211 134
52 114 125 130 99 68 238 224 70 159 62 76 136 235 179 28

187 217 25 118 127 67 150 10 86 97 160 32 173 167 100 194
207 255 228 45 214 40 198 216 145 131 251 63 19 213 227 121
147 8 152 196 135 83 30 208 189 175 26 103 2 105 221 15

Table 2. The proposed S-Box 2.

205 187 157 107 37 195 184 145 185 21 130 124 179 245 127 19
32 87 198 101 192 221 230 213 186 25 140 136 247 39 9 78

223 235 222 167 16 220 73 11 80 163 243 225 14 108 202 88
215 147 59 242 97 214 188 91 119 36 233 234 67 224 20 219
81 46 229 174 134 63 146 23 74 105 95 106 44 138 102 208
61 173 8 103 0 150 197 27 51 47 241 57 131 111 182 249

110 210 104 69 28 169 118 191 5 209 52 48 199 55 64 77
17 116 253 168 113 6 181 13 236 82 149 133 75 109 252 246

159 54 84 72 139 160 164 170 100 62 10 2 1 172 141 177
175 24 231 201 123 94 121 49 176 151 68 115 35 156 42 60
31 137 165 248 120 154 40 206 161 86 228 189 34 144 171 142

240 132 180 255 238 129 200 53 71 212 155 83 226 50 7 29
90 126 4 207 58 89 183 158 18 148 128 96 244 227 153 203
93 3 38 218 196 99 162 143 250 135 217 15 232 66 166 204

194 254 178 43 56 41 152 251 117 33 45 92 193 76 190 85
65 70 26 125 22 98 12 114 112 211 122 30 216 79 239 237

Strict avalanche criteria (SAC) is a performance criterion developed by Webster and Tavares [59].
In this test, when only one of the input bits changes, the probability of each half of the output bits
changing is calculated. The optimum value for this test is 0.5. The min, max and avg SAC values of the
proposed S-Boxes in Table 3 are shown. It has been determined that the SAC values of the proposed
S-Boxes and presented in the literature are close to the optimum value and satisfy the SAC criterion.

Differential Approximation Probability (DP) developed by Biham and Shamir [60] investigates
the exclusive or (XOR) distribution between the input and output bits of the S-Box. The approximation
of the distribution between input and output bits indicates that the S-Box is strong against differential
cryptanalysis. DP values of the proposed S-Boxes and some S-Boxes in the literature are given in
Table 3. According to these values, the AES S-Box DP value has the best value. The DP value of the
proposed S-Boxes seems to be better than most studies in the literature.

Linear Approximation Probability (LP) [61] is another criterion used to measure the linear
cryptanalysis resistance of the S-Box. When the LP values in Table 3 are examined, the LP value
of the proposed S-Box 1 and S-Box 2 is found as 0.132. It is seen that the LP value of the proposed
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S-Boxes has a good value in the literature studies after the AES and Skipjack [62] algorithm S-Boxes.
As a result, when all the performance test results in Table 3 are evaluated, it has been found that
S-Boxes generated by the developed S-Box algorithm produce better results in many criteria compared
to the literature. According to the test results, it has been shown that the proposed S-Boxes can be used
for cryptographic application.

Table 3. The comparison table of S-Box.

S-Box
Nonlinearity

BIC-SAC BIC-Nonlinearity
SAC

DP LP
Min Avg Max Min Avg Max

Proposed S-Box 1 104 106 110 0.5014 104.214 0.4375 0.5197 0.625 10 0.132
Proposed S-Box 2 106 106 108 0.5023 104.5 0.4218 0.5061 0.6406 10 0.132

[21] 95 102 107 0.5011 100.28 0.3906 0.5034 0.6250 12 0.136
[57] 98 104 108 0.5048 102.857 0.2812 0.4953 0.6093 12 0.140
[24] 102 104 108 0.5021 104.071 0.3906 0.5056 0.5937 12 0.125
[26] 100 103 106 0.5009 103.714 0.4218 0.5048 0.5937 10 0.125
[23] 104 106 108 0.49763 103.857 0.3906 0.5063 0.5937 12 0.164
[62] 104 105.7 108 0.4994 104.1 0.3986 0.5032 0.5938 12 0.109
[56] 112 112 112 0.5046 112 0.4531 0.5048 0.5625 4 0.062

5. Conclusions

A chaotic system with an infinite number of equilibrium points has been investigated in this
work. Dynamics of the system have been discovered by using numerical simulations and circuital
experiments. The system with infinite equilibrium displays attractive behaviour such as chaos and
multistability. By using such a system, we have presented a new S-Box algorithm and proposed two
S-Boxes. Different tests have been implemented to confirm the good performance of two S-Boxes,
which are appropriate to cryptographic applications. The comparison of the proposed S-Boxes with
some studies in the literature is presented. As a result of the comparison in the literature, it has been
shown that the proposed S-Boxes have the best max, min and avg nonlinearity values after the AES
algorithm and have good values in other criteria. We will apply such S-Boxes to develop a secure
communication system for medical devices in our future works. In addition, constructing the fuzzy
controller to stabilize the chaotic behavior of the system will be studied.
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23. Çavuşoğlu, Ü.; Kaçar, S.; Pehlivan, I.; Zengin, A. Secure image encryption algorithm design using a novel

chaos based S-Box. Chaos Solit. Fract. 2017, 95, 92–101. [CrossRef]
24. Hussain, I.; Shah, T.; Gondal, M.A. A novel approach for designing substitution-boxes based on nonlinear

chaotic algorithm. Nonlinear Dyn. 2012, 70, 1791–1794. [CrossRef]
25. Tang, G.; Liao, X.; Chen, Y. A novel method for designing S-boxes based on chaotic maps. Chaos Solit. Fract.

2005, 23, 413–419. [CrossRef]
26. Özkaynak, F.; Özer, A.B. A method for designing strong S-Boxes based on chaotic Lorenz system. Phys. Lett. A

2010, 374, 3733–3738. [CrossRef]
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