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Abstract: Among a wide variety of inorganic nanotubes, imogolite nanotubes (INTs) represent
a model of nanoplatforms with an untapped potential for advanced technological applications.
Easily synthesized by sol-gel methods, these nanotubes are directly obtained with a monodisperse
pore size. Coupled with the possibility to adjust their surface properties by using straightforward
functionalization processes, INTs form a unique class of diameter-controlled nanotubes with
functional interfaces. The purpose of this review is to provide the reader with an overview of
the synthesis and functionalization of INTs. The properties of INTs will be stated afterwards into
perspective with the recent development on their applications, in particular for polymer/INTs
nanocomposites, molecular confinement or catalysis.
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1. Introduction

Hollow cylinders with a diameter ranging between 1 and 100 nm, so-called nanotubes, are carving
out prime positions in nanoscience and nanotechnology. Research into these systems started with
Iijima’s 1991 seminal article on multi-walled carbon nanotubes (MWCNT) [1]. This was followed by
the synthesis in 1993 of single walled carbon nanotubes (SWCNT) of truly nanometric diameters [2,3].
In the meantime, large efforts have been devoted to the study of boron-nitride nanotubes [4] and many
different inorganic nanotubes [5–9]. Their physicochemical properties are recognized to be appealing
for next-generation devices that could outperform current technologies for nanoelectronics [10],
nanofluidics [11], selective molecular sieving [12], energy conversion [13,14], catalytic nanoreactors [15]
and carriers for the sustained release of active molecules [16–18], to highlight a few. However, most of
these applications require controlling at the nanometer scale, the nanotube dimensions (pore size and
length), their interface properties as well as their organization, by using straightforward approaches if
possible. In this context, having the possibility to synthesize nanotubular structures with desired size
and interfaces would be a major step forward in exploring physical concepts in a controlled manner.

Among the wide variety of inorganic nanotubes, imogolite nanotubes (INTs) can boast having
these unique and versatile properties. Belonging to clay minerals, these aluminosilicate minerals
consist of a curved octahedral [Al(OH)3] layer on which isolated [SiO3(OH)] tetrahedron units are
connected upright to the octahedral vacancy via covalent bonding between three mutual oxygen atoms
(Figure 1). INT structure can hence be described as a three-dimensional (OH)3Al2O3Si(OH) elementary
unit arranged in a hexagonal lattice [19]. It is worth noting that imogolite structure is very different
from the one of halloysite, another clay nanotube ubiquitous in soils and weathered rocks, where the
curved octahedral [Al(OH)3] layer forms the internal surface of the nanotubes whereas the external
surface is composed of Si-O-Si groups [7]. These differences are certainly at the root of the unique
properties of imogolite nanotubes.
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Figure 1. Structure of a single-walled imogolite nanotube and detail of the arrangement of tetrahedron 
units on the octahedral vacancies. Color code: aluminum (blue); silicon (yellow); oxygen (red); 
hydrogen (white). 

With inner diameters in the nanometer range (1–3 nm), INTs represent one of the most 
promising inorganic analogs of SWCNTs. Naturally formed from weathered volcanic glass either on 
Earth [20] or Mars [21], INTs can also be synthesized easily by using low-temperature sol-gel methods 
[22]. The advantage of INTs originates from a well-defined minimum in the strain energy of the 
structure [23–27], allowing the production of samples with monodisperse diameter [28,29] and 
chirality [30], contrarily to other nanotubes where the strain energy decreases monotonically with 
increasing diameters [31,32]. Coupled with the possibility to adjust either their morphology (single 
(SW) vs. double-walled (DW) structures, aspect ratio) and surface properties by changing only the 
nature of the precursors, the synthesis of INT thus offers a convenient and simple way to obtain 
diameter-controlled nanotubes with functional interfaces. Therefore, they started to be applied in a 
wide range of potential applications. 

Through studies conducted over the last two decades, this review aims to demonstrate how the 
imogolite nanotubes represent a promising candidate for up-to-date nanotechnological applications. 
We will first focus here on the recent developments for INT synthesis and their unique properties, 
particularly in terms of morphological control and surface functionalization. The interested reader is 
referred to [33,34] for recent reviews on the formation mechanisms, structure and properties of 
nanotubular clay minerals (imogolite and halloysite). The unique features of INTs will then be 
illustrated through recent applications and future prospects. 
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in 1977 [22]. It consists of the co-precipitation under vigorous stirring of Al and Si precursors. This 
solution is adjusted to pH 5 with the addition of NaOH, and then immediately re-acidified to pH 4.5 
with a mixture of HCl and acetic acid (Figure 2). Finally, the solution is aged upon heating under 
reflux or in autoclave. Since then, several improvements have been proposed in the literature by 
changing either the nature of the precursors, their initial concentration, their ratio (e.g., the hydrolysis 
ratio R = [OH]/[Al]) or the reaction pathway [35–41]. Among them, Denaix et al. obtained similar 
INTs as those reported previously, but without performing the acidification stage [38]. In that case, 
the hydrolysis step was directly controlled initially by adjusting the amount of NaOH added 
(typically R = 2, Figure 2). Most of the current studies dealing with INTs use one of the two protocols 

Figure 1. Structure of a single-walled imogolite nanotube and detail of the arrangement of tetrahedron
units on the octahedral vacancies. Color code: aluminum (blue); silicon (yellow); oxygen (red);
hydrogen (white).

With inner diameters in the nanometer range (1–3 nm), INTs represent one of the most
promising inorganic analogs of SWCNTs. Naturally formed from weathered volcanic glass either
on Earth [20] or Mars [21], INTs can also be synthesized easily by using low-temperature sol-gel
methods [22]. The advantage of INTs originates from a well-defined minimum in the strain energy
of the structure [23–27], allowing the production of samples with monodisperse diameter [28,29] and
chirality [30], contrarily to other nanotubes where the strain energy decreases monotonically with
increasing diameters [31,32]. Coupled with the possibility to adjust either their morphology (single
(SW) vs. double-walled (DW) structures, aspect ratio) and surface properties by changing only the
nature of the precursors, the synthesis of INT thus offers a convenient and simple way to obtain
diameter-controlled nanotubes with functional interfaces. Therefore, they started to be applied in a
wide range of potential applications.

Through studies conducted over the last two decades, this review aims to demonstrate how the
imogolite nanotubes represent a promising candidate for up-to-date nanotechnological applications.
We will first focus here on the recent developments for INT synthesis and their unique properties,
particularly in terms of morphological control and surface functionalization. The interested reader
is referred to [33,34] for recent reviews on the formation mechanisms, structure and properties
of nanotubular clay minerals (imogolite and halloysite). The unique features of INTs will then be
illustrated through recent applications and future prospects.

2. Imogolite Synthesis

2.1. Synthesis Routes for Aluminosilicate INTs

The synthesis of single-walled imogolite nanotubes (SWINT) was first reported by Farmer et
al. in 1977 [22]. It consists of the co-precipitation under vigorous stirring of Al and Si precursors.
This solution is adjusted to pH 5 with the addition of NaOH, and then immediately re-acidified to
pH 4.5 with a mixture of HCl and acetic acid (Figure 2). Finally, the solution is aged upon heating
under reflux or in autoclave. Since then, several improvements have been proposed in the literature by
changing either the nature of the precursors, their initial concentration, their ratio (e.g., the hydrolysis
ratio R = [OH]/[Al]) or the reaction pathway [35–41]. Among them, Denaix et al. obtained similar
INTs as those reported previously, but without performing the acidification stage [38]. In that case,
the hydrolysis step was directly controlled initially by adjusting the amount of NaOH added (typically
R = 2, Figure 2). Most of the current studies dealing with INTs use one of the two protocols presented
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in Figure 2, with minor variations more or less. For instance, the [Al]/[Si] ratio is set between 1.5 and
2, a slight excess of Si precursor preventing the formation of aluminum hydroxides such as gibbsite
and boehmite [36]. A “seeding” approach has also been explored by adding a certain amount of a
processed synthetic imogolite sol in a solution of Al and Si precursors [42,43]. Although it avoids
the pH adjustment step and allows the imogolite formation after heating the mixture for 2 days, this
synthesis route remained quite confidential and has not yet been explored in detail.
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2.2. The Selection of Precursors 

The sources of Al and Si precursors have also been varied. INT synthesis are commonly 
performed with Al(ClO4)3, AlCl3 and Al alkoxide (ASB: aluminum tri-sec-butoxide), Al(NO3)3 salt 
being less employed, while the silicon precursor is most often Si(OH)4 or an alkoxide (TEOS: 
tetraethoxysilane) [40]. However, regardless of the nature of the Al and Si precursors used, the 
synthetic imogolite nanotubes are always identical with inner and outer diameters of 1 and 2.5 nm, 
respectively. Conversely, Yucelen et al. suggested that the nature of the protic acid used (HCl, HClO4 
or CH3COOH) may control the relationship between the INT precursor’s shape, formed in the early 
stage of the synthesis (also referred as “proto-imogolite”), and the resulting nanotube shapes [44]. 
More recently, Arancibia-Miranda et al. evidenced that replacing NaOH with KOH strongly impacts 
the morphology of the nanotubes in addition to producing a large amount of disordered structures 
[45]. INT diameter slightly increases by less than 20% while their average length becomes shorter, 
suggesting that the nature of the counter ions affects the hydrolysis of Al and Si precursors [46,47]. 

2.3. Effects of Ge Substitution 

One of the most blatant examples of progress in INT synthesis arises from the isomorphic 
substitution of silicon by germanium [48,49]. Beyond a twofold increase in external diameter, 
replacing TEOS with a Ge alkoxide (e.g., TEOG: tetraethoxygermane) enables producing concentrated 
(molar) suspensions of Ge-imogolite analogues [50], an important key step towards large scale 
applications. Maillet et al. observed that the initial concentration of aluminum salt (CAl) controlled 
the resulting nanotube shape, producing either double-walled (Ge-DWINT, CAl < 0.4 mol·L−1) or 
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2.2. The Selection of Precursors

The sources of Al and Si precursors have also been varied. INT synthesis are commonly
performed with Al(ClO4)3, AlCl3 and Al alkoxide (ASB: aluminum tri-sec-butoxide), Al(NO3)3

salt being less employed, while the silicon precursor is most often Si(OH)4 or an alkoxide (TEOS:
tetraethoxysilane) [40]. However, regardless of the nature of the Al and Si precursors used, the synthetic
imogolite nanotubes are always identical with inner and outer diameters of 1 and 2.5 nm, respectively.
Conversely, Yucelen et al. suggested that the nature of the protic acid used (HCl, HClO4 or CH3COOH)
may control the relationship between the INT precursor’s shape, formed in the early stage of the
synthesis (also referred as “proto-imogolite”), and the resulting nanotube shapes [44]. More recently,
Arancibia-Miranda et al. evidenced that replacing NaOH with KOH strongly impacts the morphology
of the nanotubes in addition to producing a large amount of disordered structures [45]. INT diameter
slightly increases by less than 20% while their average length becomes shorter, suggesting that the
nature of the counter ions affects the hydrolysis of Al and Si precursors [46,47].

2.3. Effects of Ge Substitution

One of the most blatant examples of progress in INT synthesis arises from the isomorphic
substitution of silicon by germanium [48,49]. Beyond a twofold increase in external diameter, replacing
TEOS with a Ge alkoxide (e.g., TEOG: tetraethoxygermane) enables producing concentrated (molar)
suspensions of Ge-imogolite analogues [50], an important key step towards large scale applications.
Maillet et al. observed that the initial concentration of aluminum salt (CAl) controlled the resulting
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nanotube shape, producing either double-walled (Ge-DWINT, CAl < 0.4 mol·L−1) or single-walled
nanotubes (Ge-SWINT, CAl > 0.75 mol·L−1) [51]. The mechanism involved seems to be a subtle
balance between attractive and curvature energies during the early stage of the synthesis [51,52]. More
interestingly, the energy minimum in the strain energy depends on the substitution ratio [Si]/([Si] +
[Ge]) and allows us to predict the INT diameters with respect to the initial synthesis conditions [53,54].
In contrast to Si-INTs, Ge-analogues form short nanotubes with a reduced length (<100 nm) [29,49,54].
On the other hand, Amara et al. demonstrated that micron-long Ge-INTs can be synthesized by using
the thermal decomposition of urea (CO(NH2)2) to produce hydroxyl ions instead of the slow injection
of NaOH [55]. Hence, the synthesis of (OH)3Al2O3SixGe1−x(OH) INT provides us with a unique
system of 1D nanostructures with monodisperse sizes and changeable aspect ratio (Figure 3).
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3. Surface Properties and Modifications

3.1. Colloidal Behavior

The structure of INTs with inner and outer hydroxyl groups makes them excellent candidates for
colloidal dispersions. Gustafsson moved forward with a unique intrinsic polarization, the isolated
–SiOH groups on the inner cavity developing a negative charge, whereas the –AlOHAl groups along the
external tube walls bear a weak positive charge [56]. This model has been subsequently corroborated
by numerical simulations [24], showing no dependence on the substitution ratio [Si]/([Si] + [Ge]) [25].
Thanks to the surface charge, INTs are easily dispersed in polar solvents to form stable colloidal
suspensions [57,58]. Furthermore, the possibility to varying both nanotube aspect ratio (through
the synthesis conditions) and electrostatic interactions (pH, ionic strength, . . . ) allows controlling,
directly in aqueous phase, the self-organization of imogolite nanotubes from a liquid sol to arrested
phases [59–61], making such nanotubes suitable for a wide range of solution processes. Similarly,
it is also possible to control the nanotube arrangement in the solid state during the drying process.
For instance, powders of Ge-SWINT tend to form large bundles on a 2D hexagonal lattice if they are
processed from suspensions prepared at an ionic strength higher than ~10−3 mol·L−1 [61]. Interestingly,
this kind of organization also induces significant radial deformations of the cross section, INTs having
a regular hexagonal shape instead of a cylindrical one [62]. Another unique feature of INTs is the high
surface density of hydroxyl groups (~18 OH/nm2), considering the atomic structure reported in [19],
which offers multiple binding environments and renders the surface very hydrophilic with high water
retention capacity [63–65]. INTs were recognized as good adsorbents very early on, especially in
environmental contexts where they interact strongly with ions [38,66–70].

Despite these benefits, the presence of water inside INTs might hinder or block the diffusion
of other interest molecules (CO2, CH4, . . . ). Similarly, in the field of nanocomposites, the effective
dispersion of nanoparticles must be achieved only by modifying their surface to make it compatible
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with the organic matrix. Hence, significant efforts have been undertaken in order to make INTs suitable
with the intended applications.

3.2. Modification of the Inner Cavity

Two strategies have been applied for the inner modification of hydrophilic imogolite nanotubes,
namely (i) post-synthesis or (ii) direct synthesis chemical procedures. The list of the different coupling
agents is summarized in Table 1.

Table 1. Coupling agents used for inner modification (tetrahedral sites) of imogolite nanotubes (INT).

Compound Acronym Strategy a INT Refs.

(3-aminopropyl)triethoxysilane APTES post. Si [71]

(aminomethyl)triethoxysilane AMTES direct Si [72]

Methyltrimethoxysilane MTMS
post. Si [73]
direct Si [74]

Methyltriethoxysilane MTES direct Si [30,74–78]

Trichlorosilane TCIS post. Si [73]

Acethyl chloride AcCl post. Si [73]

Methyltriethoxygermane MTEG direct Ge [30,77]
a Post: post-functionalization; direct: direct synthesis route.

Johnson & Pinnavaia were the first to report the functionalization of imogolite nanotubes
in an attempt to obtain organosilane derivatives of INTs for their intercalation as pillaring
agents with montmorillonites [71]. Silanyzation reactions are carried out in aqueous solutions.
Post-functionalization has also been completed after a perfect dehydration of the hydrophilic INT
samples in presence with different silane agents (MTMS, TCIS, AcCl) [73]. However, in both cases,
the degree of inner surface substitution was lower than 35%.

A more convenient way is the direct, template-free synthesis of imogolite nanotubes with the
desired functional moieties by simply replacing the initial alkoxide (prefiguring the tetrahedral layer)
by a functionalized one. Bonelli’s group was the first to succeed in synthesizing methyl-modified
Si-SWINT by using methyltriethoxysilane (MTES) [75,76], a method that is still the most widely used
currently [30,74,77,78]. In a similar manner, Kang et al. reported a single-step approach to synthesize
hybrid Si-SWINT with a 15% aminomethyl group substitution on the inner cavity, via the design of
a specific organosilane precursor (Figure 4a) [72]. In both cases (–CH3 and –CH2NH2), the chemical
modification leads to a large enhancement in molecular adsorption selectivity.

It is worth noting that all these studies concern only Si-based imogolite nanotubes. As stated
before, the diameter of INT increases continuously with the substitution of Si by Ge [53,54]. Similar
behavior could therefore be expected in the case of methyl-modified INTs by using a mixture of MTES
and MTEG (methyltriethoxygermane). Such an assumption has been confirmed by Amara et al. [77].
It was shown by X-ray scattering measurements (XRS) that the continuous methylation of INTs can be
obtained from Si to Ge endmembers (Figure 4b), but most importantly that the inner diameter size
increases progressively (1.8–2.5 nm). In addition, Monet et al. recently revealed that methylation of the
inner cavity not only offers control over the surface properties, but it also leads to a drastic structural
change of the chiral vector of the nanotube, with the armchair configuration being energetically favored
over the zigzag structuring [30].
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Figure 4. (a) Direct synthesis of hybrid imogolite nanotubes with functionalized alkoxides
M-R(OC2H5)3 with M = Si, Ge and R = –CH3, –CH2NH2. (b) X-ray scattering (XRS) diagrams obtained
on methyl-functionalized single-walled (OH)3Al2O3SixGe1−x(CH3) at different substitution ratio x
= [Si]/([Si] + [Ge]). XRS diagrams shift progressively upon substitution of Si by Ge, indicating an
increase of the nanotube diameter. Adapted with permissions from [72,77].

3.3. Modification of the Outer Surface of Imogolite

Modification of the external surface of imogolite has been strongly explored, mainly to render
them compatible with another phase. As with the chemical modification of the INT inner cavity,
the large density of hydroxyl groups offers a wide range of possibility for surface anchoring and
numerous chemical pathways have been proposed with varying degrees of success (Table 2).

Table 2. Main functionalization routes of the outer wall of imogolite nanotube (INT).

Functional Group Compound Acronym INT Refs.

Silane
(3-aminopropyl)triethoxysilane APTES Si [71,76,79,80]
(3-chloropropyl)triethoxysilane CTES Si [81]

(3-mercaptopropyl)trimethoxysilane MPTMS Si [82]

Phosphonate

Octadecylphosphonic acid ODPA Si
Ge

[83–87]
[88]

Tetradecylphosphonic acid TDPA Si [85]
Vinylphosphonic acid VPA Si [86]

Dodecylphosphate DDPO4 Si [89]
2-Acidphosphoxyethyl methacrylate P-HEMA Si [90]

Terthiophenes derivatives HT3P HT3OP Si [91]
8-(2-bromo-2-methylpropanoyloxy)octylphosphate BMPOPO4 Si [92]

Carboxylate Stearic acid SA Si [84]
Dicarboxylic acid DA Si [93,94]

Sulfonate Poly[disodium 2,5-bis(3-sulfonatopropoxy)-
1,4-phenylene-alt-1,4-phenylene) WS-PPP Si [95]

Others

4-(hydroxyethylthioacetyl)catechol HETAC Si [96]
Benzaldehyde BA Si [97]
Polypyrrole a ppy Si [98,99]

γ-ray irradiation (peroxides) - Si [100,101]

Isomorphic substitution (Al→ Fe) Fe-INT Si
Ge

[102–106]
[107]

a Grafted by chemical vapor deposition (CVD).

The first attempt was performed by Johnson and Pinnavaia via silanization of Si-SWINT with
APTES [71,79]. Zanzottera et al. evidenced a selective functionalization of APTES towards only the
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outer surface of the nanotubes by employing INTs with a methyl-modified inner cavity, while the silane
anchoring groups remain unreactive with the Si-CH3 entities [76]. However, APTES moieties remain
hydrolytically labile and are totally removed after several days of dialysis [71,79]. Such behavior may
explain why the reusability of APTES-OsO4 complex grafted on Si-SWINT is severely degraded after
their first use [80]. In contrast, the use of other silanes does not seem to induce such drawbacks [81,82].

The most common way to modify a metal oxide surface is likely by using phosphonates, sulfonates
and carboxylates derivatives [108]. Takahara’s group was one of the first to modify the external surface
of an INT with different alkyl phosphonic acids (Table 2) [83–85,89,90]. As a proof-of-concept, such
functionalized INTs are easily dispersed into hydrophobic solvents (Figure 5a) [83,86,88,90], display
weaker adhesion forces [83,84], present self-organization behaviors either at the air/water [85] or
water/oil interfaces [87] as well as higher static contact angle than unmodified nanotubes [89] and may
display enhanced conductivity [91]. Since then, more complex approaches have been implemented,
in particular to realize a surface-initiated polymerization of methyl methacrylate (MMA), the initiator
of the polymerization process being specifically designed with a phosphate group (Figure 5b) [92].
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Similar to phosphonates, the carboxylates and sulfonates moieties are reported to strongly interact
with the –Al-OH groups of INTs [84], resulting in homogeneous hydrogels exhibiting thixotropic
behavior [93], hierarchical ordering [94] and modified optical properties [95]. Grafting of other
functional groups have also been reported, using chemisorption [96,97], chemical vapor deposition
(CVD) [98,99], or γ-ray irradiation, the latter being used to generate peroxide groups for subsequent
monomer polymerization) [100,101].

4. Applications

It is well recognized that imogolite nanotubes remain insulating materials with large band
gaps. To tackle this issue, structural modification of the outer wall has also been conducted this
time by isomorphic substitution of Al3+ by Fe3+ [102–107]. The effect of Fe incorporation acts as
specific coordination centers for organic moieties and leads to higher adsorption efficiency [104,105],
while altering the electronic properties of the nanotubes even for low substitution rates [109]. Other
isomorphic substitutions have been explored, on the theoretical background, by replacing both Al and
Si atoms by elements of groups III (Ga, In) & IV (C, Ge, Sn) respectively [110], or by substituting the
inner tetrahedrons by phosphorous and arsenic derivatives [111].
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The purpose of this section is to provide the reader with a concise but comprehensive overview
of the applications that have been explored for this class of nanotubular clay minerals. Because of its
unique structure with well-defined porosity and interfaces, INTs were first recognized as a molecular
sieving material. A large number of studies have been devoted to gas adsorption of neutral and reactive
molecules. Molecules interact mainly with the inner silanol (germanol) sites, which are accessible only
after careful pretreatment to remove confined water [112]. The tetrahedral sites present interesting
acidic properties, which enhance interactions with adsorbed molecules such as NH3, benzene, CO,
CO2 and CH4 (Figure 6a) [43,64,72,75,112–116]. Recent results show that modification of the inner
surface of INTs results in dramatically enhanced CO2/CH4 and CO2/N2 selectivity [72,75,113]. Several
works also demonstrate that hybrid INTs, dispersed in a liquid medium, spontaneously confine inside
them organic molecules added to the suspension [77,87].
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The peculiar structure of INTs also offers a unique opportunity to understand deeply the structural
and dynamical properties of water confined in relation to the nature of the interface and at the
nanometer scale. They certainly deserve comparison with, for instance, carbon nanotubes (CNT) which
present unique transport properties [11,12,119,120]. Despite the excitement generated by this topic for
carbon nanostructures, there is little experimental data available on water confined inside INTs up to
now. Water vapor adsorption isotherms reveal strong water uptake at low relative pressure (20 wt%
at P/P0 < 0.2) followed by a pseudo-plateau up to P/P0 = 0.85 (30 wt%) [64]. Water structuring was
recently investigated during the filling of INTs by infrared spectroscopy. Unlike CNTs [121,122], these
experiments suggested that the silanol pending groups played a non-negligible role in the way in which
water molecules interact with the inner wall [123]. In contrast, the properties of water confined in INTs
has been mainly investigated on the theoretical background. Molecular dynamics simulations revealed
the predominant hydrophilicity character of the inner surface of INTs (Figure 6b) [65,117,124]. Indeed,
radial density profiles suggested a strong structuration of water molecules in specific adsorption sites
with complex interactions with adjacent molecules (Figure 6c) [118]. Furthermore, the simulations
confirmed the key role of the inner pending function, whose flexibility is critical in the adsorption
of hydrogen-bonding molecules [124]. Hence, INTs could be used as tunable building blocks for
filtration applications.

Since the successful reinforcement of nylon by clay minerals in 1993 [125], new clay/polymer
nanocomposites have emerged during the last two decades [126,127]. In the case of imogolite
nanotubes, effective reinforcement was also extensively explored by using colloidal properties of
INTs either for un-modified nanotubes or after functionalization of the outer wall to facilitate their
dispersion in the desired polymer matrix (Table 3).
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Table 3. Type of polymer used for nanocomposites preparation with INTs.

Type of Polymer Acronym Form INT Refs.

Poly(vinyl alcohol) PVA
Film Si [84,128–131]
Fiber Si [132]

Membrane Si [133–135]

Poly(methyl methacrylate) PMMA Film Si [90]

Poly(ε-caprolactone) PCL
Film Si [96]

Hydrogel Si [97]

Poly(lactic acid) PLA Hydrogel Si [97]

Poly(butylene succinate) PBS Hydrogel Si [97]

Poly(acrylic acid) PAA
Hydrogel a Si [100,101,136]
Hydrogel Si [137]

Poly(hydroxyethyl acrylate) PHEA Hydrogel Si [137]

Poly(vinyl chloride) PVC Film Si [138]

Polystyrene PS Film Si [139–142]

Polyamide PA
Hydrogel Si [137,143,144]

Membrane Si [145–147]

Dicarboxilic acid DA Hydrogel Si [93,94,148,149]

Hydroxypropyl cellulose HPC Film Si [150]

Poly(hexylthiophene) P3HT Fiber Si [151]

Sugar alcohol Isomalt Fiber Ge [152]

Biopolymers Hydrogel Si [153–159]
Film Ge [160]

a Grafted by γ-irradiation.

Poly(vinyl alcohol) (PVA) is by far the most used polymeric material since PVA/INT can be
processed easily from aqueous solutions. In most cases, the mechanical and optical properties
of the resulting composite are enhanced, whether in film [84,128–131], fiber [132] or membrane
form [133–135] (Figure 7a). Beyond PVA, INT has been incorporated in a wide variety of polymer matrix
(Table 3) either for nanotube-reinforced nanocomposites [90,96,100,138,143,149,150] with anisotropic
structural properties (Figure 7b) [93,94,97,136,137,144,148,151,152], fabrication of hierarchical porous
structures [139–142] or the encapsulation/sustained-release of biomolecules for medical applications
(Figure 7c) [153–159].
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INT films. Adapted with permissions from [128]; (b) Reversible structural transition of INT hydrogels
upon stretching. Adapted with permissions from [148]; (c) Encapsulation of laccase in INT hydrogel and
its activity. Adapted with permissions from [153]. (d) PVA/INT membrane for molecular separation.
Adapted with permission from [133]. (e) Alignment of a liquid-crystal columnar phase of INTs under
electric field. Adapted with permissions from [60].

Beyond their use as nanofillers, INTs present a great potential for water osmosis desalination [161].
The control of nanotube diameter and interface combined with the possibility to capture molecules
in a selective manner confer to these tubular structures a wide range of potential applications, from
filtration to depollution of water. By combining these properties with the ability of INTs to be dispersed
in a polymer matrix, the fabrication of (ultra)thin film nanocomposite (TFN) membranes has started to
receive more intention recently (Figure 7d) [133,135]. Several studies reported that the addition of INTs
in TFN substantially increased the water throughput due to preferential water flow through imogolite
nanotubes [133,134,145–147]. Thanks to the permanent polarization of INTs with negative charges on
the inner surface, significant ion exclusion can be achieved [134,145,147] due to the combination of
steric hindrance and electrostatic repulsion as shown previously for CNTs [162].

We have shown that INT can be regarded as inorganic counterparts of carbon nanotubes in
terms of morphology and aspect ratios [51,55]. However, a major difference between INT and CNT is
that the former is readily water-soluble thanks to their electrical surface charge, in contrast with the
latter. As expected for highly elongated colloidal nanorods, an isotropic to nematic liquid-crystal (LC)
phase transition can occur in suspensions of INTs [163], which is the result of a competition between
orientational entropy and the packing entropy governed by excluded-volume interactions [164].
Surprisingly, very dilute suspensions of INTs also form a columnar liquid-crystal (Figure 7e) [60].
Despite the high dilution, the nanotubes are perfectly organized on a hexagonal lattice with large
spacing. This dilute liquid-crystal has such low visco-elasticity that the nanotubes are easily aligned
in an electric field (Figure 7e), which is a significant advantage for the elaboration of anisotropic
nanocomposite materials or the development of electro-optic devices.

As far as nanodevices are concerned, it has been suggested that INT can be used for nanoelectronic
applications by altering their insulating behavior through surface modifications [98,99,104]. Hence,
thin film INTs have been proposed as field emission electrodes for use as water sensors [165] or
electrocatalytic activity [166] (Figure 8a). Another behavior of imogolite nanotubes is their ability to
immobilize metalloids, nanoparticles and dyes on specific sites on the external surface (Figure 8b) [37,
38,167–169], which open new ways towards water treatment [69,81,82,105,170], antimicrobial agents
and their use in transparent dressings [171–173] or for catalysis [174].
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Indeed, imogolite nanotubes were suggested as a unique catalyst since 1983 [35], due to their
defined porosity, regular internal and external surface and its ease of functionalization. However,
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this field remains less explored compared to the production of polymer/INT nanocomposites.
Imamura et al. evidenced that Cu–imogolite had higher activity in the decomposition of tert-butyl
hydroperoxide than unloaded imogolite and Cu–SiO2 materials [174]. In a similar manner,
Cu2+-grafted TiO2/INT composites exhibited very efficient absorption and photodecomposition
of acetaldehyde without being affected by the relative humidity, offering a wide range of uses in
different environments [175]. Imogolite nanotubes and their derivatives have also been applied for
hydroxylation of olefins [80], catalytic oxidation of aromatic hydrocarbon [176] or azo-dyes [106,177]
and act as a tunable platform for the isomerization of glucose to fructose (Figure 8c) [78].

5. Conclusions and Perspectives

We have shown that it is now possible designing innovative imogolite nanostructures with hybrid
interfaces in a predictive way. This represents an important prerequisite for future developments in
nanomaterials and nanotechnologies. With their controlled morphology, tunable interfaces and unique
colloidal properties, synthetic INTs appear as promising and flexible building blocks with multipurpose
applications. Although the unique properties of imogolite nanotubes have been recognized for a
long time [35], their combination for potential applications has been developed only recently. It is
interesting to note, however, that most of the applications explored up to now, employ at least two of
these properties (Figure 9).
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This is likely related to a usage of INTs restricted only to their aluminosilicate form while Ge
analogues just start to receive attention (Tables 2 and 3). This is particularly obvious in the case
of hybrid imogolite/polymer nanocomposites, where the use of INTs with adjustable diameters by
isomorphic substitution could open up new opportunities for molecular selectivity of confined species.
As far as molecular confinement is concerned, INTs offer one of the rare possibilities to probe the
confined dynamics of water in well-defined geometries and for different interactions with the interface,
which will be relevant not only for fundamental physics but also in chemistry, geology or biology where
water in nanopores of various natures is of prime importance [178,179]. However, a comprehensive
understanding of the confinement phenomena themselves (structural and dynamical processes) is still
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lacking, possibly due to the difficulty and complexity in obtaining experimental details in perfectly
controlled samples. This challenging task should be considered for future nanofluidic applications
based on INTs.

Besides the possibility to synthesize either hydrophilic or hydrophobic INT structures, their
growth mode by oriented attachment (OA) coupling [180] may also offer a unique path to control
the morphology of the final nanotube. This feature could be employed to produce hybrid INTs with
successive hydrophilic and hydrophobic sections and should be relevant for the development of
innovative catalytic nanoreactors. Another attempt should be made by exploiting their ability to
self-organize spontaneously in aqueous suspensions and their easy alignment in an electric field in
order to drive nanotube organization in the resulting material. This could be the first step towards
the elaboration of anisotropic nanocomposite materials with well-dispersed nanotube filler and may
be used as artificial ion channel devices [181]. Moreover, potential photonic applications would
be expected by doping INTs with dyes while controlling their spatial organization by applying
external stimuli. Tissue engineering is another field [182], where INTs properties could be useful as
scaffolds to support and promote the growth of new tissues. Some studies have been undertaken to
investigate this possibility and paved the way for future research, in particular by using the full range
of modifications offered by the imogolite structure [159,183,184]. Finally, it was recently suggested,
on the basis of DFT calculations, that the permanent polarization of imogolite nanotubes could be
used for polarization-enhanced photocatalysis [185,186], an alternative to photoferroelectrics [187,188].
The promising use of polarized 1D nanotubes for coupling confinement and photocatalysis deserves
to be explored experimentally in the near future.
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