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Abstract: The maximum available capacity is an important indicator for determining the
State-of-Health (SOH) of a lithium-ion battery. Upon analyzing the experimental results of the
cycle life and open circuit voltage tests, a novel health factor which can be used to characterize the
maximum available capacity was proposed to predict the battery’s SOH. The health factor proposed
contains the features extracted from the terminal voltage drop during the battery rest. In real
applications, obtaining such health factor has the following advantages. The battery only needs to
have a rest after it is charged or discharged, it is easy to implement. Charging or discharging a battery
to a specific voltage rather than a specific state of charge which is difficult to obtain the accurate
value, so the health factor has high accuracy. The health factor is not dependent on the cycle number
of the cycle life test of the battery and it is less dependent on charging or discharging current rate,
as a result, the working conditions have less effect on the health factor. Further, the paper adopted
a support vector machine approach to connect the healthy factor to the maximum available battery
capacity of the battery. The experimental results show that the proposed method can predict the SOH
of the battery well.

Keywords: lithium-ion battery; terminal voltage drop; state of health; support vector machine;
capacity fading

1. Introduction

Energy is the basis of the human survival and development. The growing concern over oil
shortage and environmental issues has greatly accelerated the development of green energy to replace
fossil fuel in recent years [1]. Since transportation consumes a large part of energy, to develop and
apply electric vehicles (EV) is necessary in the way of green mobility [2]. It is well known that the
battery pack is the key component of EV, hybrid electric vehicles (HEV) and plug-in hybrid electric
vehicles (PHEV). Lithium-ion battery (LIB) is for the high specific or volumetric power and energy
density, high cycle lifetime and decreasing cost have made them more attractive for the vehicles [3].
The reliable and efficient battery management systems need to be developed to ensure the power
battery work well [4,5], estimating the state-of-health (SOH) of the battery is the most crucial function
among the various functions of a battery management system [6].
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The SOH is a metric of the battery’s age that reflects the ability of a battery to store and deliver
energy relative to initial condition. However, the degradation of a LIB is a very complex process that is
affected by many factors, such as charge/discharge rate, storage temperature and operating process.
Compared with the state of charge (SOC) estimation, the SOH estimation is more challenging [7].
In practical applications, the degradation of the battery causes many parameters such as battery
capacity and battery impedance to change. The quantitative definition of the SOH is mainly based on
the internal resistance increase or the capacity degradation.

The SOH estimating methods based on internal resistance increase needs to get the initial
resistance when the battery is fresh and the resistance at the end-of-life (EOL). When the resistance
changed with aging of the battery is achieved, it could estimate the SOH of the battery. The traditional
method to get the parameters of the battery is electrochemical impedance spectrum (EIS), which is
a powerful lab-based diagnostic technique. However, the principle of the EIS method is to apply to
a cell a sinusoidal signal and measure the characteristic response from the cell, it is not suitable for
the real application. The aim of the EIS is to improve the speed of the calculation [8] and make use of
the free signals of current and voltage during the operation of the battery instead of the additional
burden of the input signal, so as to carry out SOH estimation in real time [9,10]. Moreover, Equivalent
Circuit Models (ECMs) can simulate the static and dynamic behavior of a battery. It is commonly used
to predict the SOH by identifying the resistance of the equivalent circuit models (ECMs). However,
different ECMs, different parameter identification methods and different battery operating conditions
will affect the precision of the parameter identification. Improving the precision of the parameter
identification is the key problem to be addressed.

The SOH estimating methods based on capacity degradation needs to get the maximum available
capacity which changes with aging of the battery. The ratio of the maximum available capacity and
the nominal capacity is the SOH of the battery. When the current maximum available capacity is
reduced to 80% of the nominal capacity of the battery, it is considered to have reached the EOL of the
battery [11]. Among all the methods based on capacity degradation, the most direct way is to discharge
the battery from the fully charged state to the discharge cutoff voltage at a specified current rate and
ambient temperature. The number of ampere-hours drawn from the battery under such working
condition is the maximum available capacity of the battery [12,13]. This method is simple and direct
but it is not suitable for practical applications. Thus, the aim of the improvement is to estimate the
SOH in real time for a part cycle and dynamic condition instead of for the whole cycle and a constant
condition. This study uses the capacity degradation method to estimate SOH and the contributions are
as follows:

• The experimental data of the battery cycle life and open circuit voltage (OCV) are studied.
Upon analyzing the data, it is concluded that the degradation of the battery causes OCV variation
and the instantaneous voltage drop of the terminal voltage rises along with the increasing
cycle numbers.

• A novel health factor extracted from the terminal voltage drop is proposed to estimate the available
capacity of the battery that can indicate the SOH of the battery. Furthermore, a support vector
machine (SVM) approach is used to build the relationship between the health factor and available
capacity of the battery. The experimental result showed that the method has high precision.

• The reason for selecting the terminal voltage drop information as the health factor is analyzed
and its performance is verified. The study explained why charging or discharging a battery to
a certain voltage is superior to charging or discharging the battery to a certain SOC. Moreover,
the SOH estimating results showed that the method is not limited to the working conditions of
the battery.

• The modeling precision using different features of the terminal voltage drop as the health factor is
compared. Furthermore, the effectiveness of the model is verified and analyzed.
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The remainder of the study is organized as follows: an overview of the capacity estimation
methods is shown in Section 2. In Section 3, the design of the experiments for the cycling test of
the battery is introduced and the results are analyzed. In Section 4, a SVM is used to establish the
relationship between the available capacity of the battery and its terminal voltage drop. Thereafter,
in Section 5, the results of the prediction method based on the SVM are showed and analyzed. Finally,
this work is summarized.

2. SOH Definition and Computation

The SOH based on capacity degradation is usually defined as [14,15]:

SOH =
Qi
QC
× 100% (1)

where, Qi is the maximum available capacity at a certain time i. It is defined in Equation (2).
Qi represents the total number of ampere-hours can be drawn from the fully charged battery at
a specified current rate and ambient temperature. Qc is the nominal capacity of the battery.

Qi =
1

3600

∫ Ti

0
η · i(t)dt (2)

where, time 0 means the initial discharge time and Ti means the end of the discharge time. η represents
the coulombic efficiency and t is in seconds. At present, the mainstream methods of available capacity
are as following [16]:

(1) The methods based on OCV and more strictly based on the electro motive force (EMF) [17],
that is, using the relationship between the EMF and the SOC to estimate the SOH of the battery while
in idle or in operation.

These methods are based on the following Equation:

1
3600

∫ t2

t1

η · i(t)dt = C · (SOC(t2)− SOC(t1)) (3)

An equivalent Equation to (3) is shown in (4):

C =
1

3600

∫ t2

t1

η · i(t)dt/(SOC(t2)− SOC(t1)) (4)

where, SOC (t) means the SOC value at time t.
Upon measuring the OCV value of the certain time t1 and t2, the SOC value of certain times t1

and t2 can be calculated based on the OCV-SOC curve. Thus, the available capacity of the battery can
be predicted according to the abovementioned Equation (4). After charging or discharging the battery,
it needs to rest for a relatively long time. That is, to measure OCV precisely, the battery should be in
a completely steady state [18]. Therefore, improvements to this type of methods are focused on how to
calculate the OCV (or EMF) in a short relaxation time or without a relaxation time and how to improve
the accuracy of the OCV-SOC curve [19,20].

Pei et al. [21] put forward a rapid OCV prediction method to predict the final static OCV using
linear regression techniques, based on a novel mathematical model developed from an improvement
on a second-order resistance-capacitance (RC) model [1]. Weng et al. [22] proposed a novel OCV model
which has a much better fitting accuracy for considering the staging phenomenon during the lithium
intercalation/deintercalation process for LIB. Tong et al. [23] proposed a SOH (SOC) correction as
part of the battery equivalent circuit model (ECM) and on-line optimization of SOH (SOC) correlation
impelled to optimize the OCV- SOC correlation and the capacity of a LIB. Farmann et al. [24] shows
that the main factors influencing the OCV behavior of LIB are aging, temperature and working history
of the battery. Furthermore, the paper investigated the impact of the abovementioned factors on OCV
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at different aging states using various active materials (C/NMC, C.LEP, LTO/NMC) over a wide
temperature range (−20 ◦C–45 ◦C).

(2) The methods based on incremental capacity analysis (ICA) and differential voltage
analysis (DVA).

These methods use the electrochemical characteristics of the battery. For ICA, the obtained curves
V-dQ/dV transform the plateau present in the cell voltage trend (representative of electrochemical
equilibrium phases during the cell operation) into peaks [25,26]. For DVA, the obtained trend Q-dV/dQ
presents, for each peak, the transition between two electrochemical equilibrium conditions during
the battery operation conditions [27]. The locations and amplitudes of such peaks can reflect the
deterioration of the battery. For the measured voltage contains trembling and noise, as a result,
the perturbation is introduced into the IC or DV curves which make it difficult to identify the peaks.
This kind of method makes full use of the electrochemical characteristics of the battery. However, it
has strict requirements regarding the operating conditions. For example, charging or discharging with
a Constant Current (CC) in a large voltage range (contained at least the peak voltage) and the CC
should be small enough to sufficiently show the voltage plateau [28]. Furthermore, all the peaks on
the IC curve lie within the voltage plateau region of the V-Q (Voltage-Capacity) curve [29], which is
relatively flat and more sensitive to measurement noise. Hence, effective and robust algorithms of
obtaining the IC and DV curve need to be developed.

Feng et al. [30] proposed a probability density function (PDF), which has an equivalence
performance with ICA/DVA for predicting the SOH. Wang et al. [31] presented an algorithm to
obtain the DV curve according to the center least squares used the location interval between two
influence points or the transformation parameter of the DV curve, as a result, the error was within
2.5%. Li et al. [32] proposed a simple and robust smoothing method based on Gaussian filter to reduce
the noise on IC curves. Zheng et al. [33] presented a SOC based ICA/DVA method to address the
question, that is, the conventional cell terminal voltage based ICA/DVA methods are sensitive to the
changed resistance and polarization during battery aging processes.

(3) Methods based on data-driving
This type of methods is aimed to find degradation mechanism of a battery by analyzing the

characteristic data without considering its electrochemical reaction and failure mechanism [34].
The data that can reflect the characteristics of the battery SOH and its evolution is called health
factor [35]. This method will establish the relationship between the experiment data and battery
degradation to diagnose and estimate the SOH of the battery [36]. Since the SOH of the battery is
bound to be reflected by its external charge and discharge characteristics, thus this type of method
does not consider the internal characteristics of the battery [37].

You et al. [38] proposed a data-driven approach to trace SOH on the fly by using current, voltage
and temperature while leveraging their historical distributions. When it is used under actual EV
driving conditions, the average error is less than 2.18%. Tong et al. [23] put forward a SOH prediction
method based on the health factor constructed through OCV of the battery. It can effectively track
the SOH. However, it takes a long time to get the OCV value and is hard to implement online. Liu et
al. [39] and Widodo et al. [40] used voltage drop of same time and the same voltage drop in each cycle
life test as health factors respectively. This method needs to work under constant current discharge
conditions to achieve the health factor. Wei et al. [41] proposed a health factor characterized by
increment of Ohmic internal resistance, increment of polarization internal resistance and the reduction
of polarization capacitance to realize online SOH prediction. The main problem of this type of methods
is that the battery has to be discharged or has to work under specific operating conditions, such as
under cycle life test conditions, to obtain the health factor. It is known that additional discharging
is detrimental to the battery and that, when the battery is actually used, the operating conditions
are dynamic.
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Aforementioned, a novel SOH estimation method adopting the relative features of the terminal
voltage drop as the health factor is proposed. The battery only needs to be charged to get the health
factor and the operating conditions are not restricted.

3. Design and Result Analysis of the Battery Cycle Life Test

This section includes three parts: first, the experiment platform is introduced. The life cycle
experiment and the OCV-SOC experiment are introduced in second part. The third part analyzes the
experimental data and draws a conclusion that the available capacity of the LIB under test decreases
with the life and the voltage drop of terminal voltage increases with life. It further analyzes the
advantage of charging or discharging the battery to a certain voltage instead of charging or discharging
it to a certain SOC.

3.1. Experimental Platform

The experimental platform is shown in Figure 1 and it mainly contains a NEWARE BTS-4008
power battery test system, a controlled thermal chamber and a computer. During the experiment,
the batteries are put in the controlled thermal chamber and the computer is used to control
the experimental platform by server, to set the operating condition and save the experiment
data. In this study, commercially available cylindrical 18650-type lithium-ion cells (Lithium
nickel–manganese–cobalt oxide/ Graphite) were investigated. The performance of the battery is
showed in Table 1. In experiments, the cells are numbered. In this paper, the No. 1 battery is used
for analysis and modeling and the No. 2 battery with the same type is used to verify the efficiency of
the method.
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Figure 1. Experiment platform.

Table 1. Main specifications of the tested battery.

Nominal Capacity Nominal Voltage Charging Cutoff Voltage Discharging Cutoff Voltage

1500 mAh 3.7 V 4.2 V 2.5 V

3.2. Experimental Procedure

Cycle life and OCV tests [42] of the batteries were carried out at room temperature, in which
the cycle life test, also called Test 1, is the main experiment and after 80-100 cycle tests, an OCV test,
also called Test 2, was performed to obtain the OCV-SOC curves for different degrees of aging of
the batteries.

Test 1: Cycle life test, the steps of one cycle life test are as follows:
(1) The battery rests for 30 min before the cycle life test.
(2) The battery is charged in the standard constant current constant voltage (CCCV) mode.

CCCV means that the battery is charged with a CC until the charging cutoff voltage and a constant
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voltage (CV) is used to charge until the current is reduced to a predefined current. The CC is 750 mA,
the charging cutoff voltage is 4.2 V and the charging is ended when the current is reduced to 20 mA
under the cutoff voltage.

(3) The battery has rests for 30 min.
(4) The battery is discharged in the CC mode until the discharging cutoff voltage, at which the CC

is 750 mA and the discharging cutoff voltage is 2.5 V.
(5) The battery rests for 30 min.
Test 2: OCV test to obtain the OCV-SOC curve. A flowchart of the experiment is showed in

Figure 2 and the steps of one cycle life test are as follows:
(1) The battery is charged to fully state in the standard constant current constant voltage (CCCV)

mode just like test 1 and then it will rest for 2 h.
(2) The battery continues 20 cycles, that is, the battery is discharged in CC mode for 324 s and

then rests for 2 h.
(3) The battery continues 19 cycles, that is, the battery is charged in CC mode for 324s and then

rests for 2 h.
(4) The battery is charged to fully state in the standard constant current constant voltage (CCCV)

mode just like test 1 and then it will rest for 2 h.
In test 2, CC and CCCV have the same meaning with the test 1.
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3.3. Experimental Results and Analysis

The cycle life test and the OCV test continued until the available capacity of the aging battery
is less than 80% of the nominal capacity. The experimental results of the No. 1 battery are shown in
Figures 3–6. The relationship between the available capacity and the cycle number of the cycle life
test is shown in Figure 3. It should be noted that the amount discharged under such a cycle life test is
considered to be the available capacity of the battery.
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Six OCV test for different cycle numbers are shown in Figure 4. The ith time indicates that the
corresponding OCV data is obtained after the ith time of the cycle life test.
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Figure 5 showed the terminal voltage drop when the fully charged battery has a rest for 2 h and
the terminal voltage drops when the discharged battery has a rest for 2 h for the six OCV test.
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The following can be inferred by analyzed the experiment results.
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(1) Figure 3 presented that with the increasing number of cycles, although the amount discharged
(i.e., the available capacity of the battery) is not monotonically attenuated, the overall trend is
decreasing. On the other hand, compared with the early life stage (for example, the 1–200 cycle),
the capacity decreases rapidly at the later stage of life (for example, cycle > 400).

(2) Figure 4 showed that the six OCV test is operated under the same working condition, the
results are different. The battery has a rest for two hours after it reaches fully charged state in CV
mode. The terminal voltage of the battery is gradually decreasing as the number of cycles increases.
The charging process also has a similar regular pattern.

(3) Figure 5 presented that during the discharging, even with the same discharging current, the
same discharging time, when the battery is stopped charging and rests for the same time (i.e., two hours
in this study), the terminal voltage drop of the battery is gradually increasing with the degradation of
the battery. The value of the terminal voltage drop is relative to SOC value and the lower the SOC
value, the greater the terminal voltage drop. Terminal voltage is no longer changing, it can be regarded
as the OCV of the battery. Conversely, the decreasing battery capacity leads to the changes in the
thermodynamic and kinetic characteristics of battery and the corresponding relationship between
the available capacity and OCV is the direct external embodiment of thermodynamic characteristics
of battery [43]. Thus, the capacity degradation causes a change in the OCV, that is, the value of the
terminal voltage drop with the same rest time can reflect the degradation of the available capacity.

(4) Figure 6 showed that with the increasing number of cycles, after the fully charged battery has
rested for 30 min and compared with the initial terminal voltage at the moment when the battery is
just fully charged, the terminal voltage drop does not increase monotonously but the overall trend
is increasing. The terminal voltage drop is trending in the opposite direction to the change in the
available capacity of the battery combined with Figure 3.

In addition, the following must be taken into account:
(1) It is difficult to get precise SOC values.
Equation (5) is generally used to calculate the SOC of the battery:

SOC = 1− Qt

Qall
= 1−

∫ t
0 i(τ)dτ∫ T
0 i(τ)dτ

(5)

The Qt represents the amount discharged from the beginning of the discharging (the fully charged
battery) to the moment t, Qall represents the amount discharged from the fully charged battery to the
cut-off voltage. T represents the whole discharging duration. In real application, we can get Qt easily
but the Qall cannot be measured at the moment t if the battery is not out of power. Hence, the nominal
capacity of the battery is always used instead of Qall. However, the real Qall is restricted by the working
conditions at that time; on the other hand, with the degradation of the battery, even if the working
conditions are the same, the Qall is different. By using Equation (5), this experiment is imprecise in
estimating the SOC.

Another way to get the SOC of the battery is based on the OCV-SOC curve, that is, the measured
value of OCV, the corresponding SOC value is calculated. However, LIB has the hysteresis effect.
The charging OCV-SOC curve is not consistent with the discharging OCV-SOC curve; in other words,
the charging OCV value is different from the discharging OCV value, while the corresponding charging
SOC value and the discharging SOC value are the same. The OCV-SOC curve is affected by the history
of operating conditions. For example, for two OCV values corresponding to the 50% SOC of the
charging state, the first 50% SOC is obtained by charging the battery from a 20% SOC to the 50%
SOC and the second 50% SOC is obtained by charging the battery from a 30% SOC to the 50% SOC.
Obviously, the two SOC values are the same; however, even though the two OCV values are both for
in the charging state, they are different. The OCV-SOC curve changes with the degradation of the
battery showed in Figure 4. The SOC value is obtained through the OCV-SOC curve, the precision is
affected by the hysteresis effect and the degradation of the battery.
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(2) At present, the SOH prediction methods use equal discharging durations or equal voltage
drops as health factors. Although such health factors can characterize the change in the available
capacity of the battery, for estimating the SOH, extra discharging tests are needed and the health factor
must be obtained under predefined operating conditions.

1. Compared to charging/discharging the battery to a certain SOC, charging/discharging the battery
to a certain voltage is simpler and more precise.

2. Terminal voltage drop during battery rest can reflect the battery degradation.
3. Using the terminal voltage drop during battery rest to estimate the available capacity is not

affected by the operating conditions that the battery is under.

This study proposed a novel SOH estimation method that adopts the terminal voltage drop during
the battery rest as a health factor and the aforementioned certain voltage is the charging cutoff voltage.

4. Available Capacity Modeling Based on Terminal Voltage Drop

This section includes four parts. It mainly establishes the relationship between terminal voltage
drop and the capacity of the battery. Upon analyzing the terminal voltage drop information, the features
can characterize the battery life are extracted and then the model between the features and the available
capacity is constructed using a SVM approach.

4.1. Performance Analysis of the Terminal Voltage Drop During Rest

To clarify the relationship between the terminal voltage drop during rest and the degree of
degradation of the battery, Figure 7 showed, in each cycle test, when the No. 1 battery was charged to
fully charged state under the operation conditions in cycle test, the terminal voltage drop after 5, 10,
15, 20, 25 and 30 min of rest. Figure 8 shows the changes in the terminal voltage drop when the No.1
battery was charged to the fully charged state in the 1st, 80th, . . . , 560th cycle tests.

Figures 7 and 8 showed that:
(1) The increasing number of battery life cycles, the change in the terminal voltage drop is

increasing for the same rest time.
(2) For the same cycle life test, with the increase in resting time, the change in the terminal voltage

drop is decreases. For example, the voltage drop of the first 5 minutes is bigger than the voltage drop
of the second 5 min.

(3) During the whole rest duration, at the beginning of the rest, the voltage drop is the fastest and
with the increase in the number of battery life cycles, the voltage drop gets faster.
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4.2. Constructing the Health Factor

In order to reflect the trend of the terminal voltage drop during the resting period after the battery
was fully charged, the following features are selected to construct the health factor.

(1) The terminal voltage drop after the battery rests for 5, 10, 15, 20, 25 and 30 min;
(2) The terminal voltage drop when the battery begins to rest, from the 5th to 10th minute,

10th to 15th minute, 15th to 20th minute, 20th to 25th minute and 25th to 30th minute. The reason
for choosing these characteristics as the health factor is that, the terminal voltage drop over time is
nonlinear and the terminal voltage drop with the aging of the battery is also nonlinear. Choosing
different features as the health factor will affect the accuracy of the results.

4.3. Analysis of the SVM

SVM is a machine learning method for classification, regression, or other learning tasks.
This analysis is based on structural risk minimization and it can minimize the empirical risk and
confidence interval [44,45]. SVM is chosen for the excellent approximation and generalization capability
and its demonstrated potential in the realm of nonlinear system identification. A typical SVM
application included two steps:

(1) Training the sample set data to obtain a model between the input and output data;
(2) Using the model to predict the test set data.
Supposed the training sample set is {(x1, y1), . . . , (xl , yl)}. In which, xi ∈ Rn, that is, xi is an

n-dimensional feature vector and yi ∈ R. l is the sample number.
When SVM is used for regression, its purpose is to get a regression model as Equation (6) to

minimize the error between model outputs f(x) and desired values y. ω and b are the parameters to be
determined. Here, ω is also an n-dimensional feature vector, ωT denotes the transpose of the vector ω.
b is the deviation and it is a scalar.

f (x) = ωTx + b (6)

It supposes that the maximum deviation between the model output and the desired value we can
tolerate is ε (that is, a positive constant). Then, when the estimation error of a sample is less than ε,
the estimate result of the sample is correct.

According to the principle of structural risk minimization, Equation (7) is used to identify the
parameters ω and b:

min
ω,b

1
2
‖ω‖2 + C ·

l

∑
i=1

`ε( f (xi)− yi) (7)
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In which, ‖‖ represents the Euclidean norm. C represents the regularization parameter or called
penalty factor. The definition `ε is showed as Equation (8):

`ε(z) =

{
0, if |z| ≤ ε;
|z| − ε, otherwise.

(8)

By introducing the non-negative relaxation variables ξi and ξ∗i (I = 1, 2, . . . , l), Equation (7) is
equivalent to:

min
ω,b,ξi ,ξ∗i

1
2
‖ω‖2 + C ·

l

∑
i=1

(ξi + ξ∗i ) (9)

s.t.

{
f (xi)− yi ≤ ε + ξi
yi − f (xi) ≤ ε + ξ∗i

By importing the Lagrange multipliers ai ≥ 0, a∗i ≥ 0, ui ≥ 0, u∗i ≥ 0, it can obtain the Lagrangian
function of the Equation (9):

L(ω, b, a, a∗, ξ, ξ∗, u, u∗)

= 1
2‖ω‖

2 + C ·
l

∑
i=1

(ξi + ξ∗i )−
l

∑
i=1

uiξi−
l

∑
i=1

u∗i ξ∗i

+
l

∑
i=1

ai( f (xi)− yi − ε− ξi) +
l

∑
i=1

a∗i (yi − f (xi)− ε− ξ∗i )

(10)

It follows from the saddle point condition of convex programs that the partial derivatives of
L(ω, b, a, a∗, ξ, ξ∗, u, u∗) with respect to the primal variables ω, b, ξi, ξ∗i have to vanish for optimality,
that is:

ω =
l

∑
i=1

(a∗i − ai)xi (11)

0 =
l

∑
i=1

(a∗i − ai) (12)

C = ai + ui (13)

C = ai
∗ + ui

∗ (14)

Substituting Equations (11)–(14) into (10), yields the dual program:

max
a,a∗

l

∑
i=1

yi(a∗i − ai)− ε · (a∗i + ai)−
1
2
·

l

∑
i=1

l

∑
j=1

(a∗i − ai)(a∗j − aj)xT
i xj (15)

s.t.
l

∑
i=1

(a∗i − ai) = 0 ,

0 ≤ ai , a∗i ≤ C .

The above process has to satisfy the Karush-Kuhn-Tucker (KKT) condition, that is:
ai · ( f (xi)− yi − ε− ξi) = 0
a∗i · (yi − f (xi)− ε− ξ∗i ) = 0
ai · a∗i = 0 , ξi · ξ∗i = 0 ,
(C− ai) · ξi = 0 , (C− a∗i ) · ξ∗i = 0 .

(16)
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When it gets the solution ai and a∗i of Equation (15), substituting Equation (11) into (6), it can
obtain the following Equation (17):

f (x) =
l

∑
i=1

(a∗i − ai)xT
i x + b (17)

Combining the solution ai and a∗i of Equation (15) with Equation (16), it can get the value of b:

b = yi + ε−
l

∑
j=1

(a∗j − aj)xT
j xi (18)

When the linear characteristics of samples are not obvious, the nonlinear mapping function
φ(x) is adopted to map the low-dimensional feature space Rn to a high-dimensional space H, that is,
Hilbert space.

Then, the x will be replaced with φ(x) and the regression model (6) becomes the Equation (19):

f (x) = ωT · φ(x) + b (19)

Consequently, Equation (17) becomes the following equation:

ω =
l

∑
i=1

(a∗i − ai)φ(xi) (20)

Then the regression model (19) can be represented as:

f (x) =
l

∑
i=1

(a∗i − ai)k(x, xi) + b (21)

In which, k(xi, xj) = φ(xi)
T · φ(xj). It is a kernel function. Common kernel functions of the SVM

are the linear kernel function, polynomial kernel function, radial basis kernel function (RBF) and
two-layer perceptive kernel function. In this paper, we use the RBF, as shown in Equation (22):

k(xi, x) = exp(−g‖x− xi‖2), g > 0 (22)

Prior to the SVM training, the penalty factor C and kernel function parameters g need to
be predetermined.

About the detailed solution process of SVM and the information on kernel function, please refer
to the references [46].

4.4. Available Capacity Prediction Model of Battery Based on the SVM

The steps of available capacity estimation modeling based on the SVM are as follows:
Step 1: For the cycle life test of the No. 1 battery, obtain the health factors according to the method

of Section 4.2 and adopt it as input xi and adopt the discharging capacity as output yi.
Step 2: Normalize the input and output data;
Step 3: Use the cross-validation method to select the optimal parameters C and g of the regression;
Step 4: Use the optimal parameters obtained in Step 3 to train the SVM and get the model.
The model is used to estimate the available capacity and the corresponding SOH. The following

Equations (23)–(25) are used to calculate the performance indices, included the mean squared error
(MSE), squared correlation coefficient R2 and relative error Error.

MSE =
1
l

l

∑
i=1

( f (xi)− yi)
2 (23)
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R2 =
(l∑l

i=1 f (xi)yi −∑l
i=1 f (xi)∑l

i=1 yi)
2

(l∑l
i=1 f (xi)

2 − (∑l
i=1 f (xi))

2
)(l∑l

i=1 y2
i − (∑l

i=1 yi)
2
)

(24)

Errori =
| f (xi)− yi|

yi
(25)

In Equations (23)–(25), l represents the total number tests, f represents the estimated available
capacity of the ith test, i.e., the ith health factor and, yi represents the real available capacity of
the battery.

5. Experimental Results and Discussion

This section verified the performance of the model connecting health factor and available capacity
of the battery. The model is established by a SVM approach. The validation will be performed on the
following three aspects:

(1) The health factor containing the feature extracted from the terminal voltage drop is meaningful;
(2) The health factor is able to reflect the SOH of the battery. The battery using such health factor

is not constrained by the working condition. In addition, the results of the paper are compared with
the results based on OCV method;

(3) The model can be used for other battery with the same type. The method proposed
is reasonable.

5.1. Verification of the Health Factor

Table 2 showed the features that are used to construct the health factor. “Rest for x min” represents
the value of the terminal voltage drop after the fully charged battery has rested for x min. “y–z min
duration” represents the terminal voltage drop from the yth minute to the zth minute during the fully
charged battery’s rest.

Table 2. Features of the health factor.

Feature Name Feature Description

No.1 Rest for 5 min
No.2 Rest for 10 min
No.3 Rest for 15 min
No.4 Rest for 20 min
No.5 Rest for 25 min
No.6 Rest for 30 min
No.7 5–10 min duration
No.8 10–15 min duration
No.9 15–20 min duration

No.10 20–25 min duration
No.11 25–30 min duration

Using these different features as health factors to establish SVM model, it will obtain different
MSEs, R2 values and average relative errors. The results are shown in Table 3. Feature 1 represents
using the No. 1 feature of Table 2 as the health factor, “1–x” represents using all the features from
the No. 1 feature to the No. x feature of Table 2 to construct the health factor. Feature 12 represents
adopting the terminal voltage drop of the battery when it has rested for 30 min after being fully
charged as the health factor.
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Table 3. performance parameters.

Feature 12 1 1-2 1-3 1-4 1-5

MSE 0.00174481 0.0017128 0.00129276 0.0011000 0.00100485 0.0009935
R2 97.2716% 97.2993% 97.9575% 98.2644% 98.4136% 98.4372%

Average Error 0.6687% 0.7232% 0.6027% 0.5465% 0.5281% 0.5239%
Feature 1–6 1–7 1–8 1–9 1–10 1–11

MSE 0.00098901 0.00091085 0.00091220 0.00092457 0.000947030 0.0008561
R2 98.4447% 98.5616% 98.5604% 98.5408% 98.5044% 98.6481%

Average Error 0.5239% 0.5048% 0.4984% 0.5083% 0.5112% 0.4881%

Table 3 showed that if only the terminal voltage drop after 30 min is selected as the feature of the
health factor, the MSE and average error are relatively large. The MSE and average error are reduced
and the R2 decreases gradually with an increasing number of features. Table 3 presented that using
Features 1–11 can get the best estimation result. Features 1–11 is used to construct the health factor
and to establish the SVM model in the following estimation and validation tests.

5.2. Estimation Results and Discussion

5.2.1. Estimation Results of SVM

Figure 9 showed the results of using the cross-validation method to select the optimal parameters
C and g. Figure 10 showed the estimation result of the test data set and Figure 11 presented the relative
error of the estimation result. Table 4 indicated the statistical results of the relative error and showed
the result in Figure 11.
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Table 4. Relative error statistics.

Relative error Interval Minimum Maximum Number of Times

Error < 1% 9.992e-06 0.0099 518
1% < Error < 2% 0.0101 0.0190 56
2% < Error < 3% 0.0207 0.0299 5
3% < Error < 4% 0 0 0
4% < Error < 5% 0.0411 0.0411 1
5% < Error < 6% 0 0 0

The following tests are carried out in order to verify that the algorithm is less dependent of the
working conditions. As mentioned in Section 3.2, an OCV experiment is carried out after 80–100 cycle
life tests. In each OCV test, before discharging the battery, the battery is charged to the fully charged
state and rests for 30 min, just like in the cycle life test and then the health factor of the battery is
obtained in this OCV test. An available capacity of the battery corresponding to the health factor can be
obtained using this health factor as an input of the SVM model. The battery life decay is a slow process
in real applications, the measured available capacity in the last cycle life test before the OCV test is
adopted as the real available capacity. The estimated available capacity of the SVM model and the real
available capacity are compared. The SOH and the estimated relative results are showed in Table 5.

Table 5. Estimated error of No. 1 battery in test 2.

Cycle Number Real Available Capacity
(mAH)

Estimated Available
Capacity (mAH) Real SOH Estimated

SOH Relative Error

1 1495.3 1489.052 99.69% 99.27% 0.42%
100 1486.2 1474.655 99.08% 98.31% 0.78%
195 1458.4 1455.447 97.23% 97.03% 0.21%
293 1412.3 1421.132 94.74% 95.04% 0.62%
392 1365.9 1361.420 91.06% 90.76% 0.33%
553 1267.3 1249.908 84.49% 83.33% 1.39%

5.2.2. Results Analysis of SVM

The experimental results are analyzed.
(1) The statistical relative error in Figure 8 shows that, compared to the relative error in the early

and middle cycles, the relative error in the later cycles is relatively large. The main reason lies in the
fact that, when the life of the LIB is about to reach its end, the capacity deterioration is aggravated.
Even if there is a short-term capacity recovery, it decreases rapidly for relatively short life cycles.

(2) The total number of cycle life tests is 580. A total of 518 estimation errors (i.e., 89.31%) are less
than 1%, a total of 574 estimation errors (i.e., 98.97%) are less than 2% and only one relative error is
more than 3%, accounting for 0.17% of the total.
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(3) Considered the fact that using the health factor only containing the feature extracted from
the terminal voltage drop during the battery having a rest to predict the capacity and SOH of the
battery, for the health factor has less dependent on the working condition, the predict result has high
robustness to the working conditions. Table 5 showed the proposed method gets high precision under
different working conditions.

Therefore, according to the relative error statistics, it is feasible to estimate the available capacity
and SOH of a LIB using the information on the terminal voltage drop when the full charged battery
is resting.

5.2.3. Estimation Results of OCV

Using OCV experimental data, the available capacity data of lithium-ion batteries can be obtained
by using the method based on OCV method, the flowchart of this method [16] is illustrated in Figure 12.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 22 

fact that, when the life of the LIB is about to reach its end, the capacity deterioration is aggravated. 

Even if there is a short-term capacity recovery, it decreases rapidly for relatively short life cycles.  

(2) The total number of cycle life tests is 580. A total of 518 estimation errors (i.e., 89.31%) are 

less than 1%, a total of 574 estimation errors (i.e., 98.97%) are less than 2% and only one relative error 

is more than 3%, accounting for 0.17% of the total.  

(3) Considered the fact that using the health factor only containing the feature extracted from 

the terminal voltage drop during the battery having a rest to predict the capacity and SOH of the 

battery, for the health factor has less dependent on the working condition, the predict result has high 

robustness to the working conditions. Table 5 showed the proposed method gets high precision 

under different working conditions. 

Therefore, according to the relative error statistics, it is feasible to estimate the available 

capacity and SOH of a LIB using the information on the terminal voltage drop when the full charged 

battery is resting. 

5.2.3. Estimation Results of OCV 

Using OCV experimental data, the available capacity data of lithium-ion batteries can be 

obtained by using the method based on OCV method, the flowchart of this method [16] is illustrated 

in Figure 12. 

 

Figure 12. Flowchart of the capacity estimation based on OCV. 

The following processing is carried out to fully explain the characteristics of OCV based 

method: 

(1) Using the discharging data to estimate the capacity of the battery;  

(2) Fitting the OCV-SOC curve according to the first OCV experimental data. Polynomial fitting 

method was adopted and the order of polynomials is 5, 8 and 11 orders respectively;  

(3) Six SOC intervals including 100%–35%, 95%–30%, 95%–25%, 90%-35%, 90%–25% and 

90%-50% are used to estimate the available capacity of the battery. Figure 13 presented the results.  

 

(a) Prediction results based on OCV with 5 order polynomial 

Figure 12. Flowchart of the capacity estimation based on OCV.

The following processing is carried out to fully explain the characteristics of OCV based method:
(1) Using the discharging data to estimate the capacity of the battery;
(2) Fitting the OCV-SOC curve according to the first OCV experimental data. Polynomial fitting

method was adopted and the order of polynomials is 5, 8 and 11 orders respectively;
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are used to estimate the available capacity of the battery. Figure 13 presented the results.
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5.2.4. Results Analysis of OCV

Figure 13 showed that the SOC interval and the OCV-SOC curve influence the capacity
estimation result.

(1) The SOC value is calculated on the basis of OCV value, thus the accuracy of the OCV-SOC
curve will affect the prediction result. Figure 13 shows that the estimation errors of different OCV-SOC
curves are different;

(2) The OCV test will obtain multiple corresponding points of OCV value and SOC value and
these corresponding points are used to fit the OCV-SOC curve. In generally, the errors between the
fitting value and the real value of the two ends of the fitting curve are relative larger. The above SOC
interval 1 (100%–35%) has a large error due to use the 100% SOC value. For SOC interval 3 (95%–25%)
and SOC interval 5 (90%–25%), the lower SOC of these two intervals is 25%, with the degradation of
the battery, this 25% SOC will reduce to a relative small value. For example, if the nominal capacity of
the battery is 1500 mAh, when the fresh battery with full charged is discharged for 1125 mAh, then the
SOC is changed from 100% to 25%. However, when the fresh battery degenerates into an old one and
its life will end; its available capacity is degraded into 1200 mAh, if the battery with full charged is still
discharged for 1125 mAh, then the SOC is changed from 100% to 6.25% which is below 10% and the
OCV-SOC fitting error is larger. Figure 13 showed, in the later battery life, the estimating error is larger
for the two SOC intervals than the error in the early battery life;
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(3) The SOC interval is greater than 60%, the estimation results are more accurate [18]. The SOC
interval 4 (90%–35%) and the SOC interval 6 (90%–50%) are less than 60%. Figure 13 indicated
the estimate error of such two SOC interval are relative larger for the three OCV-SOC curve with
different orders.

In summary, the SOC interval 2 (95%–30%) not only satisfies that the SOC interval is more than
60% but also satisfies that the 100% SOC and the SOC below 10% are not used. Form Figure 13, it can
be seen that the estimating errors using such SOC interval are relative small and the estimate error of
the OCV-SOC curve with 11 order polynomial is the smallest.

5.2.5. Comparison Analysis the Method Based on OCV and the Method of This Study

In all above 18 estimations, the one with SOC interval 95%–30% and 11 order polynomial
OCV-SOC curve has the smallest estimated error, which is showed in Table 6.

Table 6. Estimated error of method based on OCV.

Cycle Number Real Available Capacity
(mAH)

Estimated Available
Capacity (mAH) Real SOH Estimated SOH Relative Error

1 1495.3 1486.91 99.69% 99.13% 0.56%
100 1486.2 1473.59 99.08% 98.24% 0.85%
195 1458.4 1450.04 97.23% 96.67% 0.57%
293 1412.3 1430.27 94.15% 95.35% 1.27%
392 1365.9 1394.54 91.06% 92.97% 2.10%
553 1267.3 1308.15 84.49% 87.21% 3.22%

Compared the Table 6 with Table 5, first of all, just like SOH prediction method proposed, in the
early and middle cycles, the relative error of the method based on OCV is smaller than it in the later
cycles. And, the relative error of the method proposed is smaller than that of method based on OCV. The
OCV-SOC curve is affected by the aging of the battery. In other words, the real OCV-SOC relationship
is related to the working condition and the degradation of the battery. Therefore, only using the
OCV-SOC curve obtained only according to the first OCV test is lack of precision. The influence of
hysteresis effect is becoming increasingly with the degradation of the battery; therefore, in the later
cycles of the battery, the estimating errors are bigger than those of in the early or middle cycles.

5.3. Validation and Analysis of Effectiveness

The No. 2 battery is used to test the model trained by the SVM to verify that the algorithm is
not an accidental result but is suitable for this type of LIB. The health factor and the corresponding
discharge capacity (the available capacity) of the No. 2 battery are used as the test data set to test the
SVM model of the No. 1 battery and the error results are shown in Table 7. The OCV test information
about the No. 2 battery is used to test the model shown in Table 8. The meaning of each parameter in
Table 8 is same as the corresponding parameter in Table 5.

Table 7. Estimated error of No.2 battery in test 1.

Cycle Number Real Available Capacity
(mAH)

Estimated Available
Capacity (mAH) Real SOH Estimated SOH Relative Error

60 1492.8 1497.524 99.52% 99.83% 0.31%
120 1473.8 1468.611 98.25% 97.91% 0.35%
180 1453.7 1482.828 96.91% 98.86% 2.00%
240 1429.9 1442.154 95.33% 96.14% 0.85%
300 1407.4 1446.934 93.83% 96.46% 2.81%
360 1400.7 1421.848 93.38% 94.79% 1.49%
420 1353.6 1369.674 90.24% 91.31% 1.19%
480 1318.8 1325.427 87.92% 88.36% 0.50%
540 1238.4 1247.826 82.56% 83.19% 0.76%
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Table 8. Estimated error of No. 2 battery in test 2.

Cycle Number Real Available Capacity
(mAH)

Estimated Available
Capacity (mAH) Real SOH Estimated SOH Relative Error

1 1487.9 1500.000 99.19% 100% 0.81%
100 1480.6 1467.195 98.71% 97.81% 0.91%
195 1451.4 1472.828 96.76% 98.19% 1.45%
293 1400.9 1423.009 93.39% 94.87% 1.58%
392 1365.1 1376.083 91.01% 91.74% 0.80%
553 1226.2 1239.048 81.75% 82.60% 1.04%

Tables 7 and 8 presented that when the trained SVM model of the No. 1 battery is used to estimate
the available capacity and SOH of the No. 2 battery, the relative error of the No. 2 battery is bigger
than that of the No. 1 battery; most of the estimated relative errors are within 2% and the maximum
relative error is less than 3%. The results also indicate that the model built using the No. 1 battery
can be used for all batteries of the same type. In other words, it is feasible to use the terminal voltage
drop information to estimate the available capacity and SOH. It is important to note that, due to the
inherent inconsistencies of the batteries, there are some differences even for the same type of battery.
These differences can explain why the overall estimation error of the No. 2 battery is larger than that
of the No. 1 battery.

6. Conclusions

The SOH is an important index to measure battery performance and is also a hot topic in LIB
research for the renewable energy industry. Combining the cycle life test data and OCV characteristics,
a novel SOH method is proposed by analyzed the current SOH prediction method. This study makes
use of the information on the terminal voltage drop when the battery is resting after it has been charged
to a given voltage as the health factor. This study adopts the SVM to obtain the relationship between
the health factor and the available capacity. Two batteries of the same type were used, one is for SVM
modelling and the other is for verifying. The results show that, using the model built in this paper to
predict the available capacity and SOH of the battery, almost all of the relative errors are within 3%;
as a consequence, the proposed method is feasible.

The reason why it is difficult to charge or discharge a battery to a certain exact SOC is analyzed
in detail. or it only uses features extracted from the terminal voltage drop during the battery rest to
obtain the health factor, the health factor is less dependent on the working condition.

In addition, the experiments of the paper are implemented at room temperature. The level of the
terminal voltage drop during the battery rest may be affected by environmental conditions including
temperature and humidity. Qualitative and quantitative analysis of such effect will be carried out in
future work.
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