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Abstract: The goal of phase retrieval is to recover an unknown signal from the random measurements
consisting of the magnitude of its Fourier transform. Due to the loss of the phase information,
phase retrieval is considered as an ill-posed problem. Conventional greedy algorithms, e.g., greedy
spare phase retrieval (GESPAR), were developed to solve this problem by using prior knowledge
of the unknown signal. However, due to the defect of the Gauss–Newton method in the local
convergence problem, especially when the residual is large, it is very difficult to use this method
in GESPAR to efficiently solve the non-convex optimization problem. In order to improve the
performance of the greedy algorithm, we propose an improved phase retrieval algorithm, which is
called the greedy autocorrelation retrieval Levenberg–Marquardt (GARLM) algorithm. Specifically,
the proposed GARLM algorithm is a local search iterative algorithm to recover the sparse signal from
its Fourier transform magnitude. The proposed algorithm is preferred to existing greedy methods
of phase retrieval, since at each iteration the problem of minimizing the objective function over a
given support is solved by using the improved Levenberg–Marquardt (ILM) method and matrix
transform. A local search procedure such as the 2-opt method is then invoked to get the optimal
estimation. Simulation results are given to show that the proposed algorithm performs better than
the conventional GESPAR algorithm.

Keywords: phase retrieval; Levenberg–Marquardt; sparse signal; compressive sensing

1. Introduction

In recent years, sampling theory has made significant progress [1], which has a great impact on
signal processing and communication. More and more scholars ignore Nyquist’s sampling law and
use a series of filtering operations to accurately recover the signal from its linear sample.

As we know, Fourier analysis and wavelet analysis are essential for these signal processing
techniques, and the mathematical tools involving Fourier and wavelet analysis for sampling and
reconstruction are very important [2,3]. Reference [2] used Riesz bases and frames to study stable
reconstructions and generalize the concept of oblique double frames to the infinite-dimensional
framework. The authors of Reference [3] developed a redundant sampling procedure that can be used
to reduce quantization errors when quantizing measurements before reconstruction.

Concerning reconstruction techniques taking advantage of sparsity in general, the basic work of
processing noise measurements and non-ideal sampling is an important part of recovering unknown
signals from random measurements [4,5]. The problem of linear reconstruction based on Fourier
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analysis has also been recently considered [6–9]. For signal reconstruction techniques that are not
based on sparsity assumptions, the random interpolation of linear interpolation can solve this problem.
The first attempt to stochastically characterize the sampling via point process (PP) was done in
Reference [10], where sample positions are the outcome of a Poisson PP (independently scattered
points). Extensions of such a result to the multidimensional domain can be found in References [11–13]
for homogeneous and inhomogeneous sampling with uncertainties, while PPs taking stochastic
repulsion/attraction into account (i.e., the Ginibre PP and the Gauss–Poisson PP) have been recently
considered [14,15]. In addition, the machine learning approach based on Gaussian random processes
can also be used to solve signal reconstruction problems [16–19].

In this paper, the method we use to reconstruct the signal is phase retrieval. Phase retrieval is a
typical signal reconstruction problem which seeks to recover a signal or image from the magnitude of
linear measurements [20]. This problem occurs in many application areas, such as crystallography [21],
optical imaging [22], waveform optimization [23], and other areas [24–26]. In general, because of
the loss of Fourier phase information, the problem of phase retrieval is ill-posed and non-convex.
The existing approach to address this problem involves exploiting prior knowledge of the signal
domain [27–30]. Here we focus on the recovery of one-dimensional sparse signals from their Fourier
measurements, which has been emphasized in recent works. The most popular method for phase
retrieval is based on the use of alternating projections between the different constraints in time and
the Fourier magnitude constraints [31–33], pioneered by Gerchberg and Saxton, and later extended by
Fienup. The Gerchberg and Saxton (GS) algorithm in [32] uses image amplitude and Fourier transform
spectral amplitude as a priori information to reconstruct the image by alternately applying amplitude
constraints in the object and frequency domains. However, the GS algorithm converges slowly and is
prone to stagnation. Fienup et al. have improved the GS algorithm and proposed the addition of error
reduction (ER) and hybrid input–output (HIO) [31]. ER and HIO algorithms are used to determine the
image pixel estimation value obtained in the object domain by iteratively alternating projection in the
object domain and the frequency domain, setting the pixel value that does not satisfy the constraint to
zero, and replacing the image Fourier amplitude with the measured value in the frequency domain.

Another state-of-the-art method uses the semi-definite programming (SDP) technique and
low-rank matrix recovery framework [34–36]. Candes et al. proposed the PhaseLift algorithm [36],
which involves lifting the phase retrieval problem that satisfies the non-convex constraint, and directly
transforming this problem into solving the Hermitian matrix with rank one, achieving the
transformation from non-convex constraints to convex constraints. However, because of the matrix
lifting procedure, these SDP algorithms are unsuitable for large-scale signal recovery problems.
These algorithms are simple, and it is easy to obtain a local minimum solution.

In recent years, many researchers have begun to explore the relationship between phase retrieval
and structural information processing, such as applying the sparse representation of image structures to
phase retrieval problems [37,38]. Sparse representation is one of the core research issues of compression
sensing. It utilizes a linear combination of a small number of elements to describe the signal in
some bases or dictionaries, simplifying the representation of complex signals [39,40]. Hence it is
widely used in multiple image processing fields [41–43]. More recently, several robust phase recovery
algorithms combating Gaussian noise have been proposed for targeting the noise in the measured
values. For example, a fast local search method called greedy sparse phase retrieval (GESPAR) [44]
is used. This is based on a fast 2-opt local search method with the known sparsity priors, and by
iteratively updating the support of the underlying signal, the damped Gauss–Newton method is used
to estimate the local minimum of the objective function. However, this algorithm cannot be used
efficiently due to the defect of the Gauss–Newton method in the local convergence problem, especially
when the residual is large.

In order to improve the calculation efficiency, this paper proposes an improved efficient local
alternative search algorithm for sparse phase retrieval. First, the phase retrieval problem is formulated
as an optimization, in terms of minimizing the sum of squared errors with support information.
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We then use proprietary techniques to estimate the signal, using a continuous optimization algorithm
to ensure convergence to the critical point. Compared with the existing methods, our method—referred
to as greedy autocorrelation retrieval Levenberg–Marquardt (GARLM)—is easy to implement and can
recover signals more effectively.

The rest of the paper is organized as follows: the formulation of the phase retrieval and the
support information is discussed in Section 2. In Section 3, after a brief overview of the general
Levenberg–Marquardt (LM) method and 2-opt method, we describe our proposed algorithm in detail.
Simulation results are presented in Section 4, and conclusions are drawn in Section 5.

2. Problem Formulation

In the phase retrieval problem, we consider an estimation problem of a N-dimensional complex
signal vector x from M magnitude-squared linear measurements y. A basic phase retrieval model with
Fourier measurements is related as:

yi =

∣∣∣∣∣N−1

∑
n=0

xne−
2π j(n−1)(i−1)

M

∣∣∣∣∣
2

, i = 1, · · · , M. (1)

This formulation (Equation (1)) is equivalent to the matrix-vector multiplication yi = |Fix|2,
where |·|2 denotes the element-wise absolute squared value, F ∈ CN×N denotes the discrete Fourier

transform (DFT) matrix with elements φ(n−1)(i−1) =
(

e−2π j/M
)(n−1)(i−1)

, and Fi is the ith row of F.
Here the signal x is known to be sparse, and the measurements yi are known. To recover the signal x
with known sparsity level s from the given measurements yi, we consider a minimizing the sum of
squared errors cost as:

min
x

N−1

∑
i=0

(|Fix|2 − yi)
2

s.t. ‖x‖0 ≤ s. (2)

The matrix-vector multiplication Fix is the fast Fourier transform (FFT), which can be written in
terms of the autocorrelation function, i.e.,

|Fix|2 =
N
∑

n=0
φ(n−1)(i−1)xn

N
∑

v=0
φ−(v−1)(i−1)x∗v

= ∑N
n=0 ∑N

v=0 xnx∗vφ(n−v)(i−1)

= ∑N
k=−N φkm ∑

min(N+k,N)
n=max(k,0) xnx∗n−k

= ∑N
k=−N φkmgk,

(3)

where gk =
min(N+k,N)

∑
n=max(k,0)

xnx∗n−k , k = N, · · · ,−1, 0, 1, · · · , N is the autocorrelation sequence of x, and

obviously gk can be obtained by the inverse DFT of y. Here, referring to GESPAR [44], we assume that
no support cancelations occur in gk, then we divide the support of the signal x into two parts: S1 and
S2. S1 denotes the known indices in the support, and S2 is the unknown indices in the off-support.

With these notations, defining Ai = <(Fi)
T<(Fi) +=(Fi)

T=(Fi), Equation (2) can be rewritten as:

min
x

f (x) ≡
N−1
∑

i=0

(
xTAix− yi

)2 ,

s.t. ‖x‖0 ≤ s,
S1 ⊆ supp(x) ⊆ S2,

(4)

which will be the studied formulation in the next section.

3. Greedy Autocorrelation Retrieval Levenberg–Marquardt Algorithm

In this section, we briefly describe how to directly use existing methods to design a new algorithm
called GARLM that solves Formulation (4) with high efficiency.
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3.1. The Improved Levenberg–Marquardt Method

We first invoked an improved Levenberg–Marquardt (ILM) [45] method under the framework
of gradient. Compared to the damped Gauss–Newton (DGN) method in [44], an ILM algorithm can
guarantee that the iterative process always decreases when convergence is slow, and it can also ensure
that the iterative process converges quickly in the neighborhood of the solution.

Similar to the DGN method, the ILM method is a common algorithm for solving nonlinear
optimal problems, and it can only handle quadratic functions like Formulation (4). In order to avoid
the latter algorithm being trapped into a local optimal solution when invoking the ILM algorithm, we
rewarded a weight parameter λi for f (x), and the simulation results show that this effectively reduced
the possibility of getting into a local optimal solution. The weight λi is 1 or 3 with equal probability.
We can invoke the ILM algorithm to solve the minimizing objective function f (x), i.e.,

f (x) = ∑N
i=1 λi

(
yi − xTAix

)2
= ∑N

i=1
(√

λi
(
yi − xTAix

))2 ,
s.t. ‖x‖0 ≤ s,

S1 ⊆ S ⊆ S2.
(5)

Here we denote z to be a signal vector consisting of non-zero elements of x. Given the sparsity
level s of signal x, we can get z ∈ Rs corresponding to x = Isz, where the matrix Is ∈ RN×s is the s
columns of the identity matrix. Therefore Formulation (5) can be written as:

h(z) = ∑N
i=1

(√
λi(yi − (Isz)

TAiIsz)
)2

= ∑N
i=1
(√

λi(yi − zTIT
s AiIsz)

)2

= ∑N
i=1
(√

λi(yi − zTBiz)
)2

=
N
∑

i=1
p2

i (z),

(6)

where Bi = IT
s AiIs, and and pi(z) =

√
λi
(
yi − zTBiz

)
. At each iteration of ILM, we expand and

approximate the first order Taylor of pi(z) around zk as:

pi ≈ pi(zk) +∇pi(zk)
T(z− zk), (7)

which is a linear least squares problem. Then via the ILM method we can get the solution to Formulation
(7):

zk+1 = zk + dk = zk −
(

2J(zk)
T J(zk) + µI

)−1
2J(zk)

T pi, (8)

where the element of the Jacobian matrix J(zk) is Jij = ∂pi/∂zj, which means the ith row of J(zk)

is ∇pi(zk)
T = 2(Bizk)

T , and the matrix I ∈ Rs×s is an identity matrix. At each iteration, pi can be
computed efficiently via FFT of x, which can also be used in the calculation of J(zk). The step-size in
Equation (8) is:

dk = −
(

2J(zk)
T J(zk) + µI

)−1
2J(zk)

T pi, (9)

where the damping term µ is chosen via the trust region method [46], which is an important technique
in the optimization algorithm to ensure global convergence. To ensure µ, first we must ensure the gain
ratio q which is given by:

q = ∆hk/∆Lk =
(h(zk)− h(zk + dk))(

1
2 (dk)

T
(

µdk − J(zk)
T pi

)) ,

where ∆hk = h(zk)− h(zk + dk) is the actual decrease of h at the kth iteration, and ∆Lk = L(0)− L(dk)

means the predicted decline of h, and L(dk) is the approximate function of h. If q is large, indicating
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that L(dk) is very close to h(zk + dk), we can reduce the damping term µ so that the algorithm is
closer to the Gauss–Newton algorithm at the next iteration. If q is small or negative, it means poor
approximation. We need to increase µ and reduce the step-size, so that the algorithm is closer to the
gradient descent method. Algorithm 1 describes the ILM method in detail. We choose the initial point
z0 as a white random Gaussian vector with zero mean and unit variance, the initial damping term
µ = 1, the stopping parameter ξ = 10−6, and the maximum allowed iterations L = 100.

Algorithm 1. ILM Algorithm.

Input: Symmetric matrices Ai, and measurement yi, the given indices set S, the maximum number of
iterations L, and the stopping threshold ξ.
Output: The optimal estimate of sparse signal x of (5).

1. Generate an initial vector x0 with the given support S, then we have z0 = x0(S), the initial damping term
µ = 1, and the initial parameter v = 2.

2. For k = 0, 1, · · · , L do

3. The solution of the linear least squares problem (6) is zk+1 = zk −
(

2J(zk)
T J(zk) + µI

)−1
2J(zk)

T , the ith

row of J(zk) is ∇pi(zk)
T = 2(Bizk)

T , and the damping term µ is determined by q.

4. The gain ratio q = (h(zk)− h(zk + dk))/
(

0.5 ∗ (dk)
T
(

µdk − J(zk)
T pi

))
if q > 0 v=2;

zk = zk+1; µ = µ ∗max
{

1/3, 1− (2q− 1)3
}

else µ = µ ∗ v; v = 2v.

5. If ‖ xk+1 − xk ‖< ξ, then stop the iteration, otherwise go to step 3.
6. End for

3.2. 2-Opt Method of the Support Information

Similar to the GESPAR algorithm, our algorithm invokes a local search procedure, just like the
2-opt method. First, we have an initial random support set S of the signal x, and S satisfies the support
constraints S1 ⊆ S ⊆ S2. Then, the two indices i in S1 and j in S2 are exchanged to get a new support
S′. The swapped index i in S1 corresponds to the current iterate value mini|xk|, and the swapped index
j in S2 corresponds to maxj∇ f (xk). After the exchange is completed, our algorithm will invoke the
ILM algorithm with new support S′ to get the optimal solution of Formulation (5). After the optimal
value is output, it will be exchanged until the optimal solution is obtained. Algorithm 2 describes the
2-opt method in detail, and we set the total number of index replacements T = 6400.

Algorithm 2. 2-Opt Algorithm.

Input: Symmetric matrices Ai, the measurement yi, the stopping threshold τ, and the maximum number of
index exchanging T.
Output: The optimal estimate of sparse signal x for Formulation (5).

1. Generate a random index set S0, then invoke the ILM algorithm x0 = ILM[Ai, yi, S0, L, ξ]
2. For k = 1, 2, · · · do
3. Let i = mini|xk|, j = maxj∇ f (xk), make an exchange between them to generate a new index set Sk.

4. Invoke ILM algorithm xk+1 = ILM[wi, yi, Sk, L, ξ] and advance T.
5. If f (xk+1) < f (xk), then advance k, otherwise continue to exchange up to T. Stop if f (xk+1) < τ, and the

output is xk+1.
6. End for
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4. Simulation Results and Discussions

In this section we conducted some experimental simulations to investigate the performance of
the proposed GARLM algorithm, comparing it to the typical greedy algorithm GESPAR in various
situations, such as recovery probability, robustness to noise, and effectiveness.

We considered a random vector x of length n as the original unknown signal with randomly
chosen elements, the sparsity level of this signal as k, and the magnitude square of its N-point DFT as
y, as the sampling measurement. Our goal was to recover the unknown signal—which is known to be
sparse—from the magnitude square of its Fourier transform. To achieve this target, we listed some
important system parameters. The number of maximum indices in the index set S is n = 64 and the
number of the sampling measurement yi is N = 128, and the two algorithms both use τ = 10−6 and
T = 6400 to recover the signal x. All the experiments were performed in MATLAB on a desk station
with a two 2.3 GHz Intel Core i5 CPU and 4 GB of ROM.

We chose to use signal recovery probability to measure the effectiveness of different algorithms
for signal recovery. The signal recovery probability was defined as the ratio of successful recovery
signals in 100 simulations. Figure 1 shows the comparison of the effectiveness of the signal recovery
probability of different algorithms, and the probability of successful recovery is shown by different
sparsity levels. Here we compare the signal recovery probabilities of the GARLM and GESPAR
algorithms at the same sparsity, and in each simulation both the original signal and its support are
randomly reset. We observed that both the GARLM and GESPAR algorithms had a high successful
recovery probability, the signal recovery probability was close to 100% before the signal sparsity level k
was less than or equal to 13, and the performance of GARLM was better because its successful recovery
probability began to decline up to k = 16. As the sparsity level k continued to increase, we observed
that the probability of successful recovery of the two algorithms decreased, but the performance of the
GARLM algorithm was still obviously better than the GESPAR algorithm.
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Figure 1. Recovery probability versus sparsity. GARLM is described in Section 3, and GESPAR is the
method presented in [44].

Although it was expected that our algorithm should outperform GESPAR in the measurement
setup in a noise-free environment, in real life the measurements we get are always accompanied by
noise, which degrades the performance of the algorithm. It is therefore necessary to consider the
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effectiveness of the algorithm in the presence of noise. We wanted to observe its normalized mean
square error (NMSE) performances with different signal-to-noise ratio (SNR) values.

In our simulation, we still chose the random vector x of length n with randomly chosen elements
as the original unknown signal, its sparsity level as k, and the magnitude square of its N-point DFT
as y. We considered adding random white Gaussian noise n to the measurements y, y = |Fx|2 + n.
To recover the unknown signal, our algorithm GARLM chose n = 64, N = 128, τ = 10−6, T = 10000,
and SNR = {10, 20, 30, 40} dB, as well as GESPAR. Figure 2 shows the NMSE performances versus
sparsity level k at different SNR values—the NMSE defined as NMSE =

‖x−x̂‖2
‖x‖2

. We observed that
when SNR = 10, the overall performance of the GARLM algorithm was better than the GESPAR
algorithm. With the increase of sparsity k, the noise robustness of the GARLM algorithm was better
than the GESPAR algorithm, except for k = 9. This situation also occurred in other SNR values.
We observed that as the SNR increases, the performance of our algorithm naturally increased, and it
clearly performed better than GESPAR in terms of noise robustness under most SNR values.
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values. GARLM is described in Section 3, and GESPAR is the method presented in [44].

Figure 3 shows the recovery probability under different channel sparsity levels under different
SNR environments. We observed an almost 100% successful recovery with SNR > 10 before the
sparsity k = 10. The recovery probability at SNR = 10 also had a very high probability before the
sparsity level k < 8, which showed that the effectiveness of the algorithm is guaranteed even under
low-SNR conditions. As the SNR increased, the effectiveness of the algorithm gradually increased.
Hence Figure 3 implies that our proposed algorithm performed well under different SNRs.
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5. Conclusions

In this paper, we proposed an improved and efficient local alternative search algorithm for
phase retrieval named GARLM. Specifically, the proposed GARLM algorithm is a local search iterative
algorithm to recover the sparse signal from its Fourier transform magnitude. The proposed algorithm is
preferred to existing greedy methods of phase retrieval. The problem of phase retrieval is a non-convex
problem of minimizing the sum of squared errors with support information. To recover the unknown
signal, we first transformed this non-convex problem to a linear least squares problem, and then
invoked ILM and 2-opt algorithms to recover the original signal. Simulation results have confirmed
that compared to the classic greedy algorithm GESPAR for phase retrieval, our algorithm performs
well in terms of recovery probability, robustness to noise, and effectiveness. The proposed algorithm
GARLM has also proved to be effective in solving phase retrieval problems and performs well in terms
of noise robustness via simulations.
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