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Abstract: Pneumonia affects 7% of the global population, resulting in 2 million pediatric deaths every
year. Chest X-ray (CXR) analysis is routinely performed to diagnose the disease. Computer-aided
diagnostic (CADx) tools aim to supplement decision-making. These tools process the handcrafted
and/or convolutional neural network (CNN) extracted image features for visual recognition.
However, CNNs are perceived as black boxes since their performance lack explanations. This is
a serious bottleneck in applications involving medical screening/diagnosis since poorly interpreted
model behavior could adversely affect the clinical decision. In this study, we evaluate, visualize,
and explain the performance of customized CNNs to detect pneumonia and further differentiate
between bacterial and viral types in pediatric CXRs. We present a novel visualization strategy to
localize the region of interest (ROI) that is considered relevant for model predictions across all the
inputs that belong to an expected class. We statistically validate the models’ performance toward the
underlying tasks. We observe that the customized VGG16 model achieves 96.2% and 93.6% accuracy
in detecting the disease and distinguishing between bacterial and viral pneumonia respectively.
The model outperforms the state-of-the-art in all performance metrics and demonstrates reduced
bias and improved generalization.

Keywords: computer vision; computer-aided diagnosis; convolutional neural networks; pediatric;
pneumonia; visualization; explanation; chest X-rays; clinical decision

1. Introduction

Pneumonia is a significant cause of mortality in children across the world. According to the World
Health Organization (WHO), around 2 million pneumonia-related deaths are reported every year in
children under 5 years of age, making it the most significant cause of pediatric death [1]. Pneumonia
sourced from bacterial and viral pathogens are the two leading causes and require different forms of
management [2]. Bacterial pneumonia is immediately treated with antibiotics while viral pneumonia
requires supportive care, making timely and accurate diagnosis important. Chest X-ray (CXR) analysis
is the most commonly performed radiographic examination for diagnosing and differentiating the
types of pneumonia [3]. However, rapid radiographic diagnoses and treatment are adversely impacted
by the lack of expert radiologists in resource-constrained regions where pediatric pneumonia is highly
endemic with alarming mortality rates. Figure 1 shows sample instances of normal and infected
pediatric CXRs.
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Figure 1. Pediatric CXRs: (a) Normal CXR showing clear lungs with no abnormal opacification; (b) 
Bacterial pneumonia exhibiting focal lobar consolidation in the right upper lobe; (c) Viral pneumonia 
manifesting with diffuse interstitial patterns in both lungs. 

Computer-aided diagnostic (CADx) tools aim to supplement clinical decision-making. They 
combine elements of computer vision and artificial intelligence with radiological image processing 
for recognizing patterns [4]. Much of the published literature describes machine learning (ML) 
algorithms that use handcrafted feature descriptors [5] that are optimized for individual datasets and 
trained for specific variability in size, orientation, and position of the region of interest (ROI) [6]. In 
recent years, data-driven deep learning (DL) methods are shown to avoid the issues with handcrafted 
features through end-to-end feature extraction and classification.  

Convolutional neural networks (CNNs) belong to a class of DL models that are prominently 
used in computer vision [7]. These models have multiple processing layers to learn hierarchical 
feature representations from the input pixel data. The features in the early network layers are 
abstracted through the mechanisms of local receptive fields, weight sharing, and pooling to form rich 
feature representations toward learning and classifying the inputs to their respective classes. Due to 
lack of sufficiently extensive medical image data, CNNs trained on large-scale data collections such 
as ImageNet [8] are used to transfer the knowledge of learned representations in the form of generic 
image features to the current task. CNNs are also shown to deliver promising results in object 
detection and localization tasks [9].  

The astounding success of deep CNNs coupled with lack of explainable decision-making has 
resulted in a perception of doubt. This poorly understood model behavior has limited their use in 
routine clinical practice [10]. There aren’t enough studies pertaining to the visualization and 
interpretation of CNNs in medical image analysis/understanding applications. In this article, we (i) 
detect and distinguish pneumonia types in pediatric CXRs, and (ii) explain the internal operations 
and predictions of CNNs applied to this challenge. 

In this study, we evaluate, visualize, and explain the predictions of CNN models in classifying 
pediatric CXRs to detect pneumonia and furthermore to differentiate between bacterial and viral 
pneumonia to facilitate swift referrals that require urgent medical intervention. We propose a novel 
method to visualize the class-specific ROI that is considered significant for correct predictions across 
all the inputs that belong to an expected class. We evaluate and statistically validate the performance 
of different customized CNNs that is trained end-to-end on the dataset under study to provide an 
accurate and timely diagnosis of the pathology. The work is organized as follows: Section 2 discusses 
the related work, Section 3 elaborates on the materials and methods, Section 4 discusses the results, 
and Section 5 concludes the study. 

2. Related Work 

A study of the literature reveals several works pertaining to the use of handcrafted features for 
detecting pneumonia in chest radiographs [11–14]. However, few studies reported the performance 
of DL methods applied to pneumonia detection in pediatric CXRs. Relatively few researchers 

Figure 1. Pediatric CXRs: (a) Normal CXR showing clear lungs with no abnormal opacification;
(b) Bacterial pneumonia exhibiting focal lobar consolidation in the right upper lobe; (c) Viral pneumonia
manifesting with diffuse interstitial patterns in both lungs.

Computer-aided diagnostic (CADx) tools aim to supplement clinical decision-making.
They combine elements of computer vision and artificial intelligence with radiological image processing
for recognizing patterns [4]. Much of the published literature describes machine learning (ML)
algorithms that use handcrafted feature descriptors [5] that are optimized for individual datasets
and trained for specific variability in size, orientation, and position of the region of interest (ROI) [6].
In recent years, data-driven deep learning (DL) methods are shown to avoid the issues with handcrafted
features through end-to-end feature extraction and classification.

Convolutional neural networks (CNNs) belong to a class of DL models that are prominently used
in computer vision [7]. These models have multiple processing layers to learn hierarchical feature
representations from the input pixel data. The features in the early network layers are abstracted
through the mechanisms of local receptive fields, weight sharing, and pooling to form rich feature
representations toward learning and classifying the inputs to their respective classes. Due to lack
of sufficiently extensive medical image data, CNNs trained on large-scale data collections such as
ImageNet [8] are used to transfer the knowledge of learned representations in the form of generic
image features to the current task. CNNs are also shown to deliver promising results in object detection
and localization tasks [9].

The astounding success of deep CNNs coupled with lack of explainable decision-making has
resulted in a perception of doubt. This poorly understood model behavior has limited their use
in routine clinical practice [10]. There aren’t enough studies pertaining to the visualization and
interpretation of CNNs in medical image analysis/understanding applications. In this article,
we (i) detect and distinguish pneumonia types in pediatric CXRs, and (ii) explain the internal
operations and predictions of CNNs applied to this challenge.

In this study, we evaluate, visualize, and explain the predictions of CNN models in classifying
pediatric CXRs to detect pneumonia and furthermore to differentiate between bacterial and viral
pneumonia to facilitate swift referrals that require urgent medical intervention. We propose a novel
method to visualize the class-specific ROI that is considered significant for correct predictions across
all the inputs that belong to an expected class. We evaluate and statistically validate the performance
of different customized CNNs that is trained end-to-end on the dataset under study to provide an
accurate and timely diagnosis of the pathology. The work is organized as follows: Section 2 discusses
the related work, Section 3 elaborates on the materials and methods, Section 4 discusses the results,
and Section 5 concludes the study.

2. Related Work

A study of the literature reveals several works pertaining to the use of handcrafted features for
detecting pneumonia in chest radiographs [11–14]. However, few studies reported the performance of
DL methods applied to pneumonia detection in pediatric CXRs. Relatively few researchers attempted to
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offer a qualitative explanation of their model’s learned behavior, internal computations, and predictions.
The authors of [15] used a pretrained InceptionV3 model as a fixed feature extractor to classify
normal and pneumonia-infected pediatric CXRs and further distinguish between bacterial and viral
pneumonia with an area under the curve (AUC) of 0.968 and 0.940 respectively. In another study [4],
the authors used a gradient-based ROI localization algorithm to detect and spatially locate pneumonia
in CXRs. They released the largest collection of the National Institutes of Health (NIH) CXR dataset
that contains 112,120 frontal CXRs, the associated labels are text-mined from radiological reports
using natural language processing tools. The authors reported an AUC of 0.633 toward detecting
the disease. The authors of [16] used a gradient-based visualization method to localize the ROI with
heat maps toward pneumonia detection. They used a 121-layer densely connected neural network
toward estimating the disease probability and obtained an AUC of 0.768 toward detecting pneumonia.
The authors of [17] used an attention-guided mask inference algorithm to locate salient image regions
that stand indicative of pneumonia. The features of local and global network branches in the proposed
model are concatenated to estimate the probability of the disease. An AUC of 0.776 is reported for
pneumonia detection.

3. Materials and Methods

3.1. Data Collection and Preprocessing

We used a set of pediatric CXRs that have been made publicly available by the authors of [15].
The authors have obtained approvals from the Institutional Review Board (IRB) and Ethics Committee
toward data collection and experimentation. The dataset includes anteroposterior CXRs of children
from 1 to 5 years of age collected from Guangzhou Women and Children’s Medical Center in
Guangzhou, China. The characteristics of the data and its distribution are shown in Table 1. The dataset
is screened for quality control to remove unreadable and low-quality radiographs and curated by
experts to avoid grading errors.

Table 1. Dataset and its characteristics.

Category Training Samples Test Samples File Type

Normal 1349 234 JPG
Bacterial 2538 242 JPG

Viral 1345 148 JPG

The CXRs contain regions other than the lungs that do not contribute to diagnosing pneumonia.
Under these circumstances, the model may learn irrelevant feature representations from the underlying
data. Using an algorithm based on anatomical atlases [18] to automatically detect the lung ROI
can avoid this. A reference set of patient CXRs with expert-delineated lung masks are used as
models [19] to register with the objective pediatric CXR. When presented with an objective chest
radiograph, the algorithm uses the Bhattacharyya distance measure to select the most similar model
CXRs. The correspondence between the model CXRs and objective CXR is computed by modeling the
objective CXR with local image feature representations and identifying similar locations by applying
SIFT-flow algorithm [20]. This map is the transformation applied to the model lung masks to transform
them into the approximate lung model for the objective chest radiograph. The lung boundaries
are cropped to the size of a bounding box to include all the lung pixels that constitute the ROI for
the current task. The baseline data (whole CXRs) and the cropped bounding box are resampled
to 1024 × 1024 pixel dimensions and mean normalized to assist the models in faster convergence.
The detected lung boundaries for the sample pediatric CXRs are shown in Figure 2.
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Residual networks are proposed by [23] that won the ImageNet Large Scale Visual Recognition 
(ILSVRC) Challenge in 2015. These networks tackle the issue of representational bottlenecks by 
injecting the information from the earlier network layers downstream to prevent loss of information. 
They also prevent the gradients from vanishing by introducing a linear information carry track to 
propagate gradients through deep network layers. In this study, we propose a customized CNN that 
is made up of six residual blocks, as shown in Figure 4. 

3.2.3. Inception CNN 

The Inception architecture, proposed by [24] consists of independent modules having parallel 
branches that are concatenated to form the resultant feature map that is fed into the succeeding 
modules. Unlike sequential CNN, this method of stacking modules help in separately learning the 
spatial and channel-wise feature representations. The 1 × 1 convolution filters used in these modules 
factor out the channel and spatial feature learning by computing features from the channels without 
mixing spatial information by looking at one input tile at a given point in time. We construct a 
customized Inception CNN by stacking six InceptionV3 modules [23], as shown in Figure 5. 

Figure 2. Detected boundaries in sample pediatric CXRs.

3.2. Configuring CNNs for Pneumonia Detection

We evaluated the performance of different customized CNNs and a VGG16 model in detecting
pneumonia and furthermore distinguishing between bacterial and viral types to facilitate timely and
accurate disease diagnosis. We evaluated the performance of three different customized CNN architectures:
(i) Sequential CNN; (ii) CNN with residual connections (Residual CNN); and, (iii) CNN with Inception
modules (Inception CNN).

3.2.1. Sequential CNN

A sequential CNN model belongs to the class of deep, feed-forward artificial neural networks
that are commonly applied to visual recognition [7]. It is a linear stack of convolutional, nonlinear,
pooling, and dense layers. We optimized the sequential CNN architecture and its hyperparameters
for the datasets under study through Bayesian learning [21,22]. The procedure uses a Gaussian
process model of an objective function and its evaluation to optimize the network depth, learning
rate, momentum, and L2-regularization. These parameters are passed as arguments in the form
of optimization variables to evaluate the objective function. We initialized the search ranges to
[110], [1 × 10−7 1 × 10−1], [0.7 0.99], and [1 × 10−10 1 × 10−2] for the network depth, learning rate,
momentum, and L2-regularization respectively. The objective function takes these variables as input,
trains, validates and saves the optimal network that gives the minimum classification error on the test
data. Figure 3 illustrates the steps involved in optimization.

3.2.2. Residual CNN

In a sequential CNN, the succeeding network layer learns the feature representations from only the
preceding layer. These networks are constrained by the level of information they can process. Residual
networks are proposed by [23] that won the ImageNet Large Scale Visual Recognition (ILSVRC)
Challenge in 2015. These networks tackle the issue of representational bottlenecks by injecting the
information from the earlier network layers downstream to prevent loss of information. They also
prevent the gradients from vanishing by introducing a linear information carry track to propagate
gradients through deep network layers. In this study, we propose a customized CNN that is made up
of six residual blocks, as shown in Figure 4.

3.2.3. Inception CNN

The Inception architecture, proposed by [24] consists of independent modules having parallel
branches that are concatenated to form the resultant feature map that is fed into the succeeding modules.
Unlike sequential CNN, this method of stacking modules help in separately learning the spatial and
channel-wise feature representations. The 1 × 1 convolution filters used in these modules factor out
the channel and spatial feature learning by computing features from the channels without mixing
spatial information by looking at one input tile at a given point in time. We construct a customized
Inception CNN by stacking six InceptionV3 modules [23], as shown in Figure 5.
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Figure 5. The architecture of customized InceptionV3 CNN: (a) InceptionV3 module; (b) Customized
Inception CNN stacked with six InceptionV3 modules.

3.2.4. Customized VGG16

VGG16 is proposed and trained by the Oxford’s Visual Geometry Group (VGG) [25] for object
recognition. The model scored first in ILSVRC image localization and second in image classification
tasks. We customized the architecture of VGG16 model and evaluated its performance toward the
tasks of interest. The model is truncated at the deepest convolutional layer and added with a global
average pooling (GAP) and dense layer as shown in Figure 6. We refer to this model as customized
VGG16 in this study.

The hyperparameters of the customized residual, Inception and VGG16 models are optimized
through a randomized grid search [26] that searches and optimizes the value of hyperparameters
including learning rate, momentum, and L2-regularization. The search ranges are initialized to
[1 × 10−6 1 × 10−1], [0.7 0.99], and [1 × 10−10 1 × 10−1] for the learning rate, momentum, and
L2-regularization respectively. Callbacks are used to view the internal states during training and
retain the best performing model for analysis. We performed hold-out testing with the test data after
every step. The performance of customized CNNs are evaluated in terms of the following performance
metrics: (i) accuracy; (ii) AUC; (iii) precision; (iv) recall; (v) specificity; (vi) F-Score; and, (vii) Matthews
Correlation Coefficient (MCC). We used the NIH Biowulf Linux cluster (https://hpc.nih.gov/) and
the high performance computing facility at the National Library of Medicine (NLM) for computational
analyses. Software frameworks included with Matlab R2017b are used to configure and evaluate
the sequential CNN along with Keras and Tensorflow backend for other customized models used in
this study.

https://hpc.nih.gov/
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dense layer.

3.3. Visualization Studies

The interpretation and understanding of CNNs is a hotly debated topic in ML, particularly in
the context of clinical decision-making [4]. CNNs are perceived as black boxes and it is imperative to
explain their working to build trust in their predictions [9]. This helps to understand their working
principles, assist in hyperparameter tuning and optimization, identify and get an intuition of the reason
behind the model failures, and explain the predictions to the end-user prior to possible deployment.
The methods of visualizing CNNs are broadly categorized into (i) preliminary methods that help to
visualize the overall structure of the model; and, (ii) gradient-based methods that manipulate the
gradients from the forward and backward pass during training [27]. We demonstrated the overall
structure of the CNNs, as shown in Figures 4–6.

3.3.1. Visual Explanation through Discriminative Localization

The trained model focusses on discriminative parts of the image to arrive at the predictions.
Class Activation Maps (CAM) help in visualizing and debugging model predictions, particularly in
case of a prediction error when the model predicts based on the surrounding context [27]. The output
of the GAP layer is fed to the dense layer to identify the discriminative ROI localized to classify the
inputs to their respective classes. Let Gm denote the GAP that spatially averages the m-th feature map
from the deepest convolutional layer, and wp

m denote the weights connecting the m-th feature map to
the output neuron corresponding to the expected class p. A prediction score Sp at the output neuron is
expressed as a weighted sum of GAP as shown in Equation (1).

Sp = ∑m wp
m ∑x,y gm(x, y) = ∑x,y ∑m wp

m gm(x, y) (1)

The value gm (x, y) denotes the m-th feature map activation in the spatial location (x, y). The CAM
for the class p denoted by CAMp is expressed as the weighted sum of the activations from all the feature
maps with respect to the expected class p at the spatial location (x, y) as shown in Equation (2).

CAMp(x, y) = ∑m wp
mgm(x, y) (2)

CAM gives information pertaining to the importance of the activations at each spatial grid (x,
y) to classify an input image to its expected class p. It is rescaled to the size of the input image to
locate the discriminative ROI used to classify the image to its expected class. This helps to answer
queries pertaining to the ability of the model in predicting and localizing the ROI specific to its category.
We propose a novel visualization method called average-CAM to represent the class-level ROI that is most
commonly considered significant for correct prediction across all the inputs that belong to a given class.
The average-CAM for the class p is computed by averaging the CAM outputs as shown in Equation (3).

average− CAMp(x, y) = ∑a CAMa
p(x, y) (3)

CAMa
p(x, y) denotes the CAM for the a-th image in the expected class p. This helps to identify

the ROI specific to the expected class, improve the interpretability of the internal representations,
and explainability of the model predictions.
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CAM visualization can only be applied to networks with a GAP layer. Gradient-weighted CAM
(grad-CAM) is a strict generalization of CAM that can be applied to all existing CNNs [28]. It uses
the gradient information of the expected class, flowing back into the deepest convolutional layer to
generate explanations. Grad-CAM produces the weighted sum of all the feature maps in the deepest
convolutional layer for the expected class p as shown in Equation (4). A ReLU nonlinearity is applied
to avoid the negative weights from influencing the class p. This is based on the consideration that the
pixels with negative weights are likely to belong to other classes.

grad− CAMp(x, y) = ReLU
(
∑m β

p
mgm(x, y)

)
(4)

The value β
p
m is obtained by computing the gradient of the prediction score Sp with respect to the

m-th feature map as shown in Equation (5).

β
p
m = ∑x,y

∂Sp

∂gm(x, y)
(5)

According to Equations (1) and (4), β
p
m is precisely the same as wp

m for networks with
a CAM-compatible architecture. The difference lies in applying the ReLU non-linearity to exclude
the influence of negative weights that are likely to belong to other classes. The average-grad-CAM
for the class p is computed by averaging the grad-CAM outputs as shown in Equation (6). The value
grad-CAMa

p(x, y) denotes the grad-CAM for the a-th image in the expected class p.

average− grad− CAMp(x, y) = ∑
a

grad− CAMa
p(x, y) (6)

3.3.2. Model-Agnostic Visual Explanations

Local interpretable model-agnostic explanations (LIME) is a visualization tool proposed by [29].
It helps to provide a qualitative interpretation of the relationship between perturbed input instances
and the model predictions. The input image is divided into contiguous superpixels and a dataset
of perturbed input instances is constructed by turning on/off these interpretable components.
The perturbed instances are weighted by their similarity to the explained instance. The algorithm
approximates the CNN by a sparse, linear model that is weighted only in the neighborhood of the
explained predictions. An explanation is generated in the form of superpixels with the highest positive
weights that demonstrate the discriminative ROI localized by the model to classify the image to
its expected class. Let k ∈ Rd be the explained instance, and k′ ∈ {0, 1}d, the binary vector that
denotes the presence/absence of a superpixel. Let g ∈ G denote the explanation where G is a class of
interpretable linear models. Let
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(g) remains low enough for interpretability. Equation (7) gives the explanations produced
by LIME.

β(k) = argmin
g∈G

P(m, g, Πk) + (g) (7)

The value P (m, g, Πk) is approximated by drawing samples weighted by Πk. Equation (8) shows
an exponential kernel defined on the L2-distance function (J) with widthe. For a given input perturbed
sample b′ ∈ {0, 1}d′ containing a fraction of non-zero elements, the label for the explanation model m(b)
is obtained by recovering the sample in the original representation b ∈ Rd as shown in Equation (9).

Πb
k = exp

(
−J

(y, b)2

e2

)
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P(m, g, Πk) = ∑b,b∈B Πb
k(m(b)− g

(
b′
)
)

2 (9)

LIME provides explanations that help to make an informed decision about the trustworthiness of
the predictions and gain crucial insights into the model behavior.

4. Results and Discussion

4.1. Performance Evaluation of Customized CNNs

Figure 7 shows the optimized architecture and parameters of the sequential CNN, obtained through
Bayesian learning. We performed 100 objective function evaluations toward optimizing the model
parameters. The optimized values are found to be 6, 1 × 10−3, 0.9, and 1 × 10−6 for the network depth,
learning rate, momentum, and L2-regularization parameters respectively. The number of convolutional
layer filters is increased by a factor of 2 each time a max-pooling layer is used, in order to ensure roughly
the same number of computations in the network layers. Rectified Linear Unit (ReLU) layers are added to
introduce non-linearity and prevent vanishing gradients during backpropagation [7].
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Our analysis shows an increase in the performance of the residual and inception CNNs when the
number of filters in the convolutional layers of the succeeding blocks are increased by a factor of 2.
We found the optimal hyperparameter values for the residual, inception, and VGG16 models through
a randomized grid search. The values are tabulated in Table 2.

The customized CNNs are evaluated with the baseline and cropped ROI data. The results are
tabulated in Table 3. We observed that the performance of the models with the cropped ROI is relatively
promising in comparison to the baseline in classifying normal and pneumonia infected CXRs. This is
obvious because the models trained with the cropped ROI learn relevant feature representations
toward classifying the task of interest.
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Table 2. Optimal values for the hyperparameters of the customized residual and inception CNNs
obtained through a randomized grid search.

Model Learning Rate Momentum L2 Regularization

Residual CNN 1 × 10−3 0.9 1 × 10−6

Inception CNN 1 × 10−2 0.95 1 × 10−4

Customized VGG16 1 × 10−4 0.99 1 × 10−6

Table 3. Performance of customized CNNs with baseline and cropped ROI data.

Task Data Models Accuracy AUC Precision Recall Specificity F-Score MCC

Normal vs.
Pneumonia

Baseline

Customized
VGG16 0.957 0.990 0.951 0.983 0.915 0.967 0.908

Sequential 0.943 0.983 0.920 0.980 0.855 0.957 0.878
Residual 0.910 0.967 0.908 0.954 0.838 0.931 0.806
Inception 0.886 0.922 0.887 0.939 0.800 0.913 0.755

Cropped
ROI

Customized
VGG16 0.962 0.993 0.977 0.962 0.962 0.970 0.918

Sequential 0.941 0.984 0.930 0.995 0.877 0.955 0.873
Residual 0.917 0.971 0.913 0.959 0.847 0.936 0.820
Inception 0.897 0.932 0.896 0.947 0.817 0.921 0.778

Bacterial vs. Viral
Pneumonia

Baseline

Customized
VGG16 0.936 0.962 0.920 0.984 0.860 0.951 0.862

Sequential 0.928 0.954 0.909 0.984 0.838 0.946 0.848
Residual 0.897 0.921 0.880 0.967 0.784 0.922 0.780
Inception 0.854 0.901 0.841 0.934 0.714 0.886 0.675

Cropped
ROI

Customized
VGG16 0.936 0.962 0.920 0.984 0.860 0.951 0.862

Sequential 0.928 0.956 0.909 0.984 0.838 0.946 0.848
Residual 0.908 0.933 0.888 0.976 0.798 0.930 0.802
Inception 0.872 0.919 0.853 0.959 0.730 0.903 0.725

Normal vs.
Bacterial vs. Viral

Pneumonia

Baseline

Customized
VGG16 0.917 0.938 0.917 0.905 0.958 0.911 0.873

Sequential 0.896 0.922 0.888 0.885 0.948 0.887 0.841
Residual 0.861 0.887 0.868 0.882 0.933 0.875 0.809
Inception 0.809 0.846 0.753 0.848 0.861 0.798 0.688

Cropped
ROI

Customized
VGG16 0.918 0.939 0.920 0.900 0.960 0.910 0.876

Sequential 0.897 0.923 0.898 0.898 0.949 0.898 0.844
Residual 0.879 0.909 0.883 0.890 0.941 0.887 0.825
Inception 0.821 0.865 0.778 0.855 0.878 0.815 0.714

* Bold numbers indicate superior performance.

The customized VGG16 model demonstrates promising performance than the other CNNs under
study. The model learned generic image features from ImageNet that served as a good initialization
compared to random weights and trained end-to-end on the current tasks to learn task-specific
features. This results in faster convergence with reduced bias, overfitting, and improved generalization.
In classifying bacterial and viral pneumonia, no significant difference in performance is observed for
the customized VGG16 model with the baseline and cropped ROI. In the multi-class classification task,
the cropped ROI gave better results than the baseline data. However, we observed that the differences
in performance are not significant. This may be due to the reason that the dataset under study already
appeared as cropped, and the boundary detection algorithm resulted in a few under-segmented
regions near the costophrenic angle. The customized sequential, residual, and inception CNNs with
random weight initializations didn’t have the opportunity to learn discriminative features, owing
to the sparse availability and imbalanced distribution of training data across the expected classes.
We observed that the sequential CNN outperformed the residual and inception counterparts across
the classification tasks. The usage of residual connections is beneficial in resolving the issue of
representational bottlenecks and vanishing gradients in deep models. The CNNs used in this study
have a shallow architecture. The residual connections did not introduce significant gains into the
performance for the tasks of interest. Unlike ImageNet, the variability in the pediatric CXR data is
several orders of magnitude smaller. The architecture of residual and inception CNNs are progressively
more complex and did not seem to be a fitting tool to use for the tasks of interest. The confusion matrices
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and AUC achieved with the customized VGG16 model are shown in Figures 8–10. We observed that
the training metrics are poor compared to test accuracy. This is due to the fact that noisy images are
included in the training data to reduce bias, overfitting, and improve model generalization.

We compared the performance of the customized VGG16 model trained with the cropped ROI,
to the state-of-the-art. The results are tabulated in Table 4. We observed that our model outperforms
the current literature in all performance metrics across the classification tasks. The customized
sequential CNN demonstrates higher values for recall in: (i) classifying normal and pneumonia;
and, (ii) identical recall measures to the customized VGG16 model in classifying bacterial and viral
pneumonia. However, considering the balance between precision and recall as demonstrated by the
F-Score and MCC, the customized VGG16 model outperforms the other CNNs and the state-of-the-art
across the classification tasks.
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Table 4. Comparing the performance of the customized VGG16 model with the state-of-the-art.

Task Model Accuracy AUC Precision Recall Specificity F-Score MCC

Normal v.
Pneumonia

Customized
VGG16 0.962 0.993 0.977 0.962 0.962 0.970 0.918

Kermany et al. 0.928 0.968 - 0.932 0.901 - -

Bacterial v. Viral
Pneumonia

Customized
VGG16 0.936 0.962 0.920 0.984 0.860 0.951 0.862

Kermany et al. 0.907 0.940 - 0.886 0.909 - -

Normal v.
Bacterial v. Viral

Pneumonia

Customized
VGG16 0.918 0.939 0.920 0.900 0.960 0.910 0.876

Kermany et al. - - - - - - -

* Bold numbers indicate superior performance.



Appl. Sci. 2018, 8, 1715 12 of 17

Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 18 

 

Figure 10. Performance of customized VGG16 model in multiclass classification: (a) Confusion matrix; 
(b) ROC curves. 

Table 4. Comparing the performance of the customized VGG16 model with the state-of-the-art. 

Task Model Accuracy AUC Precision Recall  Specificity 
F-

Score MCC 

Normal v. Pneumonia  
Customized 

VGG16 
0.962 0.993 0.977 0.962 0.962 0.970 0.918 

Kermany et al.  0.928 0.968 - 0.932 0.901 - - 

Bacterial v. Viral 
Pneumonia 

Customized 
VGG16 

0.936 0.962 0.920 0.984 0.860 0.951 0.862 

Kermany et al.  0.907 0.940 - 0.886 0.909 - - 

Normal v. Bacterial v. 
Viral Pneumonia 

Customized 
VGG16 

0.918 0.939 0.920 0.900 0.960 0.910 0.876 

Kermany et al.  - - - - - - - 

* Bold numbers indicate superior performance. 

4.2. Visualization through Discriminative Localization 

The customized VGG16 model has a CAM-compatible architecture owing to the presence of the 
GAP layer. This helps in visualizing the model predictions using both CAM and grad-CAM 
visualization tools. Figures 11 and 12 demonstrate the results of applying these visualizations to 
localize the discriminative ROI in pneumonia-infected CXRs.  

Figure 10. Performance of customized VGG16 model in multiclass classification: (a) Confusion matrix;
(b) ROC curves.

4.2. Visualization through Discriminative Localization

The customized VGG16 model has a CAM-compatible architecture owing to the presence of
the GAP layer. This helps in visualizing the model predictions using both CAM and grad-CAM
visualization tools. Figures 11 and 12 demonstrate the results of applying these visualizations to
localize the discriminative ROI in pneumonia-infected CXRs.
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Figure 12. Visual explanations through gradient-based localization using grad-CAM: (a) Input CXRs;
(b) Bounding boxes localizing regions of activations; (c) Grad-CAM showing heat maps superimposed
on the original CXRs; (d) Automatically segmented lung masks; (e) Grad-CAM showing heat maps
superimposed on the cropped lungs.

CXRs are fed to the trained model and the predictions are decoded. The heat maps are generated as
a two-dimensional score grid, computed for each input pixel location. Pixels carrying high importance
with respect to the expected class appeared bright red with distinct color transitions for varying
ranges. The generated heat maps are superimposed on the original input to localize image-specific
ROI. The lung masks that are generated with the boundary detection algorithm are applied to extract
the localized ROI relevant to the lung regions. We observed that CAM and grad-CAM visualizations
generated heat maps for the pneumonia class to highlight the visual differences in the “pneumonia-like”
regions of the image.

We applied our novel method of average-CAM and average-grad-CAM to visualize the
class-specific ROI, as shown in Figures 13 and 14. Lung masks are applied to the generated heat
maps to localize only the ROI specific to the lung regions. We observed that the class-specific ROI
localized by the average-CAM and average-grad-CAM for the viral pneumonia class follows a diffuse
pattern. This is obvious for the reason that viral pneumonia manifests with diffuse interstitial patterns
in both lungs [30]. For the bacterial pneumonia class, we observed that the model layers are activated
on both sides of the lungs, predominantly on the upper and middle right lung lobes. This is for the
reason that bacterial pneumonia manifests as lobar considerations [30]. The pneumonia dataset under
study has more pediatric patients with right lobar consolidations.
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4.3. Visual Explanations with LIME 

Figure 15 shows the explanations generated with LIME for sample instances of pediatric chest 
radiographs. Lung masks are applied to the explanations to localize only the ROI specific to the lung 
regions. The explanations are shown as follows: (i) Superpixels with the highest positive weights and 
the rest are greyed out; and, (ii) superpixels superimposed on the extracted lung regions. We 
observed that the explainer focused on the regions with high opacity. The model differentiates 
bacterial and viral pneumonia by (i) showing superpixels with the highest positive activations in the 
regions of lobar consolidations for bacterial pneumonia; and, (ii) diffuse interstitial patterns across 

Figure 13. Visual explanations through average-CAM: (a) Bacterial and viral CXR (top and
bottom); (b) Average-CAM localizing class-specific ROI with bounding boxes highlighting the regions
of maximum activation; (c) Automatically segmented lung masks; (d) Average-CAM localizing
class-specific ROI with the extracted lung regions.
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Figure 14. Visual explanations through average-grad-CAM: (a) Bacterial and viral CXR (top and
bottom); (b) Average-grad-CAM localizing class-specific ROI with bounding boxes highlighting the
regions of maximum activation; (c) Automatically segmented lung masks; (d) Average-grad-CAM
localizing class-specific ROI with the extracted lung regions.

4.3. Visual Explanations with LIME

Figure 15 shows the explanations generated with LIME for sample instances of pediatric chest
radiographs. Lung masks are applied to the explanations to localize only the ROI specific to the lung
regions. The explanations are shown as follows: (i) Superpixels with the highest positive weights and
the rest are greyed out; and, (ii) superpixels superimposed on the extracted lung regions. We observed
that the explainer focused on the regions with high opacity. The model differentiates bacterial and
viral pneumonia by (i) showing superpixels with the highest positive activations in the regions of lobar
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consolidations for bacterial pneumonia; and, (ii) diffuse interstitial patterns across the lungs for viral
pneumonia. We also observed that a number of false positive superpixels are reported. The reason is
that the current LIME implementation uses a sparse linear model to approximate the model behavior
in the neighborhood of the explained predictions. However, these explanations result from a random
sampling process and are not faithful if the underlying model is highly non-linear in the locality
of predictions.
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5. Conclusions

We proposed a CNN-based decision support system to detect pneumonia in pediatric CXRs to
expedite accurate diagnosis of the pathology. We applied novel and state-of-the-art visualization
strategies to explain model predictions that is considered highly significant to clinical decision-making.
The study presents a universal approach to apply to an extensive range of visual recognition tasks.
Classifying pneumonia in chest radiographs is a demanding task due to the presence of a high degree
of variability in the input data. The promising performance of the customized VGG16 model trained
on the current tasks suggest that it effectively learns from a sparse collection of complex data with
reduced bias and improved generalization. We hope that our results are useful for developing clinically
useful solutions to detect and distinguish pneumonia types in chest radiographs.
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