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Abstract: The purpose of this work is to better understand how animals control locomotion.
This knowledge can then be applied to neuromechanical design to produce more capable and
adaptable robot locomotion. To test hypotheses about animal motor control, we model animals and
their nervous systems with dynamical simulations, which we call synthetic nervous systems (SNS).
However, one major challenge is picking parameter values that produce the intended dynamics.
This paper presents a design process that solves this problem without the need for global optimization.
We test this method by selecting parameter values for SimRoach2, a dynamical model of a cockroach.
Each leg joint is actuated by an antagonistic pair of Hill muscles. A distributed SNS was designed
based on pathways known to exist in insects, as well as hypothetical pathways that produced
insect-like motion. Each joint’s controller was designed to function as a proportional-integral (PI)
feedback loop and tuned with numerical optimization. Once tuned, SimRoach2 walks through
a simulated environment, with several cockroach-like features. A model with such reliable low-level
performance is necessary to investigate more sophisticated locomotion patterns in the future.

Keywords: synthetic nervous systems; muscle control; joint control; inter-leg coordination; cockroach;
animat; neuromechanical model; insect locomotion

1. Introduction

Insects are excellent models for walking robots, for two reasons. First, insects are highly successful
animals that can walk through a variety of terrains. Second, decades of behavioral and neurobiological
research have revealed many of the neuromechanical mechanisms that underlie this adaptive behavior.

The legs of walking animals propel the body by alternating between stance and swing phases.
A leg is in contact with the ground in stance phase, during which it supports and propels the body.
A leg is not in contact with the ground in swing phase, during which it is returned from its position at
the end of stance phase (posterior extreme position, or PEP) to its position at the beginning of stance
phase (anterior extreme position, or AEP). This alternating activity is supported by central pattern
generators (CPGs), networks that are capable of producing endogenous oscillatory output. Each leg
joint appears to be controlled by its own CPG [1,2]. Although periods of coordinated behavior can be
observed [3], each leg joint’s activity is generally decoupled from that of the others [2]. CPGs’ phases
are adjusted by inter-joint signals from load [4–6] and proprioceptive [7,8] sensors, giving rise to the
coordination seen during walking. When walking in different directions, some of these inter-joint
reflexes are modified [9,10], giving rise to different coordination patterns that better serve locomotion
in a particular direction. Indeed, stimulating populations in the insect central complex (CX) that
encode locomotion direction can change the sign and phase of inter-joint reflexes as observed in intact
animals [11].

There is an interdependent relationship between neuroscience, mathematical modeling,
and robotics. The neuroscience of insects promises to inspire new and adaptive robot control systems
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(for a review, see [12]). However, mathematical modeling of the nervous system and the body’s
mechanics is often a necessary intermediate step between neuroscience and robotics. First, despite
decades of wonderful work, there still exist many gaps in our understanding of how insects walk. Thus,
a mathematical model can be constructed that incorporates what is known, and suggests how to bridge
gaps in understanding [13,14]. Second, it is valuable to test the control method first in a simulated
agent before controlling a robot. This enables a more thorough study of the function and stability of
the system in a simplified environment before deploying it on a hardware system in the real world.

Many models exist to address specific questions about motor control in insects. Walknet,
for example, has developed into a highly successful model. It uses a combination of finite state machine
(FSM) and artificial neural network (ANN) elements to coordinate the walking of kinematic models [15]
and hardware robots [16]. While Walknet is a capable walking controller, it is based on behavioral,
not neurobiological data, making it difficult to test neurobiological hypotheses. Another model used
similar FSM elements to demonstrate how decoupled CPGs could be coordinated into stepping motions
via sensory feedback [17]. This model was even used to control a single robotic leg [18]. These works
were important proofs of concept for the control of a leg via sensory-coupled CPGs. However,
the simplicity of the model made it difficult to produce fine-tuned motions necessary for walking.
In addition, the FSM implementation leaves out the details of neural dynamics, which can produce
more complicated and potentially more capable motor patterns. More recently, Hodgkin–Huxley
neural models of networks in insect nervous systems have been constructed to explore the effect of
such neural dynamics on locomotion [13,19–21]. These models have enabled scientists to suggest
neural and synaptic mechanisms underlying animal behavior. However, due to their complexity,
the full mechanics of the body and environment are rarely simulated, leaving questions about the
precise control of muscle activation, and the role of sensory feedback, unaddressed.

Over the years, there has been much successful work building and controlling six-legged
robots [15,16,22–24]. However, despite all of this good work, these robots are not as good at locomotion
as insects. We believe that an SNS will result in better performance.

To be directly applicable to robotic control, the mechanical model must possess realistic
dynamics, and the neural system must use feedback from interactions with the environment to
shape motor output.

Our recent work has explored many components of legged locomotion, although always limited to
one leg. We have shown how a decoupled system of central pattern generators (CPGs) can give rise to
directional stepping with only sparse descending commands [25]. This control approach can be applied
to different legs, resulting in unique motions for each leg, as observed in walking insects [14,26–28].
However, adding more legs to the body makes walking a redundant problem, with several paths from
body to ground. Successful locomotion requires controlling both the timing and amplitude of motor
output to ensure that the body remains supported at all times [29].

This work expands upon our previous model of insect locomotion [14] and presents three novel
results. The first is the development of a generalized design method for setting parameters in
neuromechanical models. The control method uses the dynamics of the body to establish a resting
posture, set passive viscoelastic forces based on the scale of the model, and set parameters in a negative
feedback position controller for the antagonistic pair of muscles that actuate each leg joint. The result
is a model with realistic dynamics, and accurate control of the leg joints. The second result is a neural
implementation of “Holk Cruse’s rules” [29], which precisely and stably controls the timing of each
leg’s swing phase. The third result is the comparison between biological and simulated walking data.
The resulting model can walk freely at cockroach-like speed and stepping frequency. Such performance
supports the usefulness of the presented design method. This model serves as a baseline for studying
more complicated control problems in the future, such as walking in a curve, walking at different
speeds, and walking over rough terrain.
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2. Methods

2.1. Modeling Overview

All modeling was done in AnimatLab 2, an environment for neuromechanical simulations [30].
The software can simulate the closed-loop interactions between an animat’s body, its nervous system,
and and its environment. For example, motor neuron voltage affects the force in the muscles,
which exert forces on the body to cause motion, which is detected by proprioceptors and force
sensors, which affect motor neuron voltage.

Previously, we developed design tools in MATLAB (The MathWorks, Nattick, MA) to perform
analysis to aid in the parameter value design process. Versions of these tools existed previously [26,31],
but these tools had to be advanced significantly to incorporate additional dynamics due to muscles
and exoskeletal forces. This work thus extends tools previously only useful for robots controlled by
servomotors to animal models like SimRoach2, which was developed in this project.

2.2. System Dynamics

2.2.1. Neuron Dynamics

A number of different mathematical models exist that attempt to capture the behavior of neurons.
Our neural controller uses non-spiking Hodgkin–Huxley (HH) compartments [30], which are based
on the original formulation of the HH model [32], but do not include ion channels for spiking.
Thus the neurons function as non-spiking leaky integrators, with optional persistent sodium channels
which enable more complicated responses. For details on the specific equations of motion, see the
Supplementary Materials (Section: Methods Explained).

2.2.2. Muscle and Joint Dynamics

Each joint of SimRoach2 is actuated by two antagonistic Hill muscles [33]. This model contains
an active contractile element, and three passive components: a series spring, a parallel spring,
and a parallel damper (Figure 1). The primary dynamical variable for the muscle is its tension,
T, with the dynamics:

Ṫ =
kse

b
(
kpe∆x(t) + bẋ(t)−

(
1 +

kpe

kse

)
T(t) + A(t)

)
, (1)

where b is the linear damping coefficient, kse is the stiffness of the series elastic component, and kpe is
the stiffness of the parallel elastic component. ∆x is the change in muscle length relative to its resting
length. ẋ is the rate of change of the muscle length. A is the muscle activation and is a function of both
the muscle’s motor-neuron’s voltage and the length of the muscle. A is given by:

A(t) =
(

1−
(
∆x(t)

)2

l2
width

)
Tce(t), (2)

where lwidth is the width of the inverted parabola used for the tension-length curve and Tce is a function
of the motor-neurons voltage given by the sigmoid:

Tce =
Tmax

1 + exp(Sm(xo f f −V))
+ yo f f , (3)

where Tmax, Sm, xo f f , and yo f f are all parameters that define the stimulus-tension sigmoidal curve.
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Figure 1. Hill Muscle Model used in AnimatLab 2 (adapted from [34]). (a) The model contains a series
spring, a parallel spring, a parallel damper, and an active component; (b) the length-tension curve
adjusts the active tension based on the length of the muscle; (c) the stimulus-tension curve adjusts the
active tension based on the voltage of the motor-neuron.

In addition to the two muscles acting on each joint, there is also a passive spring with damping
attached to each joint to mimic the viscoelasticity of insects’ joints [35,36]. This stabilizes the motion of
each joint, but makes the relationship between muscle activation and joint rotation more complicated.
It shares attachments with the flexor muscle, and produces the tension:

Tpass = kpass · (xrest − x) + cpass · ẋ, (4)

where Tpass is the tension in the passive element, kpass and cpass are the stiffness and damping constants,
respectively, xrest is the resting length of the passive element, and x is the current length of the
passive element.

When the leg is not in contact with the ground, there are four external moments acting on the
joint: tensions from the flexor and extensor muscles, and spring stiffness and spring damping forces
from the passive spring. The equation for the net torque on the joint can be developed as:

4

∑
i=1

ri × Fi, (5)

where ri is the moment arm of the force and i = 1 corresponds to the flexor muscle force, i = 2
corresponds to the extensor muscle force, i = 3 corresponds to the linear spring stiffness force,
and i = 4 corresponds to the linear spring damping force.

2.3. Physical Model

SimRoach2 (Figure 2) was adapted from our previous model [14]. Each leg has five actuated
hinge joints (Table 1). Each foot is modeled as a passive ball and socket joint that “sticks” to the
ground in stance phase but allows the tibia to rotate over the foot. This functionality mimics insects’
tarsal claws, which grip the substrate when external forces are applied [37], and can improve the
stability of walking [38]. Furthermore, it has been shown that the adhesive features on an insect’s
leg plays an important role in walking [39]. Thus, the animat’s body has 54 degrees of freedom
((5 + 3) DOF× 6 legs + 6 DOF× 1 body)), 30 of which are actuated, and 6 of which are constrained
for each leg when it is in contact with the ground. See Figure 4 in [14] for a description of the different
body segments and joint angles in a cockroach.
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Table 1. Actuated joints in each leg starting from the joint closest to the body and moving distally
outward. Thorax-coxa (ThC) joints act between the thorax and the coxa. Coxa-trochanter (CTr) joints
act between the coxa and the trochanter. Trochanter-feumr (TrF) joints act between the trochanter and
the femur. Femur-tibia (FTi) joints act between the femur and the tibia.

Actuated Joints

Front Leg Middle Leg Hind Leg
ThC2 ThC2 ThC2
ThC1 ThC1 ThC1
ThC3 CTr CTr
CTr TrF TrF
FTi FTi FTi

Flexor 

muscleExtensor 

muscle Passive spring

Passive damper

Tibia

Tarsus

Free ball and 

socket joint

a) SimRoach2 is modelled in AnimatLab 2 b) Diagram of a Single Joint c) Diagram of Tibia-Tarsus

Figure 2. Physical model of the cockroach Blaberus discoidalis. (a) Picture of SimRoach2 in AnimatLab2;
(b) each joint consists of a flexor muscle, extensor muscle and a passive spring and damper attached at
the same points as the flexor muscle; (c) each tarsus (foot) is attached to the tibia with a free ball and
socket joint that “sticks” when in contact with the ground.

2.4. Neural Network as Control System

2.4.1. Overview of Synthetic Nervous System

The SNS used to control SimRoach2 is a distributed network made up of functional
subnetworks [26,40] (Figure 3). In short, the network functions as follows. A high-level network
(gray, Figure 3) sends commands to the thoracic ganglia to stand or walk, and in which direction to
walk. Each leg joint control network in each ganglion interprets this signal to decode the direction and
amplitude of joint rotation in stance phase (brown, Figure 3). Each joint in the leg has a central pattern
generator (CPG) that generates alternating neural activity (red, Figure 3). These have no direct neural
connections between them [2]. The descending commands and CPG together establish a commanded
position for each joint. Each low level joint controller (green, Figure 3) receives the commanded position
signal, moves the joint to that position, and signals its position back to the intermediate (i.e., inter-joint
and intra-leg) network. This intermediate network controls the transitions between stance and swing
phase, by causing CTr (joints act between the coxa and the trochanter) levation when the other leg
joints have reached their posterior extreme position (PEP), and causing CTr depression when the other
leg joints have reached their anterior extreme position (AEP).

Additional networks are included to coordinate the walking of multiple legs. Inter-leg reflexes
(purple, Figure 3) coordinate the legs for stable walking. Height control networks (blue, Figure 3)
are included to control the height of the thorax by adjusting CTr depression while in stance phase.
When the leg is in stance and loaded, the tarsus is “stuck” to the ground (yellow, Figure 3).

Each leg in SimRoach2 is controlled by a network like that in Figure 3. The neural implementation
of joint position control and inter-leg reflexes are provided in this article. The neural implementation
used for the upper level, height control, and for freezing the tarsus in stance phase are provided
in the Supplementary Materials (Section: Methods Explained). The neural implementation used
in the intermediate level is published in [26], and the CPG network is published in [31]. One can
download the AnimatLab 2 file to see the specifics on how the sub-networks are connected to each
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other (Supplementary Materials File S2). Specific parameters values of the neurons and synapses
are available in the Supplementary Materials (Section: Parameter Values) and in the AnimatLab 2
source file.

Upper Level

CPG CPGCPGCPG CPG

Load Signals

Height 

Control

Inter-leg 

Reflexes

Tarsus (foot) 

Stick to 

Ground
Joint 

Position 

Control

Joint 

Position 

Control

Joint 

Position 

Control

Joint 

Position 

Control

Joint 

Position 

Control

Intermediate 

Level

Intermediate 

Level

Intermediate 

Level

Intermediate 

Level

CTr 

Intermediate 

Level

Figure 3. Functional diagram of the synthetic nervous system used for one leg. Each leg consists of five joints.
Descending commands from the higher level brain and load signals (gray) affect the intermediate network
(brown). Central pattern generators (CPGs, red) generate the rhythmic movement and are present in each
joint. The intermediate network and the CPGs establish a commanded position for each joint. Joint controllers
(green) take the commanded position and move the joint to that position. Signals from other legs coordinate
walking via inter-leg reflexes (purple). Height control networks (blue) are present in each leg. When the leg
is loaded and in stance phase, the foot is frozen to the ground (yellow). Note that this is a simple functional
diagram; each functional unit consists of dynamics neurons connected to each other via synapses.

2.4.2. Joint Position Control

The force and length of muscles are not easy to control, and the details of how animals
control them are not known, although it is known that negative feedback reflexes play a role [41].
The primary challenge is that the muscles and exoskeleton possess many elastic elements that
cancel out one another’s tension. To overcome this, we designed a neural proportional-integral (PI)
network to control a limb’s position (Figure 4). We believe this is justified because arthropods have
disproportionately slow muscle dynamics for their size [42], which means that their muscle membranes
integrate individual spikes from excitatory motor neurons, functionally behaving as integrators [43].

The perceived position (PP) neuron receives an input current proportional to the joint’s rotation
(e.g., Iapp = A× θ + B). The commanded position (CP) neuron uses the same relationship to specify the
intended rotation of the joint. The CP and PP neuron voltages are subtracted from each other to create
two “error” neurons [40] (green in Figure 4). One corresponds to the CP being greater than the PP
(positive error); the other corresponds to the PP being greater than the CP (negative error). Only one of
these neurons will be active at a time. Each error neuron excites the appropriate muscle’s motor neuron
via a synapse tuned using optimization explained in Section 2.5.6. Exciting the motor neuron increases
the tension in the muscle, correcting the error in the limb’s position and functioning as proportional
negative feedback. Proportional feedback alone is not enough to guarantee that the joint will reach
the CP, except in very specific cases [44]. Thus, we add an integral subnetwork (described in [31]) to
eliminate the steady-state error of proportional feedback alone (orange, Figure 4). The purpose of the
“Zero” neuron is to subtract out the steady state activation of the integrator. Just as with the proportional
feedback, there are two integral feedback pathways (integral positive and integral negative), only one
of which will be active at a time.
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Commanded

Position (CP)

CP minus PP 

(positive

error)

PP minus CP 

(negative

error)

Commanded Position 

from Intermediate Network

Integral
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(integral

of error)

Integral

Neuron 2

Zero

Integral

Positive

Integral

Negative

Flx MNExt MN

Ext Length

Adapter

Perceived

Position (PP)

Ext Flx

Ext Muscle

Adapter

Flx Muscle

Adapter

Figure 4. Diagram of the joint control network. Joint angles are linearly mapped to neuron voltage.
The commanded position (CP) neuron input signal comes from the intermediate network. The perceived
position (PP) neuron input signal is mapped from the length of the extensor. The CP and PP neuron
voltage’s are subtracted from each other to create two “error” neurons (green). Only one of these
neurons can be active at a time. The error neurons excite the appropriate muscle motor-neuron, acting
in a very similar way to the proportional part of a standard PID controller. The error neurons are also
used as an input to the integral part (orange). The integral part continues to adjust the appropriate
motor-neuron (MN) until the voltage of the CP and PP neurons match. Synapses with black circles and
white triangles represent inhibitory synapses and excitatory synapses, respectively.

The importance of the integral part of the joint controller is shown in Figure 5. With only the
proportional part, the joint does not move to its commanded position; there is always a steady
state error. By adding the integral part, the steady state error is removed and the joint moves to its
commanded position.
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Figure 5. Importance of the integral part in the joint control network. (a) Joint controller with integral
part disabled. The proportional part alone is not enough to move the joint to the desired position.
There is always a steady state error. (b) Joint controller with both proportional and integral parts.
The integral part removes the steady state error.

2.4.3. Inter-Leg Coordination

The legs of both insects and legged robots must communicate when they are in swing phase
to ensure that the body always stays supported. Behavioral experiments have revealed correlations
between the positions of different legs in arthropods [29,45], but the underlying networks remain
largely unknown. Work in locusts suggests that some direct neural connections between the legs may
contribute to coordination during walking [3,46]. Therefore, in SimRoach2, the levator-depressor
(CTr) CPGs between legs are connected and neural pathways were engineered to produce the
observed behavior.

“Holk Cruse’s rules” describe inter-leg influences that control the timing of stepping [29].
Three of these influences have been shown to be the most important to coordinate walking, and were
implemented into SimRoach2. Influence 1 inhibits the start of swing phase in the rostral leg while the
caudal leg is in its swing phase. Influence 2 excites the start of swing phase in the rostral leg when
the caudal leg enters its stance phase. Influence 3 excites the start of swing phase in the caudal leg
when the rostral leg is in stance phase, increasing in strength over time as the caudal leg is in stance
phase [29]. Influences 2 and 3 are also present between contralateral legs. Table 2 summarizes these
three influences. These influences are redundant, such that any perturbation to a walking gait will
result in nearly immediate re-coordination of legs. The specific neural networks that were designed
to replicate these three influences are shown in Figure 6. Verification of each of these networks is
presented in the Supplementary Materials (Section: Methods Explained).

Table 2. Summary of inter-leg influences.

Influence Number Direction of Influence Effect of Influence

Influence 1 Rostral
Inhibits the start of swing phase when the posterior leg is
in its swing phase

Influence 2 Rostral and contralateral
Excites the start of swing phase when the posterior leg
enters its stance phase

Influence 3 Caudal and contralateral
Excites the start of swing phase while the anterior leg is in
its stance phase, increasing in strength over time
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a) Neural Implementation

of Influence 1

b) Neural Implementation

of Influence 2

c) Neural Implementation 

of Influence 3

Differentiator

Integrator

Figure 6. Neural Implementation of three “Holk Cruse’s rules” [29]. (a) Influence 1 inhibits the start of swing
phase when the posterior leg is in its swing phase; (b) Influence 2 momentarily excites the start of swing
phase in the rostral leg when the caudal leg enters its stance phase. To capture this, we use a differentiator
network [40]; (c) Excites the start of swing phase while the anterior leg is in its stance phase, increasing in
strength over time. To capture this, we use an integrator network [40]. Synapses with black circles and white
triangles represent inhibitory synapses and excitatory synapses, respectively.

2.4.4. Height Control

Mechanisms to control the height of insects have been observed to exist while both walking
and standing still [47,48]. However, little is known about the underlying neural mechanisms that
produce these observed behaviors. Height control is important because the multiple legs form a parallel
manipulator, potentially resulting in internal torques that waste energy. SimRoach2 uses a negative
feedback loop to adjust CTr depression based on the length of the leg while in contact with the ground.
Please see the Supplementary Materials (Section: Methods Explained) for more information.

2.5. Design Process for a Single Joint

This section describes how the parameter values of the system’s dynamical components
components (e.g., muscles, joints, etc.) are selected to enable our simulated cockroach to walk.
Our previous work has explained how to select parameter values for CPGs [31] and descending
connectives from higher command centers that control joint motion amplitude [26]. These works,
however, assumed that each joint’s control system could control the position of the joint. To apply
this work to a muscle-actuated (rather than servomotor actuated) model, we first needed to select
parameters for the viscoelasticity of each joint, the active and passive dynamics of each joint’s muscles,
and the synaptic strengths in each joint’s controller. The name, equation number, and quantity of each
are listed in Table 3.
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Table 3. Parameter values to select.

Object Parameters Equation Number Number of Parameters
(No. × Joints)

Joint kpass, cpass, xrest (4) 3× 30 = 90
Muscle kse, kpe, b, lwidth, Tmax, Sm, xo f f , yo f f (1), (2), (3) 8× 2× 30 = 480

Controller Gsyn,P, Gsyn,I 2× 30 = 60

Total 630

The following sections will describe a serial design process for systematically selecting these
parameter values. First, we find a rest posture for the animat. This enables us to calculate the torque
on each joint due to gravity. Next, we use this gravitational torque to estimate the viscoelastic torques
of the exoskeleton acting on each joint. Then, we select the muscle parameter values such that the
muscles can apply enough tension to move the limb. Finally, a numerical optimization is performed to
find maximum muscle activations and feedback gains that result in stable, rapid motion.

2.5.1. Resting Posture

We seek a resting posture that holds the body at a desired height above the ground, hdes,
while keeping each joint as far away from its limits as possible. This ensures that when the animat
walks, it can move every joint in both directions. This process can be formulated as a constrained
optimization problem. Let the vector θ ∈ Rn×1 be the configuration (i.e., joint angles) of a leg with n
joints. We then define x as θ normalized to the lower and upper bounds of motion. The i-th element of
x is defined as:

xi =
θi − θlb

i

θub
i − θlb

i
, (6)

where θlb
i and θub

i are the lower and upper bounds of joint i, respectively. This simplifies the definition
of the objective function f ,

f (x) = − 4
n

xT(x− p), (7)

where p ∈ Rn×1 is a vector of ones. The factor of 4/n ensures that f = −1 when x = p/2, i.e., when
every joint is in the center of its range of motion.

Let us also define g(x) as the vertical distance from the body to the foot, as computed with
the forward kinematic map of the leg. We can then define the resting posture as the solution to the
optimization problem:

minimize
x

f (x)

subject to g(x) = hdes

We set hdes = 1.2 cm, a value used for oiled plate walking experiments with cockroaches [14].
The resulting posture, shown in Figure 7, is remarkably cockroach-like. Figure 7c graphically shows
the final values of x on “sliders” between 0 and 1, showing that most joints are near to the center of
allowed rotation. This analysis is now automated by our design toolbox KinematicOrganism [31].
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Figure 7. Resting posture of SimRoach2. (a) Screenshot of SimRoach2 standing in AnimatLab 2; (b) rest
posture of SimRoach2 calculated in MATLAB; (c) graphical representation of x, the rest posture angle
of each joint relative to its joint limits. No joint’s rest posture angle is near its joint limits.

2.5.2. Calculation of Passive Spring Stiffness and Damping Coefficients

The rest lengths of the passive spring and both muscles in each joint were set to the length
that matched the joint angle based on the muscle attachment points. To determine the stiffness of
every spring, we assumed that the animat could support its weight using the passive spring alone.
This is consistent with the observation that insects’ exoskeletons are stiff even when their muscles
are cut from them [35,36]. Each leg is assumed to hold an equal amount of the weight. We use the
manipulator Jacobian from [49] to calculate the torques required for each joint to support its weight.
Then, to calculate the stiffness of the spring, we deflect the joint a small amount (0.1 radian) and
increase the stiffness of the springs until the spring produces the required torque. Detailed calculations
can be found in the Supplementary Materials (Section: Methods Explained).

The damping of the passive element was calculated in the following way. For each joint, the distal
joints were assumed to be held rigidly in place. This was used to compute the effective moment
of inertia about the joint in question. Then, together with the stiffness value already calculated,
the damping was computed to ensure that motion was overdamped, consistent with observations of
insect exoskeletons [35]. Detailed calculations can be found in the Supplementary Materials (Section:
Methods Explained).
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2.5.3. Passive Muscle Force Parameters

After tuning the spring coefficients, the next step was to add passive muscle components.
The parameters of interest for this section are muscle parameters kse, kpe, and b in Equation (1). Values
for these parameters vary widely from muscle-to-muscle and even from organism-to-organism [50].
Guschlbauer cited kse and kpe values of approximately 6.32 N/m and 3.156 N/m (Figure 6 in [51]) while
Blümel cited kse and kpe values of approximately 45 N/m and 11.24 N/m (Figure 3 in [50]). Testing
different values with the entire design process did not noticeably change the resulting performance
of the control system, so we simply chose kse and kpe values of 45 N/m and 11.24 N/m. Because the
joints are already damped, we chose the small value b = 0.1 Ns/m for every muscle.

2.5.4. Active Muscle Parameters

Tuning the muscle activation parameters concerns both the muscle activation curve and the
length-tension curve. Each muscle activation curve has four parameters that must be chosen:
the amplitude, steepness, x-offset, and y-offset (see Equation (3)). We used data from insect muscles to
pick the steepness and x-offset of the muscle activation curve such that it looked like the biologically
observed data [51–53] (for an example, see Supplementary Materials (Section: Methods Explained)).
The y-offset is constrained such that the muscle produces 0 N of active tension when the motor-neuron
is at rest. The only unconstrained parameter is the maximum active tension, which is selected as part
of the optimization process (see Section 2.5.6).

A muscle’ length-tension relationship reduces its ability to apply active tension as the muscle
lengthens or shortens (Figure 1c). The parameter lwidth in Equation (2) defines the change in length at
which the muscle can no longer contract. This parameter is chosen such that the muscle cannot apply
tension at 133% and 67% of its resting length [54].

2.5.5. Synaptic Strength to Position Control Integral Neuron

The synaptic strength between the difference neurons and the integral neuron in Figure 4 was
an additional parameter that must be chosen. This parameter controls the speed of integration, and
therefore the strength of the integral portion of the joint control network. The integrator could saturate if
this synaptic strength was too high (for example, Figure 8), so it was set to 10 nS, a value that prevented
saturation in most cases. The synaptic output of this network was later numerically optimized, enabling
us to fine-tune the integral feedback in the controller.
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Figure 8. Importance of synaptic strength to the integral neuron in joint position control. (a) Commanded
position and perceived position for the selected case. Lower integration speed and larger amplification
tuned during the optimization process results in good reference tracking; (b) Voltage of integral
neuron for the selected case. Lower integral speed results in voltages far away from saturation points;
(c) Commanded position and perceived position for the undesirable case. The joint never gets to its
commanded position because the integral neuron saturates; (d) Voltage of integral neuron for the
undesirable case. Higher integration speeds cause the integral neuron to reach the synaptic thresholds,
losing its ability to send information.

2.5.6. Optimization Process

The last part of our design method is the optimization of four parameters per joint: Gsyn,P,
Gsyn,I , Tmax,ext, Tmax, f lx. Gsyn,P and Gsyn,I are the synapse strengths from the difference and integral
positive and negative neurons in the joint position control network, respectively (Effectively the
proportional and integral gain of the feedback controller, respectively; Figure 4). Tmax,ext and Tmax, f lx
are the amplitudes of the muscle stimulus-tension curves (Equation (3)). These parameters together
determine the stiffness and torque output of each joint. The optimization was automated for each
joint in our SimScan tool (Section 2.1). For each joint, an identical, four-step reference trajectory was
provided, and the following objective function, fobj, was minimized using MATLAB’s built in fmincon
function, an interior-point, gradient-based nonlinear program solver:

fobj = (maxOvershoot− desiredOvershoot)2 + (1000× (maxRiseTime− desiredRiseTime))2

+(1000× (settlingTimeMax− desiredSettlingTime))2 (8)

This function calculates the squared deviation of the tracking performance from the desired values.
This value is computed separately for each step in the reference trajectory, and added for all four steps
to evaluate one parameter value combination. In our trials, desiredOvershoot, desiredRiseTime,
and desiredSettlingTime where chosen to be 0, 0.02, and 0.03, respectively. The factors of 1000 were
included to weight the different terms in fobj approximately equally.

Every joint’s parameters were optimized to track the commanded position very well (Figure 9).
One example of a joint controller’s reference tracking before and after optimization is included.
This chosen case, while still good, was the worst joint in terms of reference tracking; the other 29 joints
that were optimized produced even better reference tracking results.
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Figure 9. Optimizing parameters Gsyn,P, Gsyn,I , Tmax,ext, and Tmax, f lx improves reference tracking.
The commanded position trajectory is chosen arbitrarily.

3. Results

To show that the design method works, and that SimRoach2 will enable us to explore the control
of insect locomotion, we need to show that the resulting model can indeed walk. In this section,
we present data and video of SimRoach2, and compare it to data from cockroaches. All data were
collected in simulation using AnimatLab 2.

3.1. Forward Walking

A video showing the walking of SimRoach2 is attached with this paper in the Supplementary
Materials (Video S1). Figure 10 shows the walking path and walking speed of SimRoach2. The walking
speed is calculated by smoothing and differentiating the total distance walked. After a transient startup,
SimRoach2 walks in a straight path, with insect-like side-to-side motion (Figure 10). The speed of
SimRoach2 in steady state is just below 20 cm/s (Figure 10).
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Figure 10. Forward walking path and speed.

The pitch and roll of the body during steady state walking is presented in Figure 11. Actual
cockroach data presented in [55] measured the pitch to be ±4 degrees and the roll to be ±7 degrees.
These reference lines are plotted in Figure 11 to allow for comparison.

Individual joint kinematic data from both SimRoach2 and a cockroach are presented in
Figures 12–14. The cockroach data used for comparison was taken from [14]. For each joint in each
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leg during simulated walking, the joint angle at the AEP and PEP were measured for a number of
steps. ∆θ was calculated by subtracting the AEP from the PEP. Details on the specific method for
calculated the AEP and PEP from raw data are provided in the Supplementary Materials (Section:
Methods Explained).
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Figure 11. Pitch and roll of the body during steady state walking.
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Figure 12. Front leg anterior extreme position (AEP), posterior extreme position (PEP), and ∆θ

joint angle data in a cockroach and in SimRoach2. Thirty six cockroach data points were used.
Thirty three SimRoach2 data points were used. p-values from the two-sample t-tests and whether
there is a statistically-significant difference (SSD, bad match) or no statistically-significant difference
(NSSD, good match) between the samples are provided.
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joint angle data in a cockroach and in SimRoach2. Thirty one cockroach data points were used.
Forty six SimRoach2 data points were used. p-values from the two-sample t-tests and whether
there is a statistically-significant difference (SSD, bad match) or no statistically-significant difference
(NSSD, good match) between the samples are provided.
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Figure 14. Hind leg anterior extreme position (AEP), posterior extreme position (PEP), and ∆θ joint
angle data in a cockroach and in SimRoach2. Twenty nine cockroach data points were used. Forty five
SimRoach2 data points were used. p-values from the two-sample t-tests and whether there is a
statistically-significant difference (SSD, bad match) or no statistically-significant difference (NSSD,
good match) between the samples are provided.
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For each set of joint angle data, a two-sample t-test was run to see if the mean of the data sets were
statistically significantly different. The statistical data is presented in Figures 12–14. For the t-tests,
the variances were assumed to be unequal.

3.2. Inter-Leg Coordination

The inter-leg connections of SimRoach2 were based on biological observations and designed to
enforce a tripod gait. Cockroaches walk and run almost exclusively with a tripod gait [56]. The three
different inter-leg influences (Table 2) were redundant in that any perturbation to the gait would result
in the near immediate re-coordination of the legs. The result of these inter-leg influences show that
SimRoach2 walks with a tripod gait (Figure 15).

Figure 15. Inter-leg influences result in a stable tripod gait. Data presented over one second of walking.
Black bars indicate stance phase.

4. Discussion and Future Work

A cockroach model actuated by an antagonistic pair of muscles and controlled by a synthetic
nervous system, informed by the current state of knowledge of insect nervous systems, successfully
walked in a simulated environment. The basic parameters of locomotion are consistent with
cockroaches, and this model will enable us to study more sophisticated control questions in the
future. The primary challenge in this study is tuning the large number of parameter values for
proper locomotion. A parameter selection process was developed that heavily depends on biological
observations, and sets the few remaining parameters based on desired engineering performance.

This work improves upon the performance of a previously published neuromechanical model [57].
Since then, we have developed several methods for tuning neuron dynamics [31,40] and muscle
dynamics. Most of this research has been applied to our robot MantisBot. The presented work used
what has been learned in the past few years to improve upon our original simulated cockroach model
such that it better reflects the biomechanics and nervous system in the animal [58]. Studying the
control of more complex locomotion, such as walking in a curve or changing speed, require reliable
control of the muscles actuating each joint, a functionality not incorporated in our original model.
Other networks that improved the reliability of walking, such as height control and inter-leg influences,
were also designed and implemented.

Many parameters required tuning for proper operation, so a design process was developed
to choose these parameters based on biological data and observations, and engineering usefulness.
Most of the system’s parameters are constrained by the geometry of the body, and a few are selected
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via numerical optimization. We believe that the presented design process is generic enough to be
applied to any neuromechanical model of an insect.

In addition to enabling SimRoach2 to walk stably, two of our previously developed MATLAB
design tools (KinematicOrganism [26], FeedbackDesign [31]) were improved. Before this work, all of
the tools were built around working with the servomotors that MantisBot uses. Understanding the
nervous system, however, requires understanding muscle dynamics, because they ultimately transform
neural activity into behavior. Integrating muscle compatibility to the tools will enable us to explore
how the nervous system uses muscles to produce motion. If one was interested in making their own
hexapod model using our method, one could create a new hexapod model in AnimatLab 2 and tune
parameters using our design tool KinematicOrganism (see Supplementary Materials File S3). To that
note, KinematicOrgranism does assume a certain structure to the network, but one could potentially
modify the program to tune different network structures.

4.1. Importance of Simulated Animats for Biologically-Inspired Robots

Biologists and roboticists study animal locomotion in different ways with different goals in
mind. Although their goals are different, the research and findings of each side advances the other.
At the intersection between biology and robots are animats such as SimRoach2. Animats facilitate the
interaction between robotics and biology, enabling biologists to test hypotheses quantitatively [15,17],
which leads to new understanding that can eventually be incorporated into robot designs.

While SimRoach2 can be improved in many ways, it has served as a useful model of insect
locomotion. Much of the SNS used to control SimRoach2 is the same as the controller for our robot
MantisBot. This work has demonstrated the potential of SNS for controlling locomotion at different
scales and of differing geometry. Additionally, exploring and testing inter-leg connections on a robot’s
hardware is challenging and there is a risk of breaking parts; so, testing inter-leg connections with
simulated models such as SimRoach2 is useful. Lastly, much of this work involved learning about
and improving muscle-actuated locomotion, and we know that muscle-like controllers are useful for
robotic locomotion [59].

4.2. Walking Comparison between SimRoach2 and a Cockroach

The main goal of this work was to develop a design method for an insect model actuated with an
antagonistic pair of muscles. To show that the design method works, walking data was collected and
presented. In this section, the data from SimRoach2 is compared to a cockroach.

It is important to note that the cockroach kinematic data was not used during the design process.
We did not design our model to “match” this data. We believe that the walking data of our model and
a cockroach are similar is because of the detailed work that went into the many different parts of this
model and because the model was informed by the biomechanics and nervous system of the animal.
These results are a consequence of our process, and the fact that there are some similarities suggest
that this model captures some of the underlying principles.

When commanded to walk forward, SimRoach2 walks straight after reaching steady state
(Figure 10). The exact path of the body does include some side to side wobble, but this is also seen in
cockroaches [55]. It is interesting to note that in SimRoach2, there is no correction mechanism to alter
the path against error. The straight walking path is a result of the completeness of the design method
in this paper. In the future, we will apply our work on directional stepping with MantisBot [60] to
SimRoach2, giving us a complete-body model with which we can develop a model of the central
complex, a region of the brain implicated in the control of walking speed and direction [11].

The walking speed of SimRoach2 is just below 20 cm/s (Figure 10). This is similar to cockroach
data presented in [61] for free walking. The pitch and roll of a walking cockroach were measured to
be between ±4 degrees and ±7 degrees, respectively [55]. SimRoach2 walks with pitch rotations
just slightly outside these limits and with roll rotations well within these limits (Figure 11).
Again, we believe that our results are similar to that of a cockroach because of the detailed work
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that went into many different parts of SimRoach2, and this similarity will serve as a launching point
for future studies on locomotion.

Joint Angle Comparison

For most joints in SimRoach2, the positions of the AEP and PEP appear to match fairly well,
especially compared to the range of motion of these joints (Figures 12–14), suggesting that the change
between stance and swing phase happens at similar positions in each leg. The means of the data sets
were also compared using statistical t-tests. Of the 30 tests on the AEP and PEP for the 15 joints, 20 of
the tests showed a statistically significant difference between the animal and animat. It is difficult to
know if the model needs to capture these small details to inform neurobiology or robotics. Past studies
of insect locomotion have focused on the changes in individual joints’ range of motion between
different conditions [14,27]. As we increase the complexity of SimRoach2’s locomotion, we plan to
take a similar approach; not focusing as much on how the joint kinematics match the animal, as much
as how they change in different scenarios. We believe such changes help reveal what parameters the
nervous system is controlling during locomotion.

4.3. Redundant Parameters

Throughout the duration of this work, it was found that many parameter values were redundant
in that their overall effect on the system was very similar. For example, the angular velocity of a joint
could be modulated by (1) changing the amplitude of the muscle activation curve, (2) changing the
synapse strengths from the proportional or (3) integral part to the motor-neurons; or (4) changing
the synapse strength to the integral neuron. Because of these parameter redundancies, it is possible
that a model with very different parameter values could produce very similar locomotion. This is
an interesting observation, but also not that surprising. Animal experiments [52] and modeling
studies alike [62] suggest that parameter values in the nervous system vary largely, even between
individuals in the same species, despite indistinguishable performance. This suggests that laboring
over the decision of how to tune redundant parameters is not important, as long as the resulting
motion is useful.

4.4. Velocity Control for Muscles

Insects control the velocity of their legs and joints when propelling their bodies [63,64]. Modeling
studies have shown that the complete continuum of gaits can be produced simply by reducing the speed
of the leg in stance phase relative to swing phase, and allowing “Holk Cruse’s rules” to coordinate the
legs [15]. Therefore, to study how SimRoach2 might change walking speed, our single-joint controller
must be enhanced to limit joint velocity. Currently, the joints rotate to their commanded positions very
quickly, so we do not observe that “fluid” motion we like to see in walking gaits. Previous work with
MantisBot has shown that limiting the velocity of the servomotors, and incorporating reflexes seen in
insects, together contribute to asymmetrical stance and swing phase durations, which should lead to
a continuum of gaits [65]. We have already begun such work, and find that increased biological detail
in fact improves the performance of the controller (Naris, Szczecinski, and Quinn, in preparation).
Models of other, slower walking insects such as stick insects may be constructed in the future to more
thoroughly explore how “gait” emerges in insects.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/1/6/s1.
Video S1: SimRoach2 forward walking; File S2: Animatlab 2 source files; File S3: KinematicOrganism Toolbox;
Table S4: Rest lengths of spring, flexor and extensor; Table S5: Spring stiffness and damping coefficients; Table S6:
Muscle amplitude and Y-offset values; Table S7: proportional and integral synapse parameter values; Table S8:
Upper level synapse parameter values; Section S9: Methods explained.
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Abbreviations

The following abbreviations are used in this manuscript:

AEP Anterior extreme position
ANN Artificial neural network
CP Commanded position
CPG Central pattern generator
CTr Coxa-trochanter
CX Central complex
DOF Degree of freedom
FSM Finite state machine
FTi Femur-tibia
HH Hodgkin–Huxley
MN Motor-neuron
PEP Posterior extreme position
PI Proportional-integral
PP Perceived position
SNS Synthetic nervous system
ThC Thorax-coxa
TrF Trochanter-femur
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