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Featured Application: The proposed theory can guide the design of combination methods, and
the proposed TLF method can fuse multiple similarity indices in link prediction.

Abstract: The theoretical limit of link prediction is a fundamental problem in this field. Taking the
network structure as object to research this problem is the mainstream method. This paper proposes
a new viewpoint that link prediction methods can be divided into single or combination methods,
based on the way they derive the similarity matrix, and investigates whether there a theoretical
limit exists for combination methods. We propose and prove necessary and sufficient conditions
for the combination method to reach the theoretical limit. The limit theorem reveals the essence of
combination method that is to estimate probability density functions of existing links and nonexistent
links. Based on limit theorem, a new combination method, theoretical limit fusion (TLF) method, is
proposed. Simulations and experiments on real networks demonstrated that TLF method can achieve
higher prediction accuracy.
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1. Introduction

Limit theory is a basic theoretical issue and has attracted wide interest across many fields. On the
100th anniversary of its foundation, Science raised 125 unresolved scientific questions, and many of
these issues related to limit theory [1]. Link prediction predicts missing links in current networks
and new or dissolution links in future networks [2]. With continuous improvement of link prediction
methods and, the theoretical limit of link prediction has attracted considerable research interest [3].

Considering structure or attribute features, link prediction methods based on classification
have been proposed by computer science community [4,5]. Subsequently, more insightful methods
of network structure, such as similarity based methods [6], have become a focus, these methods
pay more attention to the physical meaning. At the same time, similarity index fusion methods
are springing up [7,8]. Recent years, with the development of deep learning, some deep features
extraction methods have been proposed [9,10], the fusion of structure and attribute information has
been attached importance again [11–14]. These methods have strong consistency. We divide link
prediction method into single and combination methods, based on whether they use multidimension
information, and whether they define the relation of multidimension information directly. For example,
single methods, such as RA index [15], which defines the relation of common neighbors and degree
of nodes directly; and classification based methods, index fusion methods, fusion of structure and
attribute information methods belong to link prediction combination methods.

Most combination methods perform better than single methods that will be fused, and are robust
to many network types. However, what is the reason for this improved accuracy and robustness,
and is there a theoretical limit for combination methods? This paper proposes the mathematic
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description of combination methods, and obtains the necessary and sufficient conditions for theoretical
limit. The limit theorem also has important practical application value. It reveals the ultimate
goal of combination methods that is to estimate probability density functions of existing links and
nonexistent links. Thus, an appropriate form of the transformation function could be selected from the
complete set. Based on the limit theorem, a new combination method, theoretical limit fusion (TLF)
method, is proposed. We use the Parzen kernel method [16] of destiny estimation in the TLF method.
Simulations and empirical studies have shown that TLF method can achieve higher prediction accuracy.

Section 2 introduces a mathematical description for the theoretical limit of combination methods
and evaluation metrics for link prediction. Section 3 proposes and proves necessary and sufficient
conditions for the theoretical limit of combination methods. Section 4 proposes a fusion link
prediction method based on limit theorem (TLF method). Section 5 provides simulation examples
for limit theorem and proposed TLF method with other combination methods, and gives comparison
experiments in real networks. Sections 6 and 7 discuss some results and conclude the paper.

2. Problem Description and Evaluation Metrics

2.1. Problem Description

Given a network G(V, E) at time t, where V = {v1, v2, · · · , vN} is the set of nodes and
E = {e1, e2, · · · , eM} is the set of links. The observed links, E, are randomly divided into training,
ET , and probe, EP, sets, where E = ET ∪ EP and ET ∩ EP = ∅. Link prediction aims to predict
missing links at current network or new links for a future time t′(t′ > t) [2]. Link prediction
combination methods fuse several similarity indices and obtain a synthetic index and can be described
in mathematic as follows. Let X = (X1, X2, · · · , Xn)

T be the scores of existing links as given by n
structural similarity indices, and follow probability density function (pdf) f (x) = f (x1, x2, · · · , xn).
Let Y = (Y1, Y2, · · · , Yn)

T be the scores of nonexistent links as n structural similarity indices,
and follow g(x) = g(x1, x2, · · · , xn). We need to find the transformation function, l(x), and obtain the
synthetic score, X = l(X), Y = l(Y) that maximizes evaluation metrics. Figure 1 is the diagram of
combination methods.
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2.2. Evaluation Metrics

Let the synthetic score X = l(X) follow pdf fX(x), and Y = l(Y) follow gY(x). X and Y are
independent. We have the following metrics.

2.2.1. Area under the Receiver Operation Characteristics Curve (AUC)

A receiver operating characteristics (ROC) curve is a two-dimensional depiction of classifier
performance [17]. In the field of link prediction, the ROC curve abscissa represents the probability
of nonexistent links i.e., the false positive rate (FPR), when the link prediction score is greater than
some threshold, µ, and FPR =

∫ ∞
µ gY(x)dx. The ordinate represents the probability of missing links,
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i.e., the true positive rate (TPR), when score >µ, and TPR =
∫ ∞

µ fX(x)dx, TPR is equivalent to Recall.
According to [18], AUC can be derived as

P(X > Y) =
s

X>Y
fX(x)gY(y)dxdy

= 1
2

s

X>Y
fX(x)gY(y)dxdy + 1

2

(
1−

s

X≤Y
fX(x)gY(y)dxdy

)
= 1

2
s

sgn(x− y) fX(x)gY(y)dxdy+ 1
2

= 1
2E[sgn(X−Y) + 1],

(1)

where

sgn(x) =


1, x > 0
0, x = 0
−1, x < 0

(2)

In the real network, original data is randomly divided into training set and the probe set.
Equation (1) means that for n independent comparisons, if there are n′ comparisons where the missing
link returns a higher score and n′′ comparisons where the missing and nonexistent links return the
same score, we can obtain the algorithm expression of AUC:

AUC =
n′ + 0.5n′′

n
(3)

2.2.2. Precision

Precision can be defined as the ratio of correct to (correct and error) prediction proportions when
score >µ, i.e.,

Precision =
P(ω1)

∫ +∞
µ fX(x)dx

P(ω1)
∫ +∞

µ fX(x)dx+P(ω2)
∫ +∞

µ gY(x)dx

= P(ω1)TPR
P(ω1)TPR+P(ω2)FPR .

(4)

In the real network, if the top L links are predicted ones, with m links being right (i.e., there are m
links in EP), then

Precision =
m
L

(5)

Owing to the imbalance of positive and negative samples, link prediction usually uses AUC
metric. In application, high Precision means target links are accurate, and these links can be used
directly. AUC and Precision are two important metrics in link prediction, we will study the theoretical
limit using the two metrics.

3. Theoretical Limit Theorem

Theorem 1. Let X = (X1, X2, · · · , Xn)
T and Y = (Y1, Y2, · · · , Yn)

T be random vectors following the
joint distributions f (x) and g(x), respectively, where m{x : f (x)/g(x) = C, g(x) 6= 0, ∀C ∈ R} = 0.
(m represents the measure of a set.) Then the following conditions are equivalent.

(a) A monotonically increasing function r(x) exists, such that l(x) = r[ f (x)/g(x)], g(x) 6= 0, a.e. x ∈ Rn.
(b) Transformation function l(x)produces maximum AUC. If we add a condition in Theorem that prior

probability of existing and nonexistent links be P(ω1) and P(ω2), respectively. Then the following
conditions are equivalent to (a) and (b):

(c) for any α, there exists the corresponding threshold µl for transformation l(x), and satisfies
α = P(ω1)

∫ +∞
µl

fX(x)dx + P(ω2)
∫ +∞

µl
gY(x)dx, such that transformation function l(x) produces

maximum Precision.
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Proof. (a)⇒ (b) :
From the equivalent definition, AUC maximum is the maximum area under the ROC curve.

For any FPR, if the TPRs corresponding to the ROC curve reach maximum, then the AUC reaches the
maximum, i.e.,

FPR =
∫ ∞

µ
gY(x)dx =

∫
E(l(x)>µ)

g(x)dx, (6)

TPR =
∫ +∞

µ
fX(x)dx =

∫
E(l(x)>µ)

f (x)dx, (7)

where E(l(x) > µ) is a set {x ∈ Rn : µ ∈ R, l(x) > µ}, and m{x : l(x) = C, ∀C ∈ R} = 0.
We use Lagrange’s undetermined multipliers to solve this problem. For any specified FPR

(denoted as FPR0), the TPR corresponding to the ROC curve reaches maximum is equivalent as ϕ

reaches maximum,

ϕ =
∫

E(l(x)>µ) f (x)dx + λ
[
FPR0 −

∫
E(l(x)>µ) g(x)dx

]
= λFPR0 +

∫
E(l(x)>µ) [ f (x)− λg(x)]dx.

(8)

Function ϕ will be maximized if we choose set E(l(x) > µ) such that the integrand is positive,
i.e., if

f (x)− λg(x) > 0, (9)

then x ∈ E(l(x) > µ). Which means, no matter what is λ, if we select the set of x which makes the
integrand f (x)− λg(x) always be positive, the function ϕ will reach maximum; if the set contains
x that makes the integrand be negative, function ϕ will decrease. Let l(x) = f (x)/g(x) and µ = λ,
and the set, E(l(x) > µ), equals to E( f (x)/g(x) > λ), which satisfies (8), i.e.,

ϕ = λFPR0 +
∫

E( f (x)/g(x)>λ)
[ f (x)− λg(x)]dx (10)

Thus, for any FPR, the TPR corresponding to the ROC curve reaches the maximum, so the AUC
reaches the maximum when X and Y are transformed by l(x) = f (x)/g(x).

Let r(x) be a monotonically increasing function; and h(x) be the inverse function of r(x).
If h′(x) = 1/r′(x), then h(x) and r(x) have the same monotonicity, and both are increasing functions.
Thus, |h′(x)|= h′(x) . The pdf of X2 = r(X1) is fX2(x) = fX1 [h(x)]h′(x), and the pdf of Y2 = r(Y1) is
gY2(x) = gY1 [h(x)]h′(x). Thus,

AUC = P(X2 > Y2) =
∫ +∞
−∞ fX2(x)

∫ x
−∞ gY2(y)dydx

=
∫ +∞
−∞ fX1(h(x))h′(x)

∫ x
−∞ gY1(h(y))h

′(y)dydx

=
∫ +∞
−∞ fX1(x)

∫ x
−∞ gY1(y)dydx

= P(X1 > Y1).

(11)

We have proved (a)⇒ (b) .
(b)⇒ (a) : If l2(x) 6= r[l(x)], where r(x) is increasing function, there exists l2(x) such that X, Y

transforming from l2(x) can also produce maximum AUC, and then the corresponding ROC curves
are the same. Otherwise, if ROC curves are different, except the same part, for any FPR, there is at
least a ROC curve which doesn’t reach maximum TPR, and contradict with maximum AUC. Since
m{x : f (x)/g(x) = C, g(x) 6= 0, ∀C ∈ R} = 0 and the ROC curve is the same for any point (FPR, TPR)
on the two ROC curves, thus,

i. For any FPR ∈ [0, 1], and any µFPR, there exist µ2FPR, such that E(l(x) > µFPR) = E(l2(x) > µ2FPR)

for a.e. x ∈ Rn;
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ii. For any µ∗FPR > µFPR, if E(l(x) > µ∗FPR) = E(l2(x) > µ∗2FPR) and E(l(x) > µFPR) = E(l2(x) > µ2FPR),
then µ∗2FPR > µ2FPR.

Let y1 = l(x), then a set of y1 exist with nonzero measure, such that l2(x) 6= r[l(x)], i.e.,
m{y1 : l2(x) 6= r[l(x)]} 6= 0. Let σ = {y1 : l2(x) 6= r[l(x)]}. If y1 ∈ σ, l2(x), l1(x) satisfies function
relation l2(x) = s[l(x)], but s(x) is not increasing, then for any µ1 ∈ σ, condition (ii) does
not hold. If y1 ∈ σ, l2(x) and l(x) are not functionally related, then neither condition (i) or (ii) hold.
Thus (b)⇒ (a) is established.

(c)⇔ (b) : Let k = TPR/FPR be the slope of the secant for any point on the ROC curve
to the origin, then Precision = k/(k + λ), λ = P(ω2)/P(ω1). For any α, that l(x) produces
maximum Precision is equivalent that k reaches maximum. And equivalent that for any α,
α = P(ω1)

∫ +∞
µl

fX(x)dx + P(ω2)
∫ +∞

µl
gY(x)dx, TPR =

∫ +∞
µl

fX(x)dx is maximum. Since this
condition is established for any α, then it is equivalent that for any FPR ∈ [0, 1], the corresponding
TPR reaches maximum, and equivalent to l(x) produces maximum AUC. �

Note 1: the condition m{x : f (x)/g(x) = C, g(x) 6= 0, ∀C ∈ R} = 0 is for exclusion that
when f (x)/g(x) = C, (C is a constant), transformation function can be defined randomly on set
σ = {x : f (x)/g(x) = C, g(x) 6= 0, ∀C ∈ R} ∩Rn. For example, let us construct the pdf of some
random vector X̃ as

f̃ (x) =

{
f (x), x ∈ Rn\σ
kg(x), x ∈ σ

, k ∈ R, k <
f (x)
g(x)

, (12)

∫
Rn f̃ (x)dx = 1. Let the transformation function be

l(x) =

{
f (x)
g(x) , x ∈ Rn\σ
l∗(x), x ∈ σ

(13)

then no matter how l∗(x) is defined, only when l∗(x) < min[ f (x)/g(x)] can the l(x) produce the
maximum AUC of (X̃, Y). In particular, if f (x) = g(x), x ∈ Rn, regardless of how l(x) is defined,
AUC = 0.5. Thus, maximum AUC = 0.5.

Note 2: The arbitrariness of the ratio α must be emphasized in condition (c). If we omitted “any α”,
then (b)⇒ (c) can be established but (c)⇒ (b) cannot. The meaning of α in application is a ratio of the
whole data, for any l(x), a ratio α corresponds a threshold µ.

Theorem shows that no matter which evaluation criteria choose, transformation
functions that provide maximum link prediction accuracy constitute a function cluster,
Φ = {l(x) : l(x) = r[ f (x)/g(x)] , g(x) 6= 0}, where r(x) is a monotonically increasing function.
Therefore, the accuracy of the combination method must be greater than or equal to the accuracy of
each single dimension.

4. A Fusion Link Prediction Method Based on Limit Theorem

4.1. The Algorithm

The limit theorem of combination method shows that when selecting transformation function as
l(x) = f (x)/g(x) or its monotone increasing transformation, the AUC and Precision of synthetic score
reaches the maximum. In the real network, because f (x) and g(x) are unknown, the pdfs need to be
estimated from multidimensional data. Let the estimated pdfs be f̂ (x) and ĝ(x). On the basis of limit
theorem, we define the transformation function as the ratio of estimated pdfs, i.e.,

l̂(x) = f̂ (x)/ĝ(x) (14)

then we obtained the synthetic score, s = l̂(x), and used for link prediction. This method is called
theoretical limit fusion (TLF) method.
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Before evaluating f (x) and g(x), the input link prediction scores need to be normalized,

s∗k (i, j) =
0.5N2·sk(i, j)

∑N
i=1 ∑N

j=1 sk(i, j)
, k = 1, 2, · · · , d (15)

sk(i, j) represents the k-th similarity score for node pair i, j. N is the dimension of adjacent matrix,
and d is the number of similarity indices.

The limit theorem of combination method transformed the link prediction indices fusion problem
into the estimation of pdfs. Statistical methods for estimating density functions can be applied to
this problem, directly. The Parzen kernel method [16] of destiny estimation is used in this paper.
The multivariate kernel density estimate defined as:

f̂ (x) =
1

nshd

ns

∑
i=1

K
[

1
h
(x− xi)

]
(16)

where h is the window width, ns is the sample size, and K(x) is a multivariate kernel defined for
d-dimensional x, such that ∫

Rd
K(x)dx = 1 (17)

A form of the pdf estimate commonly used is Gauss kernel,

K(x) =
1

(2π)d/2 exp
(
−xTx

2

)
(18)

In summary, the steps of TLF are listed as Table 1.

Table 1. The steps of theoretical limit fusion (TLF) method.

Step 1 Divide the network into training set, ET, and probe set, EP;

Step 2 According to Equation (15), normalize these similarity indices, then we
distinguish existing links and nonexistent links in the training set;

Step 3 Based on Equation (16), estimate the pdfs of existing links and
nonexistent links, and we obtain the estimated pdfs as f̂ (x) and ĝ(x);

Step 4 Obtain the synthetic score of n structure similarity indices according to
Equation (14);

Step 5 Calculate the accuracy such as AUC metric or Precision metric on the
probe set.

4.2. Complexity Analysis

For a given undirected, unweighted graph G(V, E), let N = |V| be the number of nodes and
let m = |E| be the number of edges, and let ns be the sample size. During the estimation of pdfs in
(16), the entire samples are scanned once. A scan of samples requires time O(d·ns) and it is less than
O(N2). This is the step of model training or pdf estimation. Among all combination methods, there is
an inevitable time complexity, that is to obtain the similarity matrix or final link prediction scores
according to Equation (14). This step requires time O(d·ns·N2). So, the TLF method will take time
more than O(N3). The main space needs to storage estimator and adjacent matrix or final similarity
matrix. The spatial complexity is O(N2).
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5. Simulation and Experiment

We programmed the algorithm using Matlab (MathWorks, Beijing, China, 2014), and runs on a
single machine equipped with RedHat 6.4. The host memory is 16 GB, with 3.4 GHz CPU, and the
Matlab version is R2014b. In simulations from Section 5.1, 4-dimisional pdfs are supported to verify
limit theorem and the effectiveness of TLF method. We also test the resulting method in real networks.
We use TLF method to fuse 4 local similarity indices, CN [19], AA [20], RA and PA [21,22]. These indices
are 4 simple indices with low computation complexity about O(N· < k >2), where <k> represents the
average degree of nodes in a network. CN index only considers common neighbors of node pairs;
PA index only considers the degree of two nodes; AA and RA consider both common neighbors and
degree of nodes with different weights. And compare the method with fusion methods such as naïve
Bayes and logistic regression and other global indices with computation complexity more than O(N3).

5.1. Simulation Examples

Four types of structural similarity indices were simulated to evaluate node pairs with and without
links. The pdfs of the structural similarity indices are also provided. We construct 3 groups of
known distributions for the similarity indices pdfs. One thousand samples extracted from 10,000
existing links and 100,000 samples of nonexistent links were generated following the appropriate pdfs.
The 1000 samples serve as probe set; the 100,000 samples with 1000 probe links serve as unknown
links for training; and the remaining 9000 samples serve as train set of existing links. Each sample
had 4 dimensions to simulate 4 similarity scores. We first compute AUC and Precision for each
dimension, then use proposed TLF method to obtain the synthetic score and calculate the AUC and
Precision, compared with other combination methods such as Naïve Bayes and logistic regression.
Finally, we calculate AUC and Precision using the theoretical limit theorem and compare with the
above methods.

Let random vectors X = (X1, X2, X3, X4)
T and Y = (Y1, Y2, Y3, Y4)

T be the scores of existing
and nonexistent links, which follow f (x) = f (x1, x2, · · · , xn) and g(x) = g(x1, x2, · · · , xn)

pdfs, respectively.
Let f (x), g(x) are 4-dimensional normal distributions,

f (x) =
1

(2π)p/2|Σ|1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (19)

where diag(Σ)1 =
(
σ2

1 , σ2
2 , σ2

3 , σ2
4
)T , and Σij = rijσiσj.

The parameter sets for the 2 groups of simulation examples are as follows.
Group 1: Θ1 f =

{
µ1 f , Σ1 f

}
, and Θ1g =

{
µ1g, Σ1g

}
;

Group 2: Θ2 f =
{

µ2 f , Σ2 f

}
and Θ2g =

{
µ2g, Σ2g

}
.

In each group, µ1 f = (1, 2, 1.7, 2.1)T , µ1g = (1.3, 2.5, 2.1, 2.8)T , µ2 f = (1, 2, 1.7, 2.1)T ,

µ2g = (1.5, 3.5, 2.8, 3)T , diag
(

Σ1 f

)
1 =

(
1.52, 2.22, 32, 2.52)T , diag

(
Σ1g
)
1 =

(
22, 2.22, 32, 2.52)T ,

diag
(

Σ2 f

)
1 =

(
1.52, 2.22, 32, 2.52)T , diag

(
Σ2g
)
1 =

(
2.52, 3.52, 42, 2.52)T , r1 f = r1g =

1 0.8 0.76 0.56
0.8 1 0.85 0.74
0.76 0.85 1 0.93
0.56 0.74 0.93 1

, and r2 f = r2g =


1 0.62 0.45 0.34

0.62 1 0.28 0.47
0.45 0.28 1 0.65
0.34 0.47 0.65 1

.
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The window width h of TLF method in the group 1 and 2 is h = 0.1.
Group 3: Let

f3(x) = x1x2x3x4 + x1x4 + x3 exp(x1) log(x2)

(0 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 3, 3 ≤ x3 ≤ 5, 2 ≤ x4 ≤ 3.5)
, (20)

and
g3(x) = x1x2x3x4 + x3 exp(x1) log(x2)

(0 ≤ x1 ≤ 4, 1 ≤ x2 ≤ 3, 3 ≤ x3 ≤ 5, 2.5 ≤ x4 ≤ 5)
(21)

We ignore the constant that makes the integral of f (x), g(x) equal to 1. The simulation results of
group 3 are shown as Table 2.

Table 2. Simulation results of group 1 and group 2. The bold figure indicates the best accuracy in each
dimension and combination method.

Parameters Accuracy Dim1 Dim2 Dim3 Dim4 NB LR TLF Theoretical
Limit

Transform by
Increasing Function

Group 1 AUC 0.554 0.566 0.547 0.585 0.610 0.668 0.691 0.738 0.738
Precision 0.047 0.015 0.014 0.027 0.038 0.020 0.097 0.120 0.120

Group 2 AUC 0.569 0.660 0.604 0.622 0.765 0.676 0.786 0.792 0.792
Precision 0.114 0.140 0.081 0.038 0.153 0.051 0.212 0.241 0.241

The window width h of TLF method in the group 3 is h = 0.1.
The simulation results in Tables 2 and 3 show us that we can calculate the theoretical limit of

combination method based on Theorem 1, and the limit AUC and Precision are highest among all listed
methods, though we cannot list all possible conditions. Results also show that TLF method can fuse
the information effectively, and obtain the optimum accuracy. We also verify that the transformation
of monotonically increasing function does not change the theoretical limit. Theorem 1 provides a
platform that can compare each combination method by constructing some distributions, and direct an
effect combination method TLF.

Table 3. Simulation results of group 3. The bold figure indicates the best accuracy in each dimension
and combination method.

Accuracy Dim1 Dim2 Dim3 Dim4 NB LR TLF Theoretical
Limit

Transform by
Increasing Function

AUC 0.770 0.505 0.488 0.878 0.938 0.923 0.950 0.956 0.956
Precision 0.567 0.007 0.007 0.654 0.711 0.100 0.815 0.858 0.858

5.2. Experiments in Real Networks

The significance of simulation is that the theoretical limit can be derived by theoretical calculation
or numerical calculation, and all combination methods can be used to compare with it, finding
shortcomings and gaps to design a more rational method. However, the simulation data is different
from real network data. We use TLF method to fuse several similarity indices and test in real networks.
The basic similarity indices we use are Common Neighbor index (CN) [19], Adamic-Adar index
(AA) [15], Resource Allocation index (RA) and Preferential Attachment index (PA) [21,22]. These
indices are local indices. Several global indices such as Katz index [23], Average Commute Time index
(ACT) and Cosine Similarity Time index (Cos+) are served as comparisons [24,25]. The definitions of
the above indices and their meanings are listed as Table 4.
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Table 4. Definitions and descriptions of similarity indices.

Index Equation Description

CN sCN(i, j) = |Γ(i) ∩ Γ(j)|
Γ(i) is the set of neighbors of node i. |·| represents
cardinality of a set. CN index denotes the common

neighbors between nodes i and j.

AA sAA(i, j) = ∑
z∈Γ(i)∩Γ(j)

1
log kz

AA index weights the common neighbors by the
reciprocal of the logarithm of each node’s degree.

RA sRA(i, j) = ∑
z∈Γ(i)∩Γ(j)

1
kz

RA index weights the common neighbors by the
reciprocal of each node’s degree.

PA sPA(i, j) = kikj
PA index expresses preferential attachment by

node’s degree.

Katz sKatz(i, j) =
[

lim
n→∞

n
∑

m=1
(αA)m

] A is adjacent matrix of network. Katz index
considers all path between two nodes and gives

more weights, α, to the shorter paths.

ACT sACT(i, j) = 1
l+ii +l+jj−2l+ij

l+xy is the corresponding element in L+, and L+

denotes the pseudo-inverse of laplacian matrix.

Cos+ sCos+(i, j) = vT
i vj

|vi|·|vj| =
l+ij√
l+ii ·l

+
jj

According to L+, Cos+ calculates cosine similarity of
two vectors in matrix L+.

We use TLF method to fuse 4 local similarity indices, and compare with fusion method such
as naïve Bayes and logistic regression and other global indices. Our experiments are performed
on 11 different real networks. (1) Food Web Everglades Web (FWEW) [26]; (2) Food Web Florida
Bay(FWFB) [27]; (3) Protein-protein Interactions Cell (PPI Cell) [28]; (4) CKM-3 [29]; (5) Netscience
(NS) [30]; (6) Yeast [31]; (7) Political Blogosphere(PB) [32]; (8) Email [33]; (9) CA-GrQc(CG) [34];
(10) Com-dblp(CD) [35]; (11) Email Enron (EE) [36,37]. The basic topological features of 11 real
networks are listed in Table 5. Each original data is randomly divided into training set of 90% links,
and the probe set of 10% links.

Tables 6 and 7 show the comparisons between TLF method and other combination methods
or global indices using AUC and Precision metrics. Each result is the average of 10 realizations.
When calculating the Precision metric in Equation (5), we take L = 100 in datasets 1 to 8, and take
L = 1000 in datasets 9 to 11. In the large networks, TLF method needs to sample to save the computing
sources, and in datasets 10 to 11, the under-sampling rate is set as 1000.

Table 5. Basic topological features of 6 example networks. |V| and |E| are the total numbers of
nodes and links, respectively. <k> represents the average degree of nodes in a network. C and r are the
clustering coefficient and assortative coefficient respectively. H is the degree heterogeneity, defined
as H = <k2>

<k>2 .

Data |V| |E| <k> r C H

FWEW 69 880 25.51 −0.298 0.560 1.275
FWFB 128 2075 32.42 −0.112 0.335 1.24

PPI_Cell 127 237 3.732 0.035 0.455 1.649
CKM-3 246 423 3.439 0.102 0.356 1.335
Yeast 2375 11,693 9.85 0.469 0.378 3.48

PB 1222 16,717 27.36 −0.221 0.361 2.97
NS 1589 2742 3.451 0.462 0.889 2.011

Email 1133 5451 9.622 0.078 0.297 1.942
CG 5242 14,496 1.11 0.659 0.720 3.05
CD 425,957 1,049,866 4.93 0.267 0.267 4.412
EE 36,692 183,831 10.02 −0.111 0.746 13.9
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Table 6. Comparisons of the AUC value between TLF and other combination methods or global indices.
In each network, the selected window width h is along with the AUC value. The bold figure indicates
the best AUC.

Data CN AA RA PA ACT Cos+ Katz NB LR TLF

FWEW 0.687 0.694 0.714 0.819 0.793 0.511 0.727 0.825 0.832 0.876 (h = 0.1)
FWFB 0.624 0.624 0.624 0.742 0.727 0.649 0.680 0.749 0.762 0.781 (h = 0.1)
PPI_Cell 0.736 0.745 0.740 0.699 0.779 0.783 0.822 0.753 0.679 0.831 (h = 0.3)
CKM-3 0.661 0.665 0.661 0.585 0.560 0.535 0.928 0.683 0.675 0.713 (h = 0.15)
Yeast 0.918 0.918 0.915 0.869 0.903 0.958 0.962 0.925 0.934 0.968 (h = 0.2)

PB 0.922 0.928 0.928 0.906 0.890 0.932 0.934 0.931 0.936 0.949 (h = 0.3)
NS 0.994 0.994 0.995 0.709 0.558 0.507 0.996 0.998 0.999 0.999 (h = 0.2)

Email 0.849 0.852 0.851 0.817 0.801 0.889 0.908 0.865 0.870 0.912 (h = 0.15)
CG 0.966 0.965 0.967 0.992 0.549 0.679 0.996 0.984 0.991 0.994 (h = 0.1)
CD 0.962 0.968 0.971 0.943 0.912 0.971 0.915 0.975 0.973 0.982 (h = 0.15)
EE 0.981 0.984 0.984 0.927 0.903 0.980 0.514 0.985 0.987 0.992 (h = 0.15)

Table 7. Comparisons of the Precision value between TLF and other combination methods or global
indices. In each network, the corresponding window width h is the same as Table 6. The bold figure
indicates the best Precision.

Data CN AA RA PA ACT Cos+ Katz NB LR TLF

FWEW 0.143 0.145 0.162 0.334 0.271 0.004 0.196 0.301 0.325 0.543
FWFB 0.071 0.072 0.083 0.240 0.184 0.029 0.148 0.249 0.283 0.382
PPI_Cell 0.052 0.048 0.073 0.012 0.045 0.061 0.058 0.072 0.068 0.085
CKM-3 0.051 0.059 0.062 0.011 0.001 0.003 0.061 0.060 0.062 0.064
Yeast 0.652 0.703 0.461 0.439 0.487 0.291 0.721 0.712 0.723 0.785

PB 0.381 0.320 0.212 0.100 0.129 0.298 0.381 0.411 0.395 0.452
NS 0.820 0.971 0.982 0.008 0.004 0.006 0.823 0.988 0.986 0.991

Email 0.202 0.253 0.214 0.039 0.031 0.086 0.231 0.263 0.289 0.347
CG 0.972 0.969 0.967 0.991 0.557 0.663 0.998 0.983 0.989 0.996
CD 0.901 0.924 0.931 0.892 0.867 0.937 0.912 0.939 0.942 0.951
EE 0.981 0.984 0.987 0.924 0.898 0.912 0.516 0.988 0.985 0.992

The results show us that TLF method performs better than other fusion methods such as naïve Bayes
and logistic regression, no matter what evaluation metric use. Almost all combination methods are better
than 4 basic indices. From the limit theorem, combination methods are dependent with each dimension.
The promotion of fusion index is restrict to each similarity index. Experiment results also exposed this
problem: if the single similarity indices perform not well, the fusion index cannot significantly improve
the accuracy. For example, in the CKM-3 network, though we use TLF method to fuse 4 basic similarity
indices can improve the AUC obviously, it cannot be better than Katz index (0.928).

6. Discussion

Many combination methods try to find the nonlinear relation of every dimensions, and want
to obtain a more reasonable fusion function to promote the prediction accuracy. For example,
link prediction method based on the choquet fuzzy integral [7] uses fuzzy measures to measure
the importance of each similarity index in the fusion process and the interaction between them.
Logistic regression based index adopts logistic function to learn the relation of multiple structural
features and obtain an adaptive link prediction method [38]. In fact, according to the limit theorem,
the nonlinear relation is the ratio of two joint probability destiny functions or its monotone increasing
transformation. The best fusion function is a measurement of difference between existing and
nonexistent links, and it reflects the relativity of existing and nonexistent links. The essence of
combination methods is trying to approximate the pdfs from many aspects. Limit theorem provides
a unified interpretation for all combination methods. On the basis of theoretical limit theorem,
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the proposed TLF method evaluates two pdfs directly, and it has a better fusion effect from results of
simulation and experiment in real network.

7. Conclusions

This paper proposes mathematic description of link prediction combination methods and derives
the limit theorem. Before the mathematic description we proposed, many combination methods have
been put forward and widely used. However, all these methods are groping respectively without
unified explanation. Limit theorem solved this problem and provided a guidance for link prediction
method design. The TLF method based on limit theorem can achieve higher prediction accuracy.
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