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Abstract: (Bi0.5Na0.5)0.94Ba0.06TiO3 dense ceramics were obtained from autocombustion sol-gel
synthesized nanopowders and sintered at 1050 ◦C for 1–2 h for the study of the electromechanical
anisotropy. Measurement of the complex impedance spectrum was carried out on thin ceramic
disks, thickness-poled, as a function of the temperature from 16 ◦C up to the vanishing of the
electromechanical resonances at the ferroelectric to relaxor transition near 100 ◦C. The spectrum
comprises the fundamental radial extensional mode and three overtones of this, together with the
fundamental thickness extensional mode, coupled with other complex modes. Thermal evolution of
the spectrum shows anisotropic behavior. Piezoelectric, elastic, and dielectric material coefficients,
including all losses, were determined from iterative analysis of the complex impedance curves
at the planar, thickness, and shear virtually monomodal resonances of disks and shear plates,
thickness-poled. d33 was measured quasi-statically at 100 Hz. This set of data was used as the initial
condition for the optimization of the numerical calculation by finite elements of the full spectrum of
the disk, from 100 kHz to 1.9 MHz, to determine the thermal evolution of the material coefficients.
An appropriate measurement strategy to study electromechanical anisotropy of piezoelectric ceramics
has been developed.

Keywords: piezoelectricity; lead-free; bismuth sodium titanate; electrical impedance; electromechanical
resonances; FEM; iterative analysis; shear; material characterization; anisotropy

1. Introduction

Lead-free ceramics with composition at the solid solution system of (1 − x)(Bi0.5Na0.5)TiO3-
xBaTiO3 (BNBT100x) with x = 0.06 have been widely studied in recent years due to their complex crystal
structure, exhibiting a field induced phase transition at the nano-scale between short-range ordered
and ferroelectric, long-range ordered, polar states [1,2]. The thermal depolarization accompanied by
the inhibition of the piezoelectric activity [1] has a multiple origin [3,4]. On the one hand, there is a
thermal randomization of the polarization at the ferroelectric domains. On the other hand, there is a
thermally stimulated and non-abrupt transition, without macroscopic symmetry breaking, from the
long-range ordered ferroelectric structure induced by the field to an ergodic relaxor at ~100 ◦C, well
below the transition to the non-polar paraelectric phase.
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Piezoelectric ceramics in the linear range are modeled using constitutive equations that link
two mechanical macroscopic magnitudes, strain S and stress T, with two electric magnitudes, the
electric field E and the electric displacement D. The parameters in the constitutive equations give
information about macroscopic behavior, however they are related with the microscopic mechanisms.
For this reason, we aim to determine all parameters in the constitutive equations as a function of the
temperature in order to obtain information about the depolarization process. We use measurements
of the complex impedance as a function of the frequency of resonators of a given geometry for this
purpose. The analysis of these resonance spectra will be made here using alternative methods to that
of current standards for measurements of piezoelectric ceramics [5], at present under revision.

The simplest magnitude to measure the behavior of a piezoelectric ceramics is the electric
impedance Z. The electric impedance is a complex number function of the angular frequency ω,
if the system remains linear, Z(ω) determines the electric current when a sinusoidal voltage is applied.
Almost all piezoelectric ceramic characterization work uses electric impedance or its inverse function,
the admittance Y(ω). Sometimes, it is necessary to identify a resonant peak, in this case the electric
conductance G(ω) presents a maximum when the electric power consumed by the sample is maximum,
G(ω) is the real part of the admittance. For the anti-resonance frequency, the real part of the impedance
R(ω) can be used [6].

In the present case, we need a methodology to determine all parameters as a function of the
temperature using only one sample. This sample is thermally depolarized, producing changes
in the resonance spectrum as a function of temperature. One alternative to do that is using an
iterative methodology based in finite-element method (FEM) simulation [6–8]. The use of FEM
based minimization techniques to obtain the parameters in the piezoelectric models was successfully
implemented by several groups in recent years [9–11]. This sort of analysis of impedance curves is not
yet incorporated in the standard for measurements [5].

FEM simulation gives an impedance curve numerically computed from a certain set of parameters.
The methodology makes an optimization to minimize the difference between the numerical and the
experimental impedance curves. The simulations are made using axisymmetric elements allowing
the complete simulation of a disk using the symmetry. The output is the electrical impedance as a
function of frequency, giving all resonances in the disk including radial thickness and coupled modes.
This methodology can be applied for ferro-piezoelectric ceramics with axial 6 mm macroscopic symmetry.

Specific problems and material characteristics require the study of a suitable measurement strategy
for the determination of a valid full set of material parameters. In this case, we have no additional
information about the range of validity of the parameters. For this reason, the FEM optimization is
supported by the information obtained from other samples using monomodal resonances.

The techniques based on the iterative analysis of impedance curves consider one-dimensional
models and monomodal resonances which use different resonance modes and resonator shapes to
identify different material parameters, and also provide an alternative to standard procedures and
their results that are appropriated for the three-dimensional modeling of piezoceramics [12,13].

In a previous work, material coefficients of BNBT ceramics were determined as a function
of the temperature using an iterative process of analysis of impedance curves at the monomodal
electromechanical resonances of thickness-poled thin disks (radial) and plates (shear) [1,4,14].
Measurements were made as the sample was heated. The studied ceramics were obtained by hot
pressing (at 800 ◦C for 2 h) from autocombustion sol-gel powder and recrystallization (at 1050 ◦C for 2 h)
to minimize grain size and non-stoichiometry [15]. Depolarization temperatures were obtained well
above 100 ◦C when they were measured from uncoupled shear resonances of, thickness-poled, thin
plates. Shear resonances were still detected at 140 ◦C [1]. When depolarization was determined
from the planar or thickness mode of thin disks, thickness-poled, depolarization took place at
100 ◦C. This distinct thermal evolution have been observed in the BNBT100x system, not only for
BNBT6 [1,4,14], but also for BNBT4 [16,17]. Since each resonance mode studied is related with a
different set of material parameters, the observed phenomenology [1,4,14,16,17] reveals the anisotropy
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of the depolarization process when studied by measurement of the electromechanical resonances.
However, in these previous works the resonance modes were measured using different samples,
specially constructed to uncouple different resonances.

Here we are exploring the thermal depolarization and related phase transition from measurements
in a sample where all modes, both pure and coupled modes, contribute together. In this way, we can
assess such electromechanical anisotropy of the thermal depolarization beyond any doubt.

In this work, two different results are presented. On the one hand, the evolution of the resonance
modes (radial, thickness, and other complex modes) of a BNBT6 thin disk is evaluated as a function
of the temperature. The evaluation is made on the resonance frequency and in the modulus of the
electrical impedance. On the other hand, we jointly characterize the thermal evolution of the material
parameters, extracted from analysis of the impedance spectra using only one sample by methods that
are a feasible and advantageous alternatives to the current standards of measurements.

2. Materials and Methods

Ceramics were prepared from autocombustion sol-gel nanopowders synthesized at 500 ◦C, from
acetate and nitrates, as explained elsewhere [18]. Pressed pellets were sintered in two steps using
moderate maximum temperatures (1050 ◦C for 1–2 h) to avoid loss of volatiles. Thin sintered ceramic
disks and plates were electroded at the major faces with silver paste, sintered at 400 ◦C, and poled
in silicon oil bath from 120 ◦C to 50 ◦C, cooling with an applied field of 30 KV·cm−1, for 30 min.
Shear plates were re-electroded for the electrical measurements.

Measurements of complex impedance of disks and plates were made using precision impedance
analyzers (Hewlett-Packard, Palo Alto, CA, USA). Model HP4194A was used for the measurements
as a function of the temperature, until the inhibition of the piezoelectricity, in situ at an ad hoc
sample-holder with a heating module. The sample holder and the temperature control were specially
designed for this application. The 16 ◦C corresponds to room temperature, after that a 5 ◦C step was
used starting from 35 ◦C up to 105 ◦C, since in the first interval (16–35 ◦C) the variation is irrelevant to
the aim of the work.

Model HP4192A-LF, connected to a computer with the appropriate software implemented [19],
was used for the in situ iterative analysis of resonance curves.

To obtain the complete parameters set, a minimization of the difference between the numerical
and the experimental impedance curve is performed. The literature does not provide a complete matrix
characterization of these ceramics that could be used as initial conditions for the numerical calculation
of the impedance spectra of a thin disk. In order to determine such an initial condition, comprising
10 material coefficients including all losses—piezoelectric, dielectric, and elastic—the iterative analysis
of complex impedance curves [12,13,19] of thin disks and shear plates, thickness-poled, was used.
To determine d33, a quasi-static measurement was carried out on a thin disk at 100 Hz using a
Berlincourt piezometer (Channel products Inc., Chesterland, OH, USA).

After this first condition, the optimization methodology presented in [6,7] was used.
Although there may be more efficient solutions, the methodology based in the Nelder–Mead
algorithm [20] is generally robust and easy to implement, which are reasons why it was selected here.
This methodology can determine all the complex coefficients in the linear piezoelectric model using
only one sample. FEM simulations are performed using square with four nodes using complex numbers
for all parameters in the model. The geometry is assumed axisymmetric and the material is assumed
homogenous and isotropic. After performing a convergence analysis, the element size is fixed in 10 µm,
giving 40 elements for one wave length in the thickness mode frequency. Additional details about the
implementation of the methodology and the FEM code are in the work of Perez et al. [6,21].This is
suitable for this case when we are looking for the simultaneous evolution of the parameters as a
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function of the temperature including the coupled modes. There are different ways to express the
constitutive equations, here we use the method adopted by the IEEE standard [5].

Tp = cE
pqSq − ekpEk (1)

Di = eiqSq + εS
ikEk (2)

Due to symmetry, only 10 independent parameters are used to represent a piezoelectric material
with axial 6mm macroscopic symmetry. All parameters are complex numbers in order to take in to
account the energy losses. The determination involves five elastic constants (cE

11, cE
12, cE

13, cE
44, cE

33),
three piezoelectric (e31, e33, e15), and two dielectric (εS

11, εS
33). Using the initial seed obtained from the

one-dimensional analysis, a sensitivity analysis is performed over the real part of the model. Here we
obtain different information for the analysis that follows next. First, most of the sensitivity parameters
are optimized first as presented by Perez et al. [5]. Second, the parameters are linked with the different
resonance modes in order to found a relationship between the changes in the resonance frequency and
the parameter value. Finally, we identify the less sensitive parameters to evaluate the results, for this
less sensitive set the results must be compared with other samples using different geometry.

The sensitivity is evaluated using the conductivity G and the resistance R, the results are shown
in the next section and in the supplementary materials. Here the classical local sensitivity analysis
is used as proposed by Perez et al. [6,7,21]. A global sensitivity analysis [22] is not necessary for the
actual purposes.

Finally, the parameters are optimized using the Nelder–Mead algorithm [20]. The simulations
are performed using an in-house FEM software in MATLAB that allows the modeling of piezoelectric
structures with complex properties. The used element is the four-noded axisymmetric isoparametric
piezoelectric 2D solid element. In this case, the grid is squared with 100 µm sides. All simulations in
the optimization process use axisymmetric elements. In the next section, the fitting of the simulated
impedance and the resonance modes is shown. In order to see the vibration shape for each mode, a 2D
simulation is performed using commercial software and presented in the supplementary materials.

3. Results

3.1. Impedance Measurements as a Function of the Temperature

Figure 1A,B shows the measured complex modulus and phase, respectively, measured in the
interval from 100 kHz to 1.9 MHz for a BNBT6 thin disk (m = 0.950 g, t = 1.91 mm and D = 10.60 mm) at
35 ◦C. Figure 1C,D show also an alternative representation of the complex impedance (Z) as the peaks
of the real part (Resistance (R)) of Z and the real part (Conductance (G)) of the complex admittance (Y).
These peaks are used for the determination of the frequencies of interest for the iterative analysis.

As the fundamental radial resonance is sharp and since the number of points to measure in the
spectrum was determined so as to make the problem manageable, the accuracy of determination of
|Z|max for this mode was not sufficient to clearly show the tendency of its thermal evolution. It is
here analyzed by the evolution of the overtones (R2, R3, R4).

The spectrum comprises the fundamental radial extensional mode and three overtones of this,
together with the fundamental thickness extensional mode and other complex modes [6].
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Figure 1. Experimental response at 35 °C (continuous blue line) and the numerical simulation using 
the optimized parameters (black dots). (A) Modulus of the electric impedance; (B) phase of the electric 
impedance; (C) electric conductance G; (D) electric resistance R. Fundamental radial resonance and 
overtones are indicated by a Rn (n = 1, 2, 3, 4), thickness resonance by a TH and the coupled modes 
by Cm (m = 1, 2). 

Figure 2A,B shows the evolution of the frequency of resonance and the modulus of the electric 
impedance for all temperatures. The resonances highlighted in Figure 2 can be observed for all 
temperatures in the selected range. 

 

Figure 2. Thermal evolution of resonance modes: (A) Resonance frequency; (B) Modulus of the 
complex impedance. Results are expressed as a percentage of the value at room temperature. 

From the analysis of Figure 2, we can note a different behavior in the frequencies for the radial 
modes compared with the thickness and the complex modes. Qualitatively, the frequencies of all 
modes decrease linearly up to a temperature close to 85 °C. Above this temperature, the frequency 
increases rapidly. To estimate the temperature of the minimum frequency, a quadratic interpolation 
is performed near the minimum of each response. Table 1 shows the results of this interpolation. 
  

Figure 1. Experimental response at 35 ◦C (continuous blue line) and the numerical simulation using
the optimized parameters (black dots). (A) Modulus of the electric impedance; (B) phase of the electric
impedance; (C) electric conductance G; (D) electric resistance R. Fundamental radial resonance and
overtones are indicated by a Rn (n = 1, 2, 3, 4), thickness resonance by a TH and the coupled modes by
Cm (m = 1, 2).

Figure 2A,B shows the evolution of the frequency of resonance and the modulus of the electric
impedance for all temperatures. The resonances highlighted in Figure 2 can be observed for all
temperatures in the selected range.
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Figure 2. Thermal evolution of resonance modes: (A) Resonance frequency; (B) Modulus of the
complex impedance. Results are expressed as a percentage of the value at room temperature.

From the analysis of Figure 2, we can note a different behavior in the frequencies for the radial
modes compared with the thickness and the complex modes. Qualitatively, the frequencies of all
modes decrease linearly up to a temperature close to 85 ◦C. Above this temperature, the frequency
increases rapidly. To estimate the temperature of the minimum frequency, a quadratic interpolation is
performed near the minimum of each response. Table 1 shows the results of this interpolation.
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Table 1. Temperature of the minimum in the evolution of the resonance frequency.

Mode R2 R3 R4 TH C1 C2

Temperature (◦C) 88.5 90.0 90.2 95.0 96.3 97.6

Data interpolated from Figure 2.

As for the impedance modulus, the one for the radial modes decreases monotonically until 85 ◦C
and at a faster rate above this temperature. The inflection point for this decrease is at 100 ◦C for
TH mode and at 90 ◦C for C2 mode. However, such an inflection point is not found for C1 in the
measured interval.

Therefore, we found three different tendencies for the thermal evolution of resonances of
the: (i) Rn (n = 2, 3, 4) modes; (ii) the TH and C2 modes; and (iii) the C1 mode, revealing the
electromechanical anisotropy of the thermal depolarization process.

3.2. Iterative Analysis of Impedance Curves

Table 2 shows the complex material parameters from the iterative analysis of the impedance
curves at resonance, that are used as initial condition for the optimization of the numerical calculation
of the spectra in Figure 3.

Table 2. Parameters from the iterative analysis of the impedance of thin disks and plates, thickness-poled.
Elastic constants are in GPa, piezoelectric constants in C/m2.

cE
11 cE

12 cE
13 cE

33 cE
44 e31 e15 e33 εS

11 εS
33

149.9 + j0.42 77.1 + j0.42 74.4 + j0.49 138.1 + j0.45 41.4 + j0.07 −1.47 + j1.23 11.17 + j0.33 6.56 − j0.23 609 − j29 421 − j13

Figure 3A,B show the Resistance (R) and Conductance (G) for the fundamental radial and
thickness resonances of the BNBT6 thin disk, thickness-poled (t = 1.91 mm and D = 10.60 mm).
These peaks are used for the determination of the frequencies of interest for the iterative analysis.
Also, parameters in Table 1 were obtained from the shear mode of a thin plate that initially had 0.89 mm
thickness, and lateral dimensions 9.53 and 9.43 mm. This plate was thinned down to 0.83 mm, thus
obtaining a decoupled mode. Figure 3C,D show the R and G peaks for the shear mode of the thin plate
of 0.83 mm thickness.
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9.43 mm): (C) with t = 0.89, with strong coupling of modes and not fitted for parameters 
determination; and (D) with t = 0.83 mm, virtually uncoupled. The regression factor of the 
reconstructed to the experimental spectra (R2) is shown for each analyzed resonance. 
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Figure 3. Experimental response at RT (symbols) plotted as R (blue) and G (black) peaks, together with
the reconstructed spectra after parameter determination by iterative analysis (continuous lines), for:
(A) planar and (B) thickness resonance modes of a thickness-poled, thin disk of BNBT6 (t = 1.91 mm and
D = 10.60 mm); and for a shear resonance of a thickness-poled, thin plate of BNBT6 (9.53 × 9.43 mm):
(C) with t = 0.89, with strong coupling of modes and not fitted for parameters determination; and
(D) with t = 0.83 mm, virtually uncoupled. The regression factor of the reconstructed to the experimental
spectra (R2) is shown for each analyzed resonance.

3.3. Sensitivity Analysis

The result of the FEM optimization depends on the right choice of the initial conditions. For this
reason, a sensitivity analysis is performed by representing the evolution of the maximum of G and
R curves (Figure 1) when each given parameter of the initial condition is changed. The sensitivity
analysis is used together with the results of Table 1 to obtain the initial seed in the optimization.
Figure 4 shows the sensitivity analysis results for the G curves for each elastic parameter.
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Figure 4. Sensitivity analysis for the real part of the elastic constants. Each curve shows the evolution
of a resonance using the conductivity G. Each parameter is changed over a range ±50% from the
initial value.
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This sensitivity analysis for the R curves, together with the analysis for the dielectric and piezoeletric
parameters for the G and R curves are given in the Supplementary Materials file (Figures S1–S3).

The sensitivity is computed as the tangent of the angle in the sensitivity maps. According to
this, the parameters can be divided into three groups. First, those parameters that provoke clear
changes in the spectrum, high sensitivity ones: cE

11, cE
13, cE

33, εS
33, and e33. Second, those parameters that

provoke some changes in the spectrum, medium sensitivity parameters: cE
12, e15, and cE

44. Finally, those
parameters that practically do not change the spectrum, low sensitivity parameters: e31 and εS

11.
We can summarize the sensitivity analysis in Table 3 showing the different influence of each

parameter over each of the studied modes. Here we use four steps to characterize the different degrees
of sensitivity (null, low, medium, high).

Table 3. Summary of the sensitivity analysis from Figure 4 and similar in the supplementary material.

c11 c12 c13 c33 c44 e31 e15 e33 ε1 ε33

R1 High Med. High High Null Low Null Null Null Null
R2 High Low High High Null Null Null Null Null Null
R3 High Low High High Low Null Null Med. Null Null
R4 High Null High High Med. Null Low Med. Null Null
TH Null Null Null High Null Null Null High Null High
C1 High Null High High High Null Med. Med. Low Low
C2 High Null High High High Null Med. Med. Low Low

3.4. Optimized Parameters

After the needed changes for the best fit of the initial conditions, a minimization approach for
the best fit of the model to the experimental data was carried out. Table 4 shows the set of parameters
obtained after minimization of the numerical calculation of the complex impedance spectra of the
thin disk as a function of the temperature. The experimental impedance curve was fitted for all
temperatures and the parameters are optimized to minimize the quadratic error in the modulus of the
electric impedance. The complex part of the model was adjusted, minimizing the error in G and R
curves, see Figure 1C,D.

Figure 5 shows the numerical calculation, optimized for 100 ◦C, here we can observe the
differences in shape and magnitude of the spectrum against the data in Figure 1. Although the
fitting is poorer than that obtained at room temperature, all resonances are well represented by the
numerical model.

Table 4. Set of parameters from the optimization for curves at 16, 40, 60, 80, and 100 ◦C.

T (◦C) cE
11 cE

12 cE
13 cE

33 cE
44 e31 e15 e33 εS

11 εS
33

16 144.3 + j1.03 52.1 + j0.48 54.7 + j0.56 132.8 + j1.26 39.9 + j0.44 −1.24 + j0.0026 7.72 − j0.005 10.09 − j0.105 1841 − j105 374 − j12

40 141.8 + j1.04 53.2 + j0.48 55.3 + j0.56 130.6 + j1.28 38.3 + j0.43 −1.58 + j0.002 8.85 − j0.006 10.77 − j0.147 1853 − j101 431 − j15

60 139.6 + j1.01 53.0 + j0.47 55.9 + j0.55 128.7 + j1.29 37.0 + j0.44 −1.29 + j0.0019 8.90 − j0.008 11.27 − j0.149 1536 − j141 494 − j19

80 136.7 + j1.04 52.4 + j0.46 55.8 + j0.54 125.1 + j1.32 36.3 + j0.43 −1.83 + j0.0012j 9.46 − j0.009 12.33 − j0.182 1632 − j155 590 − j26

100 134.1 + j1.05 49.9 + j0.47 53.2 + j0.51 125.3 + j1.37 33.9 + j0.42 −1.49 + j0.0013 6.27 − j0.007 12.18 − j0.125 895 − j170 999 − j73

Elastic constants are in GPa, piezoelectric constants in C/m2.

Figures 6 and 7 show the evolution of the real and imaginary part, respectively, of the
optimized parameters.

The different scale of thermal changes is noticeable in the depolarization process of the elastic
(up to 15% in the real and the imaginary parts), piezoelectric (up to 60% in the real part and 100% in
the imaginary), and dielectric parameters (up to 300% in the real part and 1000% in the imaginary).

The dielectric permittivity as a function of the temperature plots show local maxima, dielectric
anomalies, revealing the changes in the polar structure of the materials at the phase transitions [1].
The strong anisotropy (Figures 6 and 7) of the dielectric permittivity reveals that the polar changes
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are related to the polarization parallel to the electric field (three-axis). Thus, the observed changes in
the parameters from the optimized numerical calculation of the spectra are compatible with a phase
transition with strong change in the polar structure of the material from a ferro-piezoelectric phase to a
highly polarizable and non-piezoelectric one.

Both the real and the imaginary parts of all parameters related with the TH mode are high
sensitivity ones and their thermal evolution (red lines in Figures 6 and 7) shows smooth changes.
The real part of the elastic cE

33 follows the evolution of the resonance frequency (Figure 2), having a clear
minimum before 100 ◦C. At the same temperature, the net decrease of both the real and imaginary parts
of e33 is observed, as piezoelectric activity vanishes at the ferroelectric to relaxor phase transition [1].
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Due to the local maxima at the phase transitions [1], near 100 ◦C, a faster increase of real and
imaginary parts of εS

33 is observed as the temperature increases, corresponding to the dielectric
anomaly at the ferroelectric to relaxor phase transition. Also, the increase in the mechanical losses
(imaginary part of the elastic cE

33) is observed.
As for the elastic parameters related with the radial mode of resonance, both the high sensitivity

(cE
11, cE

13) and medium sensitivity ones (cE
12), show small but fluctuating changes with the temperature,

both in their real and imaginary parts. This is connected with the poorer determination of the
characteristic of the sharper resonances. However, even being a low sensitivity parameter, a decrease
of the real part of e13 seems to be clear from 80 ◦C, in agreement with the evolution of both the
resonance frequencies and impedance modulus of the radial modes (Figure 2).

Parameter values for 16 ◦C were used in the FEM modeling of the thin disk to determine the
deformation at resonance (see Supplementary Materials Figures S4–S7). This confirms the purely
dilatational character of the fundamental radial (R1) and thickness (TH) modes. It also shows that the
deformation at C1 and C2 modes involves a great deal of shear movements. With this information,
the sensitivity analysis of the Figure 4 and the supplementary material summarized in Table 3, we
conclude that the thermal evolution of cE

44 and e15, medium sensitivity parameters, and εS
11, low

sensitivity parameter, should be mostly related with that of the C1 and C2 modes. However, those
two modes do not change in the same way as the temperature increases (Figure 2). The thermal
depolarization weakly affects the real and imaginary part of εS

11. The strong fluctuations of cE
44

do not mask the continuous decrease as the temperature increases of its real and imaginary parts.
However, the fluctuations of e15 make it difficult to make conclusions about the temperature at which
the piezoelectric activity linked to it vanishes, though the rate of its decrease near 100 ◦C is the lowest
of the three piezoelectric parameters.

Overall, these differences confirm those revealed by the analysis of the experimental data and are
in agreement with the literature on the crystal anisotropy of the BNBT6 ceramics [23].

4. Concluding Remarks

The measurement strategy developed here can determine the complex piezoelectric, dielectric,
and elastic parameters, including all losses, as a function of the temperature using only one sample.
The initial conditions for the minimization of the differences between the numerically calculated and
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experimental impedance spectrum were obtained from: (i) the measurement of virtually monomodal
resonances in thickness-poled thin disks and plates and (ii) a sensitivity analysis of the parameters.
The full impedance spectrum measured for the thin disk comprises the fundamental radial resonance
and three overtones, Rn (n = 1, 2, 3, 4), and the fundamental thickness resonance (TH) coupled with
other complex modes (Cm (m = 1, 2)).

The electromechanical anisotropy is clearly observed in the experimental data since we found
different trends for the thermal evolution of the studied resonance modes.

The thermal evolution of the parameters from the optimized numerical calculation of the
experimental spectrum is compatible with a phase transition with strong change in the polar structure
of the material from a ferro-piezoelectric phase to a highly polarizable and non-piezoelectric one.

Those parameters that are linked with the radial modes seem to have changes from 80 ◦C.
Near 100 ◦C, the change of e15 is the lowest of the three piezoelectric parameters, but its fluctuations
make it difficult to conclude about the temperature at which the piezoelectricity vanishes. The high
sensitivity parameters associated to the thickness mode resonance change critically below 100 ◦C.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/1/121/s1.,
Figures: sensitivity analysis of the elastic parameters on R (Figure S1), sensitivity analysis on G (Figure S2) and on
R (Figure S3) of the dielectric and piezoelectric parameters; Extreme positions of the deformation of the modes of
movement of the disk at the fundamental radial resonance (Figure S4), at the fundamental thickness resonance
(Figure S5), at the complex mode C1 (Figure S6) and at the complex mode C2 (Figure S7).
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