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Abstract: In this work a hybrid gas sensor based on a tunable fiber laser and a correlation spectroscopy
technique is presented. The laser is tuned by varying the temperature of a bulk silicon wafer of
85 µm thickness and, once the desired wavelength is reached the line, is locked by keeping fixed its
temperature. According to experimental results the wafer temperature variation was in the order
of 0.02 K, which induced an estimated wavelength deviation of 0.12 pm, which satisfies the high
wavelength position accuracy required for gas sensing applications. Additionally, it is shown that
errors due to laser intensity fluctuations can be minimized by implementing a simple dual path
correlation spectroscopy stage. As a proof of the suitability of our tunable fiber laser for gas sensing
applications, a C2H2 sensor was implemented. By using a 10 cm gas cell at atmospheric pressure,
it was possible to detect concentrations from 0 to 20% with a sensitivity of 521 ppm and sub-minute
time response. Moreover, the experimental measurements and simulated results have a high level of
agreement. Finally, it is important to point out that, by using doped fiber with different characteristics,
other wavelength emissions can be generated.
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1. Introduction

Gases are used in a broad range of applications and therefore it is important to have sensors
capable of measuring concentration with high precision. In particular, acetylene is a highly flammable
gas that is used in several industrial applications. Its lower explosive limit (LEL) of 2.5% by volume
and its upper explosive limit (UEL) of 100% by volume make this gas extremely hazardous. Therefore,
sensors capable to detect its concentration with high sensitivity and low cross sensitivity to other
gases are necessary. In general there are different sensor configurations, for instance, non-dispersive
sensors (NDS) and those based on the tunable laser absorption spectroscopy (TLAS) technique.
In NDS, basically all wavelengths from a broadband source arrive together to an optical detector.
Different configurations of this type of sensors can be implemented by using basic components such
as a broadband source, a band pass filter and a detector. In order to either increase the sensitivity,
to minimize the cross sensitivity of the sensor to other molecules, or to minimize some type of errors,
authors have proposed designs that use either two detectors, two sources, two cells (one for reference
and one for measurement), or a combination of these components [1–3]. In sensors based on the TLAS
technique, ideally only one wavelength arrives at the optical detector at a time. Hence, to implement
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this sensing setup it is necessary to have a laser emission that can be tuned within the range where
ro-vibrational absorption lines of the target molecule occurs [4]. Commonly, TLAS can be performed
in two different modes: Analytical Tunable Laser Absorption Spectroscopy (ATLAS) or Line Locked
Tunable Laser Absorption Spectroscopy (LL-TLAS) [5]. In ATLAS mode, the laser line emission is
scanned to resolve with high resolution one or more absorption lines of the target molecule [6–10].
In LL-TLAS mode, the emission is ideally matched with the central wavelength of the absorption line,
thereby the overall laser intensity observed by the detector will be affected as the gas concentration
is varied [5]. Diode lasers have been used as TLAS sources since a long time ago [7–10]. Hence,
diode lasers, as single-mode distributed feedback laser diodes (DFB), are quite popular for this
application. Another light source option for LL-TLAS sensing in the near infrared (NIR) region are
fiber lasers, since these can provide narrow line width emissions and are relatively low cost because
these can be implemented with standard communication components [4]. These lasers can be used to
detect gases such as acetylene (C2H2), hydrogen iodide (HI), ammonia (NH3), carbon monoxide (CO)
and carbon dioxide (CO2) [11–13]. Lasers that will be used in TLAS applications must be able to be
continuously tuned over the spectral range where the ro-vibrational absorption lines occur. Hence not
all optical fiber lasers can be finely tuned due to the mode hopping effect [10,12–15], however some
optical fibers with continuous tuning have previously been achieved [13–15]. Moreover, some authors
have proposed fiber lasers for gas sensing [12,16]. A practical limitation of LL-TLAS is the difficulty
to maintain fixed the wavelength of the laser at the absorption line center over time due to different
factors, such as laser temperature fluctuation and oscillation current drift [17].

Acetylene sensors operating in the NIR region and based on optical fibers can be found in
literature. Some of these sensors have achieved sensitivities in the order of 700 ppm by using path
lengths of around 25 cm [18]. Higher sensitivities have been reported by using cells with lengths in
the order of meters [19–21]. For instance, it has been reported a sensor with sensitivity of 100 ppm
in which 1 m cell was used [19]. Another example is the sensor that achieved a sensitivity of 50 ppm
by using a cell length of 27 m [21]. Moreover, these sensors typically have time responses in the
order of a few seconds, up to some minutes [18–22]. In general, in sensor design there is an inherent
compromise between the level of sensitivity, the time response and the gas path length. In this
work a C2H2 sensor based on the Line Locked Tunable Laser Absorption Spectroscopy (LL-TLAS)
and a dual path correlation spectroscopy method is presented. In order to implement the LL-TLAS
technique, an erbium doped tunable fiber laser was designed and implemented. This laser used
a silicon wafer as a selective filter that allowed us to finely tune the laser emission until it is matched
to one ro-vibrational line of the target gas. Afterwards, the laser remains in line-locked mode by
keeping the wafer temperature constant. This is achieved by driving a thermo-electric cooler with
a proportional-integral-derivative (PID) control program. This allowed the laser to have a very high
wavelength accuracy in the order of 0.12 pm, which is a mandatory requirement for this kind of
sensing application. Moreover, the sensing arrangement is complemented with a simple dual path
correlation spectroscopy stage that helps to strongly minimize errors due to laser intensity fluctuations.
The achieved sensor sensitivity was of 521 ppm for the concentration range from 0 to 20% by using
a 10 cm cell with a time response within the sub-minute order. Experimental measurements supported
by numerical simulations are provided demonstrating the suitability of the tunable fiber laser for the
implementation of this type of sensing application.

2. Gas Sensor Mathematical Model

The block diagram of the proposed hybrid gas sensor design is shown in Figure 1. Here, the source
is a tunable fiber laser operating in line locked mode L (λ); ideally the beam is divided into two arms.
In the first arm, which is called the measurement channel, the light passes through the gas cell before it
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arrives at the detector (PM). In the second arm, which is called the reference channel, the beam arrives
directly at the detector (PR). In general terms, the measurement detector output can be described as:

PM (C, l) =
∫ λ2

λ1

L (λ) A (λ, C, l) R (λ)dλ, (1)

while the output of the reference channel is given by:

PR =
∫ λ2

λ1

L (λ) R (λ)dλ, (2)

where λ is the wavelength, A (λ, C, l) is the transmission through the gas cell, C is the gas concentration,
l is the gas cell path length, and R (λ) is the detector responsivity. The depth of modulation (DM) is
given as the ratio between the difference of the two channels and their average, and it can be written
as [1,23]:

DM (C, l)= 2
PR − kPM (C, l)
PR + kPM (C, l)

, (3)

In this way, DM is unitless and in our case k is a proportionality constant to take into account
losses in the measurement channel. In a practical way, k can be calculated as the ratio between the
signals provided by the reference and the measurement detectors when the C2H2 concentration is 0.
In this form the depth of modulation will be 0 when the C2H2 concentration is 0% and it will be
increasing with the concentration. Now, let us represent the laser wavelength tuning position error as
r and the laser intensity fluctuations by q. Following, these parameters can be included in the depth of
modulation equation and therefore this can be rewritten as:

DM (C, l) = 2

∫ λ2
λ1

qL (λ ± r, T) R (λ)dλ − k
∫ λ2

λ1
qL (λ ± r, T) A (λ, C) R (λ)dλ∫ λ2

λ1
qL (λ ± r, T) R (λ)dλ + k

∫ λ2
λ1

qL (λ ± r, T) A (λ, C) R (λ)dλ
(4)

Here, as the wavelength band (λ2 − λ1), where the laser emitting is very narrow, it is possible
to consider R (λ) as a constant and therefore all terms of Equation (4) can be canceled. Moreover,
since the laser intensity fluctuation parameter q also can be treated as constant and it appears in all
integrals of Equation (4), it can therefore be canceled. This issue demonstrates the advantage of using
the two channels correlation spectroscopy method. However, if there is a tuning error in the laser
wavelength, this will not be canceled by the correlation spectroscopy stage. Therefore, it is obligatory
in this application that the laser has a high level of wavelength accuracy (r ≈ 0).

Tunable Fiber
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Beam-
splitter

Gas Cell P
M

P
R D

M

Port 1

Port 2

Depth of
Modulation

Figure 1. Block diagram of a hybrid C2H2 sensor design based on the Line Locked Tunable Laser
Absorption Spectroscopy (LL-TLAS) and Non-Dispersive Sensors (NDS) correlation spectroscopy
techniques.

3. Simulation Results

In order to carry out some numerical simulations, let us consider the ro-vibrational line of C2H2

occurring at 1532.8302 nm [24] and use a laser line emission that has a Gaussian profile with 15 pm of
full width at half maximum (FWHM) (Figure 2a). Moreover, to perform these simulations, we also
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considered a gas path length of 5 cm and different C2H2 concentrations within the range from 0
to 100%, at atmospheric concentration. Furthermore, the channels were considered ideal channels
without optical losses and therefore k = 1. For this case, the overall detector outputs and the depth
of modulation are shown in Figure 2b. Here, it can be observed that the signal provided by the
measurement detector (PM) decreases as the concentration increases, while the depth of modulation
(DM) increases.
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Figure 2. (a) Simulated laser emission profile and C2H2 transmission spectra considering a path
length of 5 cm and different concentrations. The simulated laser spectrum was normalized to 1 for
clarity purpose. (b) Simulated measurement and reference signals and their corresponding depth of
modulation as a function of the C2H2 concentration.

From these simulations it can be appreciated that a path length of 5 cm can be used to implement
a sensor capable of detecting relatively high concentrations. However, the proper length can be
determined depending on the target concentration range. For instance, in Figure 3, numerical results
showing the effect of varying the gas path length are presented. Here, it can be observed that,
to measure low concentration levels, it is necessary to select a longer path lengths. This will also
increase in a considerable way the sensitivity since the depth modulation rapidly increases with the
concentration, for instance, the case when l is in the order of 100 cm. Hence, the length of the cell can
be selected depending of the application requirement.
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Figure 3. Depth of modulation as a function of concentration considering different cell path length values.
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4. Experimental Sensing Setup

For this work the setup shown in Figure 4 was implemented. It was formed by a ring cavity
fiber tunable laser, a beam coupler to split the laser output into two paths, two optical detectors,
and an electronic stage to control the laser and to recover, amplify, and low pass filter (LPF) the
sensor signals. In the setup a Yokogawa AQ6370C optical spectrum analyzer (OSA) was only used to
characterize the laser spectrum profile.
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Figure 4. Hybrid C2H2 sensor setup based on the LL-TLAS and NDS correlation spectroscopy techniques.

4.1. Tunable Fiber Laser

Here, a tunable laser based on an erbium doped fiber ring cavity is utilized. Basically, this tunable
laser is formed by a ring cavity in which a bulk silicon wafer of 85 µm thickness is used as a spectral
selective filter [25]. Hence, the wafer acts as a Fabry-Perot interferometer (FPI) and therefore its
reflection pattern can be shifted by varying the refractive index of silicon. This can be achieved by
taking advantage of the thermo-optical properties of silicon [25]. Consequently, this allowed us to tune
the laser emission wavelength to match one ro-vibrational absorption line of the target molecule. In our
case, we matched the laser emission with the ro-vibrational line of C2H2 occurring at 1532.8302 nm
at atmospheric pressure [24]. Furthermore, in the laser cavity a variable optical attenuator (VOA)
was used to suppress emissions in the region of 1550 nm. Here, the laser fine tuning mechanism
depends directly on the silicon wafer that is acting as wavelength selective filter and it can be tuned
by changing its temperature. Additionally, the VOA induces a coarse shifting and can help to select
different wavelength regions. For the experiments carried out in this work, the VOA remained fixed.
For dual path correlation spectroscopy measurements, it is necessary that the laser wavelength must
remain stable over the time, otherwise considerable errors will be obtained. For instance, in Figure 5a
it can be observed, from simulation results, that the depth of modulation error rapidly increases as the
wavelength deviate a few picometers from the reference wavelength. Hence, the gas line absorption
is acting as an extremely narrow suppression band filter and, therefore, if the laser wavelength
slightly shifts, the signal monitored by the detectors will change in a considerable way. Therefore,
this issue allowed us to indirectly assume that the laser line is wavelength locked by monitoring
that the detectors output remains fixed over the time. In this way, we characterized that by keeping
the silicon wafer constant such that the laser wavelength was locked. In our sensing arrangement,
the wafer temperature was varied by means of a thermo-electric cooler (TEC) to reach the desired
wavelength. Moreover, once the wavelength is matched, the Si wafer temperature must be kept
stable over the time. In order to achieve this temperature stability, it was necessary to drive the TEC
with a proportional-integral derivative (PID) control program that was implemented in LabVIEW
software. By driving the TEC with this PID controller, it was possible to maintain the temperature of
the Si wafer as highly stable, with a standard deviation of just 0.02 K. This represents that the laser
wavelength was fixed to 1532.8302 pm with an estimated standard deviation of approximately 0.12 pm.
These measurements were taken over a period of 3 h (Figure 5b) and show that the laser is suitable
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for this sensing application. The measured spectral profile of the laser emission (LM) is shown in
Figure 6a, where it can be appreciated that it has a FWHM of approximately 16 pm, which is thinner
than the ro-vibrational line of C2H2 occurring at 1532.8302 nm at atmospheric pressure [24]. In general
the expected DM errors at the sensor output due to laser wavelength shifting (Figure 5a) can be
explained by the fact that the laser width is narrower than the absorption line width. Hence, if the
laser spectrally shifts, the power will rapidly increase following the shape of the gas absorption line.
Therefore, the system tolerance to the laser wavelength shifting will also be affected by the pressure at
the gas cell since it modifies the molecule absorption line widths. In our case we are characterizing
the sensor response at atmospheric pressure. Additionally, in Figure 6a it is presented how the laser
profile can be fitted to a Gaussian function (LF) with high agreement.

Figure 5. (a) Simulated DM error due to wavelength instability and considering different C2H2

concentration; (b) Measured temperature variation of the Si wafer over the time and its induced laser
wavelength error.

1532.8 1532.84 1532.88

wavelength (nm)

0

0.5

1

N
o

rm
a

li
z
e

d
 I

n
te

n
s

it
y

L
M

L
F

0 2000 4000 6000

Time (s)

0

2

4

6

8

C
h

a
n

n
e

l 
S

ig
n

a
ls

 (
V

)

0%

100% 64% 51% 32%
22%

20%
17%

12%
9%

P
M

P
R

0 2000 4000 6000

Time (s)

0

0.5

1

1.5

2

2.5

D
e

p
th

 o
f 

M
o

d
u

la
ti

o
n

0%

100% 64%
51%

32%
22%

20%
17%

12%
9%

0 20 40 60 80 100

C
2
H

2
 Concentration (%)

0

0.5

1

1.5

2

D
e

p
th

 o
f 

M
o

d
u

la
ti

o
n

D
M

S

D
M

E

0 10 20

C
2
H

2
 (%)

0

0.5

1

D
M

(a) (b)

(c)
 

(d)
 

D
M

F
=pC+q

Figure 6. (a) Measured and fitted spectral profiles of the laser line emission, normalized for clarity
purposes. (b) Channel signals, as a function of time, showing the effect of changing the C2H2

concentration. (c) Calculated depth of modulation as a function of time showing the effect of changing
the C2H2 concentration. (d) Measured and simulated depth of Modulation as a function of the
C2H2 concentration.
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4.2. Dual Path Correlation Spectroscopy

Once the target laser wavelength has been reached, gas detection can be carried out directly
by passing the laser emission through the cell and monitoring it with an optical detector. However,
laser intensity fluctuations can affect the measurement readings. Therefore, in our sensing setup the
laser output was divided into two channels by utilizing a 90/10 fiber coupler (Figure 4). The beam
with 90% illuminates the measurement channel, while the 10% beam illuminates the reference channel.
At the end of the optical channels, two identical indium gallium arsenide (InGaAs) detectors are
placed to measure the overall light intensity of each channel. Both signals generated by detectors
were conditioned and low pass filtered by using simple analog circuits. Furthermore, these signals are
recovered with a data acquisition board and processed to calculate the depth of modulation. Here, it is
important to point out that within the same PID control program the required functions were added
to record the channel signals and to perform the depth of modulation calculations. At this point,
we would like to point out that basically all the electronic and processing stages have the potential to
be implemented within a simple microcontroller based acquisition board. This can help to compact the
sensor and the size of the fiber laser can be reduced by using components, such as a short segment of
a highly erbium doped fiber as a gain medium.

The system signals generated by both detectors, after conditioning, are shown in Figure 6b. It is
important to mention that for this case, the experimental k value was calculated as 1.56. In this
figure it can be observed that changes in the C2H2 concentration only affects the measurement signal
(PM), while the output of the reference channel (PR) is always constant. Moreover, when the C2H2

concentration is 0%, the reference and the measurement signals are equal and have maximum value,
afterwards, if the concentration increases, the measurement signal level will decrease, which is in
agreement with the numerical results (Figure 2b). The calculated depth of modulation as a function
of time is shown in Figure 6c. Here it can be appreciated that the depth of modulation increases
with concentration and conveniently is 0 when the C2H2 concentration is 0%. For this experiment,
we alternated a 0% C2H2 concentration and a given mixture of C2H2/N2. Moreover, in this figure,
it can be noted that DM levels are constant while the mixture of C2H2/N2 remains fixed, which shows
the stability of the sensor over the time.

Finally, in order to determine the experimental depth of modulation
(

DE
M
)

we calculated its
average value over a period of time for each tested concentration (Figure 6c). Moreover, to compare
our experimental measurements with the numerical results, we considered as a light source a Gaussian
function (LF) with a FWHM of 16 pm (Figure 6a). The simulated

(
DS

M
)

and the experimental
(

DE
M
)

depth of modulation are shown in Figure 6d. These results show that DE
M has a nonlinear behavior

within the concentration range from 0 to 100%. However, some intervals of DE
M can be fit with the

linear function DF
M = mC + n. For instance, in the inset of Figure 6d are shown the measured DE

M
values for the range from 0 to 20% and its corresponding linear fit. In this way, the function can
be segmented into four concentration ranges that can be fit with a linear function. The m and n
constants of the linear functions that fit each one of these intervals are provided in Table 1, as well
as its corresponding R2 adjustment coefficient. From this figure it can be appreciated that in general
our experimental results are quite close to the simulated results, and we think that the difference at
higher concentrations between DS

M and DE
M is due to the fact that we used an approximated function

to describe the laser emission that can introduce small variations in the numerical results.

Table 1. Sensor sensitivity for different concentration ranges.

Concentration (%) m n R2 Cσ(%) DE
M(Cσ) σ Sensitivity (ppm)

0–20 0.05174 0.02508 0.9971 9 0.522 2.9 × 10−3 521
20–32 0.02387 0.56405 0.9999 22 1.090 3.2 × 10−3 1340
32–51 0.01436 0.87236 0.9999 51 1.610 3.1 × 10−3 2158

51–100 0.00500 1.36072 0.9945 64 1.685 3.4 × 10−3 6800
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5. Minimization of Errors Due to Laser Intensity Fluctuations

Laser intensity fluctuations can be due to laser power supply fluctuations, drift or aging [2,19].
In the dual path correlation spectroscopy arrangement both detector outputs will change in the
same proportion as the laser intensity varies. Therefore, by calculating the depth of modulation,
these fluctuations will be canceled. In order to probe this point, in our experiment we intentionally
varied the laser line intensity while the gas concentration was left fixed. As an example, the gas cell
was filled with a mixture of 9% C2H2 and 91% N2 and after a certain time we reduced the laser intensity
five times. This consequently affected the signal levels of both channels (Figure 7a). By using these
signals the depth of modulation was calculated and the result is presented in Figure 7b, where it can
be appreciated that the depth of modulation is practically unaffected by laser intensity fluctuations.
As a further example, we performed an additional measurement, which started with a 0% C2H2

concentration, after we filled the cell with the mixture of 40% C2H2 balanced with N2. At this point
the measurement channel signal started to drop (Figure 7c) while the DM started to increase until
it reached its constant state (Figure 7d). Afterwards, we reduced the light intensity in two different
times, affecting both channel signals (Figure 7c) while the DM remained constant (Figure 7d). Finally,
the light intensity was increased to its initial value and both channels signals recovered their levels
(Figure 7c), while the DM continued quite stable over the time (Figure 7d). These measurement results
are very important since they clearly demonstrate that the dual path correlation spectroscopy is able
to minimize large laser intensity fluctuations (Figure 7a,c) by calculating the depth of modulation
(Figure 7b,d).
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Figure 7. (a,c) Measured channel signals showing the effect of varying the light intensity.
(b,d) calculated depth of modulation showing that it is unaffected by light intensity variations. For (a,b)
the C2H2 concentration was 9% and for (c,d) it was 40%.

6. Sensor Sensitivity

The sensor sensitivity is the minimum concentration that can be detected by the system.
This implies that the sensitivity is the concentration for which the signal to noise ratio (SNR) is equal
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to unity (S = N) [26]. Afterwards, considering that the sensor output has a linear behavior, therefore,
it is possible to rewrite the relationship S = N as (∆DE

M/∆C)C = σ, where σ is the standard deviation
over the time of the depth modulation signal. Here, as our sensor has a nonlinear output, therefore,
we grouped the measurements into four intervals that can be fit by a linear function DF

M = mC + n;
the details of each range and their corresponding function constants are listed in Table 1. Moreover,
the depth of modulation as a function of time was recorded and its corresponding average value and
standard deviation were calculated. This procedure was performed for one concentration level within
each range. For instance, the depth of modulation as a function of time for a Cσ = 9% concentration
is shown in Figure 8a, which has an average value of 0.522 and a standard deviation of 2.9 × 10−3.
By using these values, it is possible to estimate that the system sensitivity is 521 ppm for a concentration
range from 0 to 20%. The sensor sensitivity for different concentration ranges are given in Table 1.
Furthermore, it is important to comment that the sensor response can be faster by reducing the order
of the low pass filter process, however, it will reduce the sensor sensitivity. For instance, in Figure 8b,
the transition region is shown in detail and an appreciation can be gained in how the DM changes
when the concentration is varied and considering two different low pass filters (LPF1 and LPF2).
For this work, LPF1 was a high order low pass filter that was used to remove the sensitivity of 521 ppm.
LPF2 was a first order low pass filter, which makes it possible to reduce the response time (Figure 8b),
however, it has a penalty in the sensitivity since it increases up to 2578 ppm. Therefore, depending on
the combination of required parameters such as the response time and the sensitivity, the gas cell and
the low pass filter parameters can be adjusted. Finally, it is important to point out that our tunable
optical fiber laser is capable to be finely tuned over different spectral windows where absorption lines
due to different molecules can occurs. By means of the VOA, spectral windows between 1530 and
1565 nm can be selected and these can be scanned by changing the temperature of the silicon wafer.
Moreover, other wavelength windows of the telecommunications region can be achieved by changing
the laser gain medium. This is useful for spectroscopy applications since there are different molecules
that can be detected in this spectral region. Also, the overall cost of the system is relatively competitive
since it can be implemented with standard optical telecommunication components.
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Figure 8. (a) Depth of modulation as function of time and its standard deviation. (b) Depth modulation
considering a high order low pass filter (LPF1) and a first order low pass filter (LPF2).

7. Conclusions

In this work, a comprehensive modeling of a hybrid gas sensor is presented. For this application,
a fiber tunable laser with very high wavelength stability was designed and implemented. The laser
was tuned by changing the temperature of a 85 µm thickness silicon wafer with a PID control program.
According to experimental measurements, the standard deviation of the wafer temperature was 0.02 K,
which induced a wavelength standard deviation of 0.12 pm within a period of 3 h. This level of
wavelength accuracy avoided errors due to wavelength instability. Furthermore, it is demonstrated
that, by adding a dual path correlation, spectroscopy stage errors due to laser intensity fluctuations
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can be strongly minimized. Therefore, to demonstrate the viability of a sensor based on the tunable
laser and the dual path correlation spectroscopy, an acetylene sensor was implemented. Here, it is
shown that by using a 10 cm gas cell, the sensor achieved a sensitivity of 521 ppm for the concentration
range from 0 to 20% with a sub-minute time response. Moreover, it was stated that the concentration
range, the sensitivity and the time response can be modified by changing different parameters such as
the gas path length and the low pass filter constants. Since simulated and experimental results have
a high level of agreement, it is possible to consider that this sensing method can be applied to detect
different gases. Finally, it is important to point out that one advantage of the fiber tunable laser is that
it can emit in other wavelengths by using different doped fibers or wafer thickness.
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