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Abstract: When recovering a shredded document that has numerous mixed pieces, the difficulty of the
recovery process can be reduced by clustering, which is a method of grouping pieces that originally
belonged to the same page. Restoring homologous shredded documents (pieces from different pages
of the same file) is a frequent problem, and because these pieces have nearly indistinguishable visual
characteristics, grouping them is extremely difficult. Clustering research has important practical
significance for document recovery because homologous pieces are ubiquitous. Because of the wide
usage of Chinese and the huge demand for Chinese shredded document recovery, our research
focuses on Chinese homologous pieces. In this paper, we propose a method of completely clustering
Chinese homologous pieces in which the distribution features of the characters in the pieces and
the document layout are used to correlate adjacent pieces and cluster them in different areas of a
document. The experimental results show that the proposed method has a good clustering effect on
real pieces. For the dataset containing 10 page documents (a total of 462 pieces), its average accuracy
is 97.19%.

Keywords: shredded documents; homologous pieces; document layout; subarea clustering;
digital forensics

1. Introduction

Shredded document recovery is a complicated and challenging problem that has been studied
by many researchers. Paper documents are separated into large numbers of pieces when they are
shredded. These pieces are highly similar and present chaotic sequences, thereby increasing the
difficulty of document recovery. Shredded document recovery has important research value, and the
relevant findings can be extensively applied in several fields, such as information security [1], judicial
investigations [2], and archaeological research [3].

Shredded document recovery is a complicated non-deterministic polynomial-hard problem [4].
The recovery task includes several steps, and piece clustering is one of the key steps [5]. As the number
of pieces increases, the difficulty of document recovery also increases [6]. In clustering, a large number
of pieces are grouped into several clusters, and the pieces in the cluster are processed together, thereby
reducing the difficulty of piece searching and improving the accuracy of piece matching [7]. Because
of the high similarity between shreds, piece clustering is difficult.

Research on piece clustering can be divided into two categories.
The first piece clustering category is based on a single-page document. Wang et al. [8] considered

piece clustering according to the distribution feature of a text line and assessed cluster validity by the
matching proportion method. Sleit et al. [9] treated the clustering operation as a part of document
reconstruction itself and used the cost function for piece matching and clustering. Richter et al. [10]
utilized multimodal features, including shape, context, etc., to combine clusters and assemble shredded
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documents. Lei [11] used line information to cluster pieces from the same line. Similarly, Guo et al. [12]
presented a row clustering method for shreds.

The second piece clustering category is based on multi-page documents. Ukovich et al. [5]
employed a 12-dimension feature that included line spacing and paper/ink color. Based on the features,
virtually shredded pieces from different files are clustered using hierarchical clustering. Schoier [13]
used only the text line position as the feature to cluster pieces from multi-page documents, which
have distinctly different page setups. Diem et al. [14] used several methods (color analysis, paper type
analysis, and classification of the text) to cluster pieces from different sources. Chanda et al. [15]
employed clustering as a preprocessing step for piece forensics and analyzed paper color and
background texture to achieve piece clustering from different files. Liu et al. [16] proposed a spectral
clustering algorithm that is based on the contour and color distribution of pieces, and several photos
shredded by hand were clustered. Lalitha et al. [17] applied the shape information of pieces as the
matching feature, clustered the different pages shredded by hand and reassembled the pieces.

Differing from the first study that focused on a few of pieces and used the clustering idea to
achieve pieces matching and splicing. The second study must solve the problem of piece clustering, in
which numerous pieces from different documents are mixed. Because of its highly applicable value,
the second study is a hotspot in the current research of piece clustering. Although some achievements
have been made in the second study, it focuses on the pieces that have distinct differences regarding
page format (character size and lines spacing), appearance (paper color and piece shape), or content
(writing style). These visual differences are very helpful for clustering. However, a real file usually
has a unified document format, in which all pages of the document must present consistent paper
color, character size, and text line spacing to satisfy people’s reading habits [18]. When the file is
shredded, the produced pieces are highly similar regarding page format, appearance, and content.
Because these pieces are derived from the same file, we refer to them as homologous pieces, as shown
in Figure 1. Unlike the study objects in existing research, this paper addresses homologous pieces with
a similar appearance. Distinguishing the pieces from different pages is difficult. Minimal differences
among homologous pieces are observed, which hinders clustering using the features proposed in
previous studies. Due to the ubiquitous nature of homologous pieces (they are extensively distributed
in shredded documents), research on homologous piece clustering is significant to real shredded
document recovery. Because China is an influential country and the use of Chinese is extensive,
millions of Chinese documents are produced every year; thus, Chinese shredded document recovery is
in huge demand. Therefore, this paper focuses on the problem of Chinese homologous piece clustering.

The contributions of this paper are as follows.

1. In contrast to existing studies, this paper addresses homologous pieces that have unified page
format and high similarity with regard to content and appearance. As a result, clustering is very
difficult. Since homologous pieces are prevalent in shredded documents and there is a high
demand for recovery of these pieces, the study of this paper has important practical significance.

2. Because a document page includes only one leftmost piece and one rightmost piece, this paper
can calculate the number of pages by recognizing the leftmost and rightmost pieces, thereby
establishing a basis for obtaining the optimal clustering number.

3. By determining the correlations between characters and between characters and blank spaces in
adjacent text lines, this paper matches the leftmost piece with the rightmost piece from the same
page, thereby providing a good starting point for piece clustering.

4. Proceeding from the document, which is the source of the pieces, we propose a method of piece
clustering that is based on the document layout. This method distinguishes pieces by the area
in the document to which they belonged and uses the correlations between shreds to achieve
effective clustering.
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The remainder of this paper is organized as follows. In Section 2, the method of Chinese
homologous piece clustering is presented, and the entire process of piece clustering is described
in detail. In Section 3, the experimental results are discussed, and Section 4 presents the conclusions.Appl. Sci. 2017, 7, 951  3 of 25 
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Figure 1. Example of homologous pieces. All the pieces in this figure are derived from the same
file: (a) and (b) belong to the first page of the document; (c) and (d) belong to the second page of the
document; (e) and (f) belong to the third page of the document.

2. Clustering Method for Chinese Homologous Pieces

The clustering of Chinese homologous pieces involves grouping the pieces that originally
belonged to the same page. This paper illustrates the clustering process from several aspects, including
the clustering number, the starting point of the clusters, and the clustering calculation. Moreover,
this paper addresses strip-cut shredded pieces [19] formed from the shredded paper document by
a shredder. These pieces are produced by the document being cut vertically by a shredder rather
than horizontally or obliquely. The documents processed in this paper are Chinese documents. And
these documents are the common printed documents in office, rather than handwritten documents
which have different writing styles. Moreover, the documents processed in this paper are common
single-sided documents, and double-sided documents are not within the scope of this paper.

2.1. Clustering Number

A validity problem for clustering is obtaining the optimal clustering number [6], which has
a considerable influence on the clustering results. To determine the optimal clustering number of
homologous pieces, we assume that all the pieces are present and then adopt the method proposed
in [20] to encode the shreds. First, a piece is vertically divided into a series of blocks with the same
size, as shown in Figure 2. Second, these blocks are transformed into the corresponding graphic types
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using a classifier based on five types of graphical Chinese characters, as shown in Figure 3. Finally, the
piece is represented as a digital sequence.
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Figure 3. Five types of graphical Chinese characters. The numbers 1, 2, 3, 4, and 5 indicate different
types of graphical Chinese characters.

An analysis of the digital number distribution in the pieces showed that in a page of a document,
the type-1 and type-4 character graphs are most prevalent in the leftmost piece, while type-1 and
type-5 character graphs are most prevalent in the rightmost piece, as shown in Figure 4. One page of a
document has only one leftmost and one rightmost piece. If the leftmost and rightmost pieces can be
identified in the shredded set, then the number of pages can be calculated based on the quantity of
these pieces, and the clustering number can be obtained.
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The proportion Q14 of type-1 and type-4 character graphs in each piece is calculated by Formula (1),
and the proportion Q15 of type-1 and type-5 character graphs in each piece is calculated by Formula (2).

Q14 =
Num1 + Num4

Num
(1)

Q15 =
Num1 + Num5

Num
, (2)

where Numi indicates the number of the i-th type character graphs in a piece, with i = 1, 4, 5; and
Num represents the sum of all the types of character graphs in a piece.

Because piece recognition is impacted by noise interference at the piece edges and is affected by
classification errors, it is difficult to exactly distinguish the pieces using a single threshold for Q14 or
Q15. Thus, in this paper, a dual threshold, Qth1 and Qth2, is adopted to distinguish the values of Q14 or
Q15 at different scopes. Then, the types of pieces are determined, where Qth1 � Qth2.

The evaluation of the leftmost piece is used as an example. According to Formula (1), the Q14

value of the test piece is calculated. When 1 ≥ Q14 ≥ Qth1, the test piece is considered a leftmost piece;
when Qth1 ≥ Q14 ≥ Qth2, the test piece may or may not be the leftmost piece and evaluating it requires
artificial assistance; and when Qth2 ≥ Q14 ≥ 0, the test piece is not a leftmost piece.

The method for evaluating the rightmost piece based on the Q15 value is similar to the
above method.

Using the above operation, the leftmost piece and the rightmost piece in the shreds set are
identified, and the number of the leftmost piece NL and the number of the rightmost piece NR can be
obtained. Then, NL and NR are input into Formula 3, and the clustering number NC is calculated.

NC = NL = NR, (3)

2.2. Starting Point of Clusters

After performing the process described in Section 2.1, the leftmost and rightmost pieces of all
documents can be obtained. However, a one-to-one relationship has not been established between the
leftmost and rightmost pieces, which can cause serious problems when clustering; thus, the leftmost
and rightmost pieces must be paired. The matched pieces will be the starting points of the clusters and
provide the foundation for the following steps.

Although the content of a Chinese document is diverse, its layout is limited by the text
format. Based on rules (the layout rules described in this paper are defined by the Layout Key
for Official Document of Party and Government Organs (GB/T 9704-2012) promulgated by the General
Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China
in 2012), such as “the first line of a paragraph should be indented; the end of a paragraph should wrap;
sentences should be ended by a specific punctuation mark; certain punctuation should not be placed
at the beginning of a text line”, etc. in a page of a document, the leftmost character (including text and
punctuation) or blank space on a text line is related to the rightmost character or blank space on the
previous line of text. Therefore, although a considerable horizontal distance is observed between the
leftmost piece and the rightmost piece from the same page of a document, these pieces can be related
through the characters or blank spaces in adjacent horizontal text lines.

An example of the interrelationships among the leftmost and rightmost pieces from the same page
is shown in Figure 5. The character in the first text line of the rightmost piece is a comma, indicating
that the content of a sentence is paused rather than ended, and the character in the second text line of
the leftmost piece is text, indicating that the content of the previous sentence continues. These two
characters are closely related. Additionally, the block in the second text line of the rightmost piece
is blank, indicating that the content of a paragraph has ended, and the block in the third text line of
the leftmost piece is blank, indicating the indentation of the first text line at the beginning of a new
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paragraph. These two blanks are also closely related. The relationship between characters and blanks
in adjacent horizontal text lines is similar.
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The above analysis indicates that the block in a piece can be divided into text, punctuation
(punctuation symbols described in this paper are defined by the General Rules for Punctuation (GB/T
15834-2011) promulgated by the General Administration of Quality Supervision, Inspection and
Quarantine of the People’s Republic of China in 2011), and blank spaces according to its attributes.
Because different types of punctuation lead to different degrees of relevance between two sentences [21],
the block of punctuation must be further divided. Considerable differences are observed in the
frequency of punctuation (in particular, the frequency of commas and periods in Chinese documents is
much greater than that of other punctuation [22]); therefore, for punctuation in the leftmost piece and
the rightmost piece, this paper only considers commas and periods while ignoring other punctuation.
Blocks in the leftmost piece and the rightmost piece are divided into four types. A type I block is a
blank, as shown in Figure 6a; a type II block only contains text, as shown in Figure 6b,c; a type III
block contains a period, as shown in Figure 6d,e; and a type IV block contains a comma, as shown in
Figure 6f,g.
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Because of restrictions in the document layout, the distributions of these four types of blocks in
the leftmost piece and the rightmost piece are different. The type I, type II, type III, and type IV blocks
occur in the rightmost piece, whereas only the type I and type II blocks occur in the leftmost piece. We
describe the degree of correlation of a block in a text line of the rightmost piece and a block in the next
text line of the leftmost piece via the probability shown in Table 1.

Table 1. Correlation of two blocks in the rightmost piece and the leftmost piece.

j
i Type I Type II Type III Type IV

Type I 1 0 0.5 0
Type II 0 1 0.5 1

In Table 1, i represents the block type in a text line of the rightmost piece and j represents the
block type in the next text line of the leftmost piece. Table 1 reflects the probability of occurrence of
different types of leftmost blocks for different types of rightmost blocks.

The operation to match the rightmost piece with the leftmost piece is as follows: First, every
piece is divided into a series of blocks in the vertical direction. Second, to classify the blocks, the text,
periods, commas, and blanks in the blocks are distinguished by the method described in [23]. Third,
a rightmost piece Ri is selected arbitrarily, and the matching scores SC(i) of Ri and all the leftmost
pieces are calculated:

SC(i) =
{

SC1,i, SC2,i, · · · , SCj,i, · · · , SCa,i,
}

, (4)

where i represents the i-th rightmost piece, SCj,i represents the matching score between the i-th
rightmost piece and the j-th leftmost piece, and α represents the total number of leftmost pieces. SCj,i
is expressed by the cumulative value of the correlation of the block in the leftmost piece and the block
in the rightmost piece.

SCj,i =
n−1

∑
k=1

P(k + 1, k), (5)

where n represents the number of text lines (number of blocks) in a piece and P(k + 1, k) represents
the degree of correlation between the block in the k-th text line of the rightmost piece and the block in
the k + 1-th text line of the leftmost piece.

Subsequently, the leftmost piece Li with the highest matching score to Ri is found; thus, Li is a
leftmost piece that came from the same page as Ri.

Li = argmaxSC(i), (6)

where Li represents the index number corresponding to the leftmost piece.
The above steps are repeated until all the rightmost and leftmost pieces are paired; then, the entire

matching algorithm ends.

2.3. Piece Clustering Based on the Regional Division

As a carrier of characters, a document can be divided into several paragraphs according to the
content hierarchy, and explicit boundary markers occur between the different paragraphs [24,25].
Different documents lead to different paragraph layouts because of the diverse content [26]. However,
in the same document, the paragraph layout in different regions is correlated because of the constraints
of the writing format. As a derivative of the document, the piece also has the corresponding attribute
of the document; therefore, the layouts of pieces from different pages are different, while the layouts of
pieces from the same page are relevant.

Based on the above analysis, a page of a shredded document is divided into three areas, as shown
in Figure 7. The beginning of each paragraph in the document is area 1; the end of each paragraph in
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the document is area 2; and the middle region of the document is area 3. The contents marked by black
represent text or punctuation, and the contents marked by white represent blank spaces. The red line
La indicates the leftmost piece, the red line Lb indicates the critical piece between area 1 and area 3,
the red line Lc indicates the critical piece between area 3 and area 2, and the red line Ld indicates the
rightmost piece.
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For real pieces, the range of the three areas in a document is not fixed because the paragraph
layouts of different documents are not the same, which means that the positions of Lb and Lc vary
among different documents. As shown in Figure 8, to clearly divide the regions where the pieces
belong, we divide the pieces (excluding the leftmost and rightmost pieces) into dense pieces and sparse
pieces with a blank line ratio β because the character distribution in a document appears to be “dense
in the middle, sparse on both sides” (because of the presence of blanks at the beginning and end of
a paragraph).

β =
n
m

, (7)

where m represents the total number of blocks along the vertical direction of a piece (the total number
of text lines in a piece) and n represents the total number of blank blocks in the vertical direction of a
piece (the total number of blank lines in a piece). A shred with a value of β less than 0.15 is defined as
a dense piece, and a shred with a value of β greater than or equal to 0.15 is defined as a sparse piece.

In general, the dense pieces are located in area 3 of a document, while the sparse pieces are located
in areas 1 and 2. The sparse pieces associated with La are located in area 1, and the sparse pieces
associated with Ld are located in area 2. Because Lb and Lc are in critical positions, both dense and
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sparse pieces can occur. In this paper, Lb is a dense piece and Lc is a sparse piece. Note that there are
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In this paper, pieces are clustered based on regional divisions. The algorithm is composed of three
parts: piece clustering in area 1, piece clustering in area 2, and piece clustering in area 3. The system
flowchart is shown in Figure 9.
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2.3.1. Piece Clustering in Area 1

From the layout, the pieces in area 1 are located on the left side of the document. Because area 1 is
affected by the indentation, the range of area 1 in the horizontal direction is narrow; therefore, the area
contains few shreds. In addition, these pieces are closely related because the shredded characters in
the horizontal direction are correlated.

Based on the above analysis, we use the leftmost piece La, which is obtained in Section 2.2, as the
starting point of clustering in area 1, and use the basic matching algorithm proposed in reference [20],
which utilizes the number of mismatched combinations and the relevance between pieces to measure
the matching degree of pieces, to perform piece matching from left to right. As shown in Figure 10, La

is the starting point and the pieces on the right side of La are agglomerated gradually.
The clustering operations proceed as follows: First, one shred Lai (i.e., the leftmost piece in the

i-th page of the document) is chosen randomly from all the leftmost pieces obtained in Section 2.2 and
is used as the starting point. Second, by applying the basic matching algorithm (proposed in [19]) from
left to right, a piece is found that matches Lai in the set S that includes all the dense and sparse pieces
to be tested. Third, the two matched pieces are regarded as a whole, and the basic matching algorithm
is used to match them with other pieces. The above steps are repeated until two dense pieces are
continuously matched, and the assembly process that begins with Lai is completed. We use the second
matched dense piece as the critical piece Lbi. Then, the assembly process that begins with the other
leftmost piece is completed by the same method. When all the assembly processes are complete, piece
clustering in area 1 terminates.

As this matching process proceeds, the number of pieces in set S is gradually reduced. In addition,
to incorporate the influence of document skew (because people do not place documents vertically into
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a shredder) on the blank and character distribution in the shreds, two continuous dense pieces are set
as the clustering end condition in this paper and the second dense piece (rather than the first dense
piece) is set as a critical shred between area 1 and area 3.
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2.3.2. Piece Clustering in Area 2

The pieces in area 2 are located on the right side of an entire document. Because the usual Chinese
document typography includes a horizontal arrangement in which words start from the left side [27],
area 2 mainly reflects the layout of the ends of paragraphs. As shown in Figure 11, three types of
characters (words and punctuation) and blank distributions are observed in the horizontal direction at
area 2. The first type is “from character to character”, which means that the paragraph does not end or
the paragraph ends just at the rightmost area of a document; therefore, the entire line in area 2 consists
of characters (see the regions surrounded by a red border in Figure 11). The second type is the “from
blank to blank”, which means that the paragraph has ended in the front area; therefore, the entire
region in area 2 is blank (see the regions surrounded by a blue border in Figure 11). The third type is
the “from character to blank”, which means that the paragraph ends in area 2 and the left side of the
line is a character; therefore, the right side is blank (see the regions surrounded by a green border in
Figure 11).
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In Figure 11, because the position of the end of a paragraph is indeterminate, we use the rightmost
part of area 2 in a document as the starting point, and from right to left, the blanks may not be
continuous, although the characters must be continuous. Therefore, for the shreds in area 2, this paper
proposes a clustering algorithm based on the line position of characters (LPC algorithm). Flowchart of
LPC algorithm is shown in Figure 12, and each step of LPC algorithm is described in detail as follows.
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LPC (line position of characters) Algorithm:

Step 1: We take the remaining sparse pieces in set S as the shreds to be tested, and after the processing in
Section 2.3.1, these pieces make up a set X.

Step 2: Using the method proposed in [28], all the rightmost pieces and the pieces in set X are transformed into
the corresponding binary code sequence; therefore, a character block in the piece is represented by 1 and
a blank block in the piece is represented by 0.

Step 3: According to the results of Section 2.2, a rightmost piece Ldi (i.e., the rightmost piece of the i-th page
document) corresponding to the leftmost piece Lai (i.e., the leftmost piece of the i-th page document) is
randomly selected as the starting point of the cluster.

Step 4: The line positions of all 1s in Ldi are recorded, and a piece Xj in the set X is randomly selected. Xj and
Ldi are compared line by line from top to bottom, and when all lines with 1 in Ldi also have 1s in Xj then
Xj and Ldi belong to the same cluster, whereas if all lines with 1 in Ldi are not 1s in Xj, then Xj and Ldi do
not belong to the same cluster.

Step 5: Step 4 is repeated until all pieces that conform to the condition that come from the same cluster as Ldi in
the set X have been classified.

Step 6: The pieces that have been grouped with Ldi are defined as a set Y (Y ⊂ X). A piece Yj is randomly
selected from Y and Yj is XOR’ed with Ldi—two binary code sequences bitwise XOR operation. Finally,
the result of the bitwise operation is summed, and the sum expresses the difference degree of the
two pieces.

Step 7: Step 6 is repeated until all pieces in set Y XOR with Ldi. The piece with the greatest difference degree is
identified and represents the largest difference in the layout with Ldi. This piece is the critical piece Lci
between area 2 and area 3 in the i-th page.

Step 8: Repeat Step 3 to Step 7 until all clustering beginning with the rightmost piece is completed;
subsequently, the clustering algorithm in area 2 ends.
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It should be noted that the number of character blocks contained in the sparse pieces clustered
with Ld is greater than or equal to the number of character blocks contained in Ld, as shown in Figure 13,
because in area 2 of a document, the rightmost character distribution is the sparsest, and as the position
moves to the left, the sparseness gradually decreases.
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Figure 13. Comparison of the number of character blocks contained in the pieces of area 2. The red
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In the set of rightmost pieces, the probability P that all character lines in a piece are contained
by another piece is small, as shown in Equation (8). Therefore, the pieces from the different pages of
documents in area 2 are unlikely to be misclassified, and the clustering method using the line position
of characters is reliable.

P =
Cj

i
2i ×

1
2j , (8)

where i is the total number of blocks in a piece, j is the number of character blocks in a piece, and
i, j 6= 0, i > j, Cj

i represents the combination value of i and j.

2.3.3. Piece Clustering in Area 3

For area 3 of a document, the left and right boundary pieces are Lb and Lc, respectively, and these
pieces on the same page can be obtained from Sections 2.3.1 and 2.3.2. From the view of boundary
shreds, the pieces in area 3 can be divided into two cases. In the first case, the boundary pieces Lb and
Lc have blank blocks in the same line, as shown in Figure 14a; and in the second case, the boundary
pieces Lb and Lc do not have blank blocks in the same line, as shown in Figure 14b.Appl. Sci. 2017, 7, 951  13 of 25 
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Based on the above analysis, this paper proposes a double-pronged attack strategy and gradual
agglomeration strategy to achieve clustering.

In the double-pronged attack strategy, which is applied for Figure 14a, because the text and
punctuation in the paragraph are continuous in the horizontal direction instead of intermittent [29],
when the two boundary pieces Lb and Lc from the same page have one or more blank blocks in the
same line, then the paragraphs in these line positions have ended; therefore, all pieces in area 3 of
this page of a document are also blank blocks in these line positions. If the pieces have the same
blank blocks with both boundary shreds, then they are in the same cluster as two boundary shreds;
otherwise, they are not.

In the gradual agglomeration strategy, which is applied for Figure 14b, because the end of a
paragraph is random, the pieces in area 3 and both boundary shreds lack uniform distributions of
characters and blanks. The interrelationships of the text structures (blocks) in the adjacent pieces
are used to gradually match the pieces of area 3 with the boundary shred. Using the basic matching
algorithm proposed in reference [20], the boundary shred Lc is taken as a starting point; then, the
pieces in area 3 are gradually absorbed into the cluster via matching from right to left. When the
matching degree of pieces reaches a threshold, the clustering is complete.

The following steps constitute the clustering algorithm, which uses the blanks on the same line
to realize piece clustering in area 3. We refer to this algorithm as the “blanks on the same line” (BSL)
algorithm, and flowchart of BSL algorithm is shown in Figure 15.

BSL (blanks on the same line) Algorithm:

Step 1: Dense pieces (excluding the dense pieces that have been clustered in Section 2.3.1) are considered the
shreds to be tested, and these shreds form a set Z.

Step 2: All boundary pieces obtained from Sections 2.3.1 and 2.3.2 constitute the set L1:

L1 = {(Lb1, Lc1), (Lb2, Lc2), · · ·, (Lbn, Lcn)}

where (Lbi, Lci) represents a pair of boundary pieces in area 3 of the i-th page, Lbi is the left boundary
piece, Lci is the right boundary piece, with i ⊂ 1, 2, · · ·n, and n is the number of pages.

Step 3: Each pair of boundary pieces in set L1 are traversed in the vertical direction to identify the blank blocks
with the same line positions, which we call BSL. Then, the number and position of BSLs in each pair of
boundary pieces are recorded.

Step 4: Pairs of boundary pieces in the set L1 are arranged in descending order according to the number of
BSLs in each pair of boundary pieces.

Step 5: Pairs of boundary pieces that have the largest number of BSLs are extracted from L1; namely, there are k
(k 6= 0) pairs of boundary pieces that contain the largest number of BSLs, and they are used as left-right
reference pieces. Subsequently, the pieces in set Z are clustered by the reference grouping.

Step 6: Step 5 is repeated until all pairs of boundary pieces in set L1 are processed, and when L1 is empty, the
entire algorithm ends.

In the above algorithm, the reference grouping is an important part of realizing clustering, and its
algorithm flowchart is shown in Figure 16. When the pieces in set Z are clustered, the number of pairs
of left-right reference pieces (L-R reference pieces), i.e., k, needs to be determined first. If k = 1, then
the shreds are clustered using the double-pronged attack strategy (DA Strategy). If k 6= 1, then there
are several pairs of L-R reference pieces, and according to the relationship of blanks on the same line
position (BSLP) in different pairs of L-R reference pieces, we divide the pairs into three cases. For the
first case, the BSLPs in k pairs of left-right reference pieces are different. We take each pair of left-right
reference pieces as the reference and use the DA Strategy to group the shreds. For the second case, the
BSLPs in k pairs of left-right reference pieces are identical. We take each pair of left-right reference
pieces as the reference and use the gradual agglomeration strategy (GA Strategy) to group the shreds.
For the third case, in k pairs of left-right reference pieces, the BSLPs in u pairs of the pieces are different,
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and the BSLPs in v pairs of the pieces are identical, where u + v = k. First, we take u pairs of left-right
reference pieces as the reference and use the DA Strategy to group the shreds. Second, we take v pairs
of left-right reference pieces as the reference and use the GA Strategy to group the shreds.Appl. Sci. 2017, 7, 951  14 of 25 
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It should be noted that if a BSL is not observed in a pair of left-right reference pieces, we use the
GA Strategy to group the shreds.

3. Experimental Results and Discussion

The method proposed in this paper is tested with real pieces. Ten-page documents from a long
file are randomly selected as the original dataset. In the dataset, the paper size is A4, the paper color
is white, and the type of paper is blank paper not squared paper. All documents are edited using
Microsoft Office Word (Microsoft Corporation, Redmond, WA, USA) following the unified format: the
font is Song style, the character color is black, the character size is small four, and the line spacing
is 1.5. All documents are shredded by a Sunwood ST9290 shredder (Sunwood Holding Group Co.,
Ltd., Yuhuan, Zhejiang, China), and 462 pieces are produced in total (excluding the blank shreds);
each piece has a width of 3 mm. The experiment is executed on a computer (Mingsu-U2, Ningdong
Electronic Technology Co., Ltd, Guangzhou, Guangdong, China) with an Intel Core 2 3.0 GHz CPU,
4 GB memory, and a 500 GB hard disk.

In the original dataset (the dataset S1 in supplementary), the 10-page documents are designated A
to J, and all shreds in each page document are numbered in sequence; for example, the original index
numbers of the pieces in document A range from A1 to A46. In the actual test, because shreds from
different pages are mixed together and the shred sequences are disrupted, the pieces are renumbered
from 1 to 462 to constitute the test dataset. In the experimental process, the test index numbers of
shreds are visible, and the original index numbers of shreds are invisible.

3.1. Clustering Number Results

The clustering numbers of the test dataset can be obtained by the process described in Section 2.1.
The method for calculating the clustering number must first identify all the leftmost and rightmost
pieces in the dataset. The size of Q14 in Formula (1) is the basis for judging whether a shred is the
leftmost piece and the size of Q15 in Formula (2) is the basis for judging whether a shred is the rightmost
piece. Therefore, based on the detection results for 100 pages of documents in the experiment, including
4668 shreds, we set the dual thresholds of Q14 to Qth1 = 0.9 and Qth1 = 0.85, and the dual thresholds
of Q14 to Qth1 = 0.9 and Qth1 = 0.85. The identification results of the leftmost and rightmost pieces in
the test dataset are shown in Figures 17 and 18, respectively.
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Figure 17 shows the identification results for the leftmost pieces. The Q14 values of different shreds
in Figure 17 indicate that there are 10 shreds in the range [Qth1, 1] but none in the range [Qth2, Qth1),
which means that the number of leftmost pieces is 10 and can be obtained without manual assistance.
Figure 18 shows the identification results for the rightmost pieces. Similar to the above analysis, we
know that the number of rightmost pieces is 10. A comparison with the original index numbers of
shreds shows that these 20 shreds are the leftmost and rightmost pieces. Therefore, although the
identification of actual shreds is affected by noise interference at the edge of a piece and classification
errors, the method proposed in Section 2.1 can effectively identify the leftmost and rightmost pieces.
Based on the number of leftmost and rightmost pieces, the clustering number of shreds in the test
dataset is calculated as 10.

3.2. Results for the Starting Points of Clusters

For the leftmost and rightmost pieces obtained in Section 2.1, we use the method proposed in
Section 2.2 to calculate matching scores between each rightmost and all leftmost pieces, respectively.
The results are shown in Figure 19. The matching score between the rightmost and leftmost pieces
from the same page is greater than the matching score between the rightmost and leftmost pieces from
different pages. Although the matching scores for several pages are not high (the loss of character
information and misjudgment of a few blocks by noise affects the matching scores between shreds), as
shown in Figure 19e, the final matching result is not impeded. Because the misjudged blocks are in
the minority, the matching scores between the rightmost and leftmost pieces from the same page are
clearly higher than the matching scores of other shreds.

To clarify the matching relationship of the rightmost and leftmost pieces, we use the original
index number instead of the test index number to mark each piece.
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Figure 19. Matching results between each rightmost piece and all leftmost pieces: (a) the rightmost
piece in document A and all leftmost pieces; (b) the rightmost piece in document B and all leftmost
pieces; (c) the rightmost piece in document C and all leftmost pieces; (d) the rightmost piece in
document D and all leftmost pieces; (e) the rightmost piece in document E and all leftmost pieces;
(f) the rightmost piece in document F and all leftmost pieces; (g) the rightmost piece in document G
and all leftmost pieces; (h) the rightmost piece in document H and all leftmost pieces; (i) the rightmost
piece in document I and all leftmost pieces; (j) the rightmost piece in document J and all leftmost pieces.

3.3. Results of Piece Clustering Based on Regional Divisions

Based on the pairing of rightmost pieces with leftmost pieces described in Section 2.2, we adopt
the method proposed in Section 2.3 to cluster the shreds in the test dataset. Figure 20a–c indicate
the clustering results of each stage of Section 2.3. Figure 20a represents the clustering results after
Section 2.3.1 processing; Figure 20b represents the clustering results after Section 2.3.2 processing;
and Figure 20c represents the clustering results after Section 2.3.3 processing. To clearly reflect the
clustering results of each stage, we use a histogram to describe the piece clustering process in each
page of the document.
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As shown in Figure 20, the number of shreds in each cluster gradually increases in stepwise fashion
during clustering. The number of shreds in each cluster in area 1 is low, as shown in Figure 20a, while
the number of shreds in each cluster in area 2 is higher, as shown in Figure 20b. This distribution is
consistent with the actual layout of the document. In addition, misclassified shreds were not generated
during these two parts of the clustering process, which shows that the method is effective. One
misclassified shred occurred in Section 2.3.3, as shown in Figure 20c, and the cause of this misclassified
shred is shown in Figure 21. Because the misclassified shred (the original index number is E11) contains
only a small fraction of a comma in the 17th line (the comma is split into two pieces), it causes a block
that should include punctuation to be judged as a blank block; however, this misjudgment leads to a
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shred E11 where the dense pieces in cluster J have blanks on the same line. Therefore, when the dense
pieces in cluster J are clustered under the DA Strategy, shred E11 is incorrectly classified into cluster J.
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However, 56 shreds (12.12% in total) remain unclassified, as shown in Figure 20c, which illustrates
that under conditions with various real shreds, the method proposed in this paper has certain
deficiencies; thus, further improvements must be made to classify the residual shreds.

3.4. Treatment of Residual Shreds

The residual shreds are composed of 44 sparse pieces and 12 dense pieces. First, we analyze
the sparse pieces in the majority and find that the reason why they are not clustered is due to
misjudgments of block type caused primarily by noise at the edge of a shred and a small part of a
word or a punctuation mark in a shred (caused by shredder slicing), as shown in Figure 22.
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Although differences may occur in the layout of a character and a blank between different shreds,
neighboring shreds from the same page usually present a similar layout [28]. Therefore, even if a few
blocks in the shred are misjudged, the layouts of the neighbor shreds from the same page are still closely
related. Based on the above analysis, we use the total number of the same type of blocks between two
shreds to assess the residual sparse pieces. As shown in Figure 23, a line-by-line comparison of the
blocks between two shreds is executed along the vertical direction. If the types of two blocks are the
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same, then the line is marked as s; otherwise, it is marked as d. The sum of s is the total number of the
same types of blocks TS, and TS can reflect the neighborhood degree of two shreds.
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The specific process of residual sparse piece clustering is as follows.
A sparse piece dpi is selected randomly from the set of residual sparse pieces DP.

DP = {dp1, dp2, · · ·, dpi, · · ·, dpa}, (9)

where dpi represents the i-th residual sparse piece and α indicates the total number of residual
sparse pieces.

The total number of the same types of blocks between dpi and shreds that have been classified is
calculated separately, and the calculation results form a set TS(i):

TS(i) =
{

TSi,1, TSi,2, · · · , TSi,j, · · · , TSi,g
}

, (10)

where TSi,j represents the total number of the same types of blocks between the i-th residual sparse
piece and the j-th shred that has been classified; and γ indicates the total number of shreds that have
been classified.

Then, we search for the shred w, which has the highest total number of the same types of blocks
between dpi and itself:

w = argmaxTS(i), (11)

where w represents the test index number of the corresponding shred.
If the value of w is unique, then dpi and w are considered to be in the same cluster and dpi is

incorporated into the same cluster as w; however, if w has x values (x ≥ 2), then the set Lm must be
evaluated. Lm consists of x candidate shreds:

Lm = {Lm1, · · ·, Lmx}, (12)

where Lmx represents the x-th candidate shred. If all shreds in Lm are from the same cluster, then dpi is
incorporated into the cluster, whereas if the shreds in Lm are from different clusters, then dpi is marked
as an unclassifiable shred.

The same method is used to evaluate the other residual sparse pieces until all residual sparse
pieces have been processed. Then, the algorithm is complete.

Experiments demonstrate that these improvements are effective. Figure 24 presents the results
of processing residual sparse pieces. All residual sparse pieces are incorporated into the correct
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clusters, and the shreds that are not yet classified are dense pieces. These findings illustrate that the
improvements fully exploit the relevance between neighbor pieces, correct for the negative effect of a
few blocks misjudged in the original method, and further improve the accuracy of piece clustering.
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Second, the residual dense pieces are not classified because certain factors, such as information
loss at the edge of a shred and classifier error, affect these shreds when they are clustered according to
the GA Strategy. Because of these effects, the shreds are unable to meet the match conditions; thus,
they remain unclassified. In addition, because there are many characters and few blanks in a dense
piece, the dense pieces from different pages often have the same or similar layouts. Therefore, the
method of processing residual sparse pieces does not effectively manage these shreds. Ultimately,
12 dense pieces failed to cluster.

3.5. Summary

After performing the processing described in Section 3.1 to Section 3.4, the clustering results
in the test dataset are obtained, as shown in Table 2. The average accuracy of clustering is 97.19%
(449/462), 12 shreds are not classified, and one shred is misclassified. These results show that the
clustering method proposed in this paper has a high accuracy and a low error rate. Moreover, for
homologous pieces that appear indistinguishable, the method proposed in this paper can fully exploit
their internal relationships and differences to achieve effective clustering. Although a shortage of
shred processing occurs in area 3 of a document, considering the complexity of real shreds, which are
affected by noise interference, information loss, and other factors, the clustering results of Table 2 are
satisfactory. Additionally, from the point of view of time complexity, the complexity of our algorithm
in various stages is not high, with the exception of the process of Section 2.1. The time consumption of
this algorithm is acceptable. The time complexity is O(n3) in Section 2.1 (process of computing the
clustering number). Because the training and testing of the classifier for recognizing five different
types of blocks in shreds is very time-consuming. The time complexity is O(n2) in Section 2.2 (process
of identifying the starting point of clusters). Since the number of shreds that are processed in this stage
is substantially less than the total number of shreds, the time consumption in this stage is minimal.
The time complexity is O(n2) in Section 2.3 (process of achieving piece clustering based on the regional
division). In this stage, the complexity of the piece clustering in area 1 and area 3 is greater than the
complexity of the piece clustering in area 2.
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Table 2. Final clustering results.

Cluster Original Shred
Number

Classified Shred
Number

Unclassified
Shred Number

Misclassified
Shred Number

A 46 41 5 0
B 46 46 0 0
C 46 46 0 0
D 46 46 0 0
E 47 39 7 1
F 46 46 0 0
G 46 46 0 0
H 46 46 0 0
I 47 47 0 0
J 46 46 0 0

Total 462 449 12 1

Additionally, to clearly demonstrate the clustering effect of our method, we employ k-means
clustering and hierarchical clustering to test the dataset based on the features of the paragraph layout
proposed in this paper. We compared the clustering effect of these two methods with the method
proposed in this paper.

We use the common clustering evaluation indexes—purity and silhouette coefficient—as the
standards of evaluation. the expression of purity [7] is expressed as:

P = 1
n

n
∑

i=1
max

j

|Ci∩Kj|
|Ci |

j = 1, · · ·, m , (13)

where P indicates purity, n indicates the number of clusters, m indicates the number of predefined
classes, Ci indicates the i-th cluster, and Kj indicates the j-th class.

The expression of silhouette coefficients is expressed as:

S =
1
m

m

∑
i=1

Bi − Ai
max{Ai, Bi}

, (14)

where S indicates Silhouette coefficient, m indicates the number of clustered pieces, Ai indicates
the average dissimilarity of the i-th piece with all other pieces within the same cluster, Bi indicates
the lowest average dissimilarity of the i-th piece to any other cluster, of which the i-th piece is not
a member.

Table 3 shows the clustering effect of different algorithms. The clustering number of k-means
clustering is ten. Because the initialization of k-means clustering is random, the purity and silhouette
coefficient are the averaging results of 10,000 runs. The clustering number of hierarchical clustering
is ten. We use the minimum variance algorithm to create a hierarchical cluster tree in the process
of clustering.

Table 3. Clustering effect of different algorithms.

Algorithm Purity Silhouette Coefficient

Our Method 99.79% 0.5627
K-means Clustering 67.72% 0.4158

Hierarchical Clustering 73.70% 0.4362

As shown in Table 3, compared with other two methods, the method proposed in this paper has
obvious advantages in terms of the clustering effect. This is because, at the beginning of the clustering,
our method can accurately obtain the starting points of clusters (namely the leftmost and the rightmost
pieces from the same page), and these starting points can provide clear guidance for the clustering
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of other pieces. Additionally, we fully mine the document property of the pieces, and the pieces in
different areas are distinguished and associated effectively based on the feature of paragraph layout.
Meanwhile, according to the similarity of adjacent pieces in the layout, the interference of individual
blocks is suppressed in clustering by using the total number of the same types of blocks. The clustering
effect is obviously improved. From the evaluation results, the purity of our method is very high, and
the silhouette coefficient is not very high. It is because that the paragraph layouts in different areas
of a document are different, and the paragraph layouts in the same area of a document are similar.
Accordingly, for a cluster of pieces from a document, there is a high similarity between pieces in the
same area, and the similarity between pieces in different areas is not high. The silhouette coefficient
uses the similarity of pieces as an important basis for evaluating clustering results in the range of an
entire cluster, and it does not adequately reflect the similarity of homologous pieces in a small range.
Thus the silhouette coefficient of our method is not very high. For the k-means clustering, the algorithm
only uses the layout similarity of characters and blanks to cluster, but it ignores the differences and
correlations between pieces in different areas of a page. Thus the pieces from different pages are
clustered because of the similar layout, and the separations between different clusters are not high.
Moreover, initial centers of clusters that are randomly selected also have an influence on the clustering.
The clustering effect of the k-means algorithm is not good, its purity is 67.72%, and its silhouette
coefficient is 0.4158. For the hierarchical clustering, although its purity and silhouette coefficient are
higher than the k-means, it only realizes clustering based on the layout similarity between pieces, and
it does not consider the differences and correlations between pieces from the perspective of the overall
document layout, which means that some pieces that came from a page are divided into different
clusters because of the different layouts. Therefore, the clustering effect of the hierarchical algorithm is
not satisfactory.

4. Conclusions

This paper presents a novel clustering method for Chinese homologous pieces that are difficult
to distinguish visually. The pieces are clustered by three steps: computing the clustering number,
identifying the starting point of clusters, and achieving piece clustering based on the regional division.
In the step of computing the clustering number, based on the distribution features of characters in the
piece, the leftmost and rightmost pieces in the documents are recognized, and the clustering number is
calculated. In the step of identifying the starting point of clusters, this paper employs the correlation
of syntax in adjacent text lines, and the leftmost piece and the rightmost piece which come from the
same page are exactly matched. In the step of achieving piece clustering based on the regional division,
according to the document layout, the pieces are distinguished in different areas of the document,
and piece clustering is achieved by the correlation among pieces in different areas. The experimental
results show that the proposed method can effectively achieve the clustering of real pieces. Moreover,
this method lays the foundation for the resolution of homologous shredded document recovery.

It is worthy to mention that although this paper addresses shredded plain text documents, it
still has an application value for the shredded documents with figures and images. In contrast to
homologous pieces in the plain text document (the pieces are very similar with regard to content, and
a lack of effective feature distinguishes the pieces), the shredded documents with figures and images
contain easily extractable features and achieve clustering because the figures and images have potential
differences with regard to size and position in real documents. However, document is different from
photograph after all. Characters take the primary position in a document. The distribution of characters
in different areas of a document remains dense and sparse, a correlation exists among characters in
different areas, and the paragraph layout feature of a document remains in the pieces. Thus, we can
also apply the method proposed in this paper to process the shredded documents with figures and
images. Because figures and images are added to a document, the total relevance of the characters of
the pieces in the horizontal direction is weakened, and it has a certain extent effect on piece clustering.
The features of figures and images can be used to easily distinguish the pieces, and they can promote
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the realization of piece clustering. We need extensive research toward documents with figures and
images, which will also be a major direction in our future research.

In future studies, we will investigate homologous clustering, which contains images and tables
based on the solution for the shredded plain text document in this paper. We expect to employ a
technical method to solve the question of piece clustering based on multi-page documents. Considering
that the documents processed in this paper are Chinese documents and that the Chinese language has a
text structure that is similar to Vietnamese and Japanese, we will attempt to apply the method proposed
in this paper to the piece clustering of documents in these two languages in future studies. From a
broader point of view, although the languages in different countries differ, many similarities exist in
the paragraph layout among documents in different languages. The cornerstones of the algorithm
proposed in this paper exist. Thus, if the idea of this paper is combined with other methods, it will
help researchers solve the piece clustering problem of different language documents. Additionally,
there are differences in the pieces produced by a shredder because of different cutting methods. This
paper addresses strip-cut shredded documents; however, whether the proposed method is still valid
for cross-cut shredded documents requires further testing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/7/9/951/s1,
Dataset S1: The original dataset used in the experiment.
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