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Abstract: This paper presents an agent-based model that performs the management of traffic flows
in a network with the purpose of observing in a simulation of distinctive congestion scenarios how
the automation of the monitoring task improves the network performance. The model implements
a decision-making algorithm to determine the path that the data flows will follow to reach their
destination, according to the results of the negotiation between the agents. In addition, we explain
how the behavior of the network is affected by its topology. The aim of this paper is to propose an
agent-based model that simplifies the management of the traffic flows in a communications network
towards the automaticity of the system.
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1. Introduction

The communication networks are complex systems that support a wide variety of applications,
many of them in real time; this has led to a change in the network management scheme.
Network administrators must deploy multiple tools to obtain the visibility and control necessary
to operate today’s complex networks, some of these tools are: software agents, active networks and
policy languages [1].

The integration of intelligent agents into the management system facilitates the evaluation of
the parameters that determine the network performance. An agent has the capacity to detect changes
in the environment, and respond in accordance, in order to isolate or anticipate failures making
the system proactive; thus, the direct intervention of the network administrator becomes unnecessary
in the situations that the agents can handle.

Agent-based modeling is a powerful tool for complex system simulation. A computer network can
be described as a complex system because it is dynamic, has nonlinear interactions, and its components
exhibit unpredictable reactions that results in behavior patterns [2,3]. In the proposed model, when
a micro behavior, as a congestion, emerges in a network node, the agent needs to make a decision
according to its preferences.

The topology of a network contributes valuable information to analyze its structure.
Network managing considering the complex networks approach allows the identification and
classification of the nodes using the metrics of centrality and clustering degree, among others.

Autonomic network management is a complex task and consists in the automaticity of the system
to protect, configure, optimize and heal itself without human intervention. In networks, the property
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of automaticity allows self-management, given a set of policies from the administrator, which depicts
the agent’s high-level goals [4]. The proposed model applies a distributed management to avoid
attacks over the central nodes in the network.

This paper is structured as follows: in Section 2, autonomic networking management is defined,
in Section 3, network metrics based on graph theory principles are presented. Next, in Section 4,
we introduce the architecture of the agent-based model and the algorithm proposed is explained.
In Section 5, the simulation experiment and the results obtained are presented. Finally, concluding
remarks are given in Section 6.

2. Autonomic Networking Management

Today, people are using networks to communicate, and networks have become bigger and more
complex. The network management is a complicated task that goes beyond technical support and
device configuration. To simplify the network management, the automation of the management tasks
are critical. The International Business Machines Corporation (IBM) has proposed five levels according
to the degree of automaticity in the network management [4,5].

• Level 1: Refers to the continuous monitoring of the elements of the system by means of software
tools handled by people who provide manual support in the event of a failure.

• Level 2: Consists of a set of monitoring applications that intelligently collect information to reduce
the workload of the network administrator, and is known as the management level.

• Level 3: This level can recognize certain behavior patterns of the network in addition to suggesting
actions to be taken by the support staff; this level is also called predictive.

• Level 4: Uses level 3 tools but attempts to minimize human intervention by helping with Service
Level Agreements (SLAs); this level is known as adaptive.

• Level 5: Business policies and objectives dynamically manage the system at this level.
Its disadvantage is that the automaticity is very closed only based on certain rules, and this
level is recognized as autonomous.

The proposed agent-based model is a step forward to reach the fifth level of automaticity,
by the integration of intelligent agents that determine the path that will follow the data flows when
a congested node situation emerges. The rules used for these agents rely on the preferences of each
network node.

3. Measures of Centrality in Networks

A network is a set of nodes and links [6]. Modeling a network helps to determine the structural
issues relevant at a given time. The topology of the network can be illustrated applying an adjacency
matrix or adjacency list. The decision of which one has to be used depends on the analysis type.

An adjacency matrix is a mathematical representation of a network, which allows the analysis of
the clustering relation between the nodes. When search algorithms are used to enumerate components,
the disadvantage of this matrix is the inefficient use of memory, but this is not a problem when a
particular element is accessed [7,8]. Different techniques for network interpretation and visualization
are used nowadays; one of these techniques is based on clustering algorithms, in which the use of an
adjacency matrix is more convenient.

One of the measures that is applied to adjacency matrix is the centrality, which captures the
hierarchy of the network nodes [9]. The awareness of the node relevance is crucial to manage any
network because this will lead to the determination of the main nodes. The nodes are classified
by their betweenness centrality. Eigenvalue centrality is an extension of degree centrality [8], and
the topology of the network has an effect on both measures. The use of a node classification based
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on the centrality allows the network manager to realize the importance of the nodes. A definition of
eigenvalue centrality of a node i is shown in Equation (1):

x
′
i = ∑

j
Aijxj, (1)

where x
′
i is defined by the sum of the i

′
s the centrality of i neighbors, and Aij is an element of the

adjacency matrix. The interpretation of eigenvalues tells if a node is growing or shrinking according to
the amount of neighbors. In the model, this measure is used to identify the hierarchy of each node.
Links allow communication to reach a remote node. Here, the betweenness centrality of a node has
a relevant role. Clustering coefficient Ci describes how extended a node is, Equation (2) shows how to
calculate it, where Equation (3) is the degree of the node k(i) and N(i) is the amount of neighbors of
the node i [2,10]:

Ci =
ki(ki − 1)

2
, (2)

k(i) = |N(i)|. (3)

In a heterogeneous network, the nodes with higher clustering degree are called hubs. In [11], it is
affirmed that high degree nodes play a very significant role because the packets are routed through
these hubs, and, in a social network, the people highly connected distribute information better than
isolated people [12].

Figure 1 shows a representation of hub nodes in a network where the size of the nodes is
proportional to its degree, defined as k(i) = |N(i)| , where N(i) is the amount of the neighbors of a
node i [10], using this metric, a node hierarchy is obtained. The proposed agent-based model detects
clusters of nodes when the flow preferences are assigned.

Figure 1. Example of network with representation of nodes by degree.

4. Architecture of the Agent-Based Model

An agent-based model is useful to analyze an approach for decision-making under conditions of
deep uncertainty because it has the ability to connect heterogeneous micro and macro behaviors [13].
In a network model, the micro behaviors represent the interactions of different types of flows (data,
video and voice), each one gives information for understanding the network behavior. The flow
analysis is critical to the network availability and performance [14]. Because of this, the proposed
agent-based model incorporates into the nodes a set of collaborative agents to collect the information
requested by the decision-making level.
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4.1. Multi-Agent Architecture for Management of Network Flows

The architecture of the proposed multi-agent model is shown in Figure 2. The Multi-Agent
Architecture for Management of Network Flows, TELEKA, is organized by hierarchy using three levels:
Network, Control and Negotiation.

• Network: In this level, all nodes are set up with the type of flows that will transmit and their
destination. In addition, the agents of each node are initializing with its hierarchy obtained
by Equation (1), and these preferences are assigned by the network administrator depending
on their policies, and their utilities are set to zero. The agents collect information related to
congestion status by sensing the current state of the nodes. When a congestion is recognized by
exceeding a threshold, an ECG flag changed their value to one, and this will trigger the activation
of the negotiation level.

• Control: Here, the agents detect and classify the flows that arrive at each node. After this,
the agents provide the data to the Negotiation level, which holds the decision-making module.

• Negotiation: The algorithm SEHA (Social Election with Hidden Authorities) is triggered in this
level when a congestion situation emerges. As a result, a set of actions to be performed by the
lower-level agents is selected, achieving with this the optimization of the network status.

Clasification:

Flows 

Negotiation

level

 

Sensing: 

Congestion Status

of nodes

Policies:

Flow type preferences

Actions

Decision-making:

 Winner election

Facts

Network nodes

identification 

Control level

Figure 2. Multi-Agent Architecture for Management of Network Flows.

4.2. SEHA Social Election with Hidden Authorities Algorithm

According to the social choice theory, the group decision-making process in a multi-agent system
should consider that each agent will have their preferences and will vote to choose a winner [15].
The proposed model considers a set of agents A = {Ag1, ..., Agn} in a network environment composed
by n number of nodes and k links with different costs c.

The tuple that represents an agent is Agi = < Ω, β, h >, where Ω is a set of preferences’ relations
Ω = { ω1 � ω2 � ω3}, they are arranged according to the flow type to transmit and its priority β.
Both parameters Ω and β are configured by the network administrator during the initialization process.
The hierarchy of a node h is calculated by the centrality of each node among the network using
the Equation (1).

The proposed algorithm is activated when a congestion emerges in a node, as is described in
Algorithm 1. The SEHA algorithm returns a winner ω flow type (data, video or voice) after a voting
process between the neighbor’s nodes. The winner flow will have the higher priority in the queue of
the congested node. The next step is transmitting the flow through one of its neighboring nodes using
the shortest path with minimum cost c to its destination, the agent of the selected node obtains an
utility u of +1. The rest of the non-preferred flows in the queue of the congested node picks randomly
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a neighboring node to continue their paths, but the utility u of the agent is set to −1 because they are
not transmitting the preferred flows.

Algorithm 1 SEHA Social Election with Hidden Authorities Algorithm

function FINDWINNER( Ω, β, h)
set choices [ω with max β] of my_neighbors
set choices modes of choices
if choices length > 1

set prefered_choice [ω with max β] of my_neighbors with max h
else

set pre f ered_choice choices
return pre f ered_choice

end function

5. Simulated Scenarios and Results

The proposed model analyses the behavior of a network when a congestion situation emerges.
In particular, this model aims to enable the implementation of SEHA ( Social Election with Hidden
Authorities Algorithm) algorithm to automatically manage the traffic flows across the network.
The model validates the TELEKA architecture, which was illustrated in Figure 2.

Figure 3 presents the user interface in Netlogo of the model, and also shows the nodes’
parameters as number, degree, centrality, queues threshold of congestion, and topology of the network.
The environment where the agents coexist is a network in which the interconnection of the nodes and
links are generated by scale-free distribution [16–18].

Figure 3. Netlogo interface of the model.

The experiment has the initialization values listed in Table 1, the hierarchy h, which corresponds
to the values of centrality of each node, are calculated using the Equation (1), and the values of the
preferences ω of each node are listed. Link costs are listed in Table A1 in Appendix A.
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Table 1. Initialization parameters in the network.

Node h Preferences Node h Preferences

ω1 ω2 ω3 ω1 ω2 ω3

0 0.34 Voice Video Data 12 0.15 Data Voice Video
1 1.00 Voice Video Data 13 0.079 Video Data Voice
2 0.604 Data Voice Video 14 0.069 Voice Data Video
3 0.533 Data Video Voice 15 0.272 Video Data Voice
4 0.181 Data Voice Video 16 0.34 Data Video Voice
5 0.232 Data Voice Video 17 0.104 Data Video Voice
6 0.34 Data Voice Video 18 0.34 Video Voice Data
7 0.442 Voice Video Data 19 0.092 Voice Data Video
8 0.272 Video Voice Data 20 0.104 Video Data Voice
9 0.204 Data Video Voice 21 0.035 Video Data Voice

10 0.15 Voice Data Video 22 0.035 Voice Video Data
11 0.181 Voice Data Video 23 0.092 Data Video Voice

In Figure 4, the color of each node represents its preferences (see Table A2 in Appendix A).
The sizes of the nodes are proportional to their degree k. Finally, the dots inside of each node represents
the flows waiting to be transmitted to their destination nodes.
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Figure 4. Topology with scale free distribution.

In Netlogo, the next process to activate after the setup of the world is called Go, and this is
illustrated in Figure 5. The flow diagram represents the actions that are executed within a tick.



Appl. Sci. 2017, 7, 928 7 of 18

Setup

World
Go

cost_choice

No
Yes

Start of tick

End of tick

Num_flows
 > 0

check_congestion

node 
congested?

negotiate

set location one-of-
link-neighbor [with-min 

cost to destination]

No

Yes

SEHA

Algorithm

Start

EndStop

prefered_
choice?

set location one-
of-link-neighbor 

Yes

No

Figure 5. Flowchart of Go process.

5.1. Analysis of Results

Four different scenarios were simulated to analyze the results of the Netlogo model.
Two topologies were used: the first topology considers a scale-free distribution and the second
one considers a grade distribution. With each topology, the Algorithm 1 was applied, creating the first
two scenarios, and it was not applied creating the two remaining scenarios.

5.2. Simulation Using the Topology with Scale Free Distribution

Figure 6 illustrates the histograms obtained from the measures of centrality and the classification
of all nodes as hubs or not hubs. The histogram of degree allows the identification of the nodes with
the higher degrees as those which are important to consider when a congestion starts.
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Figure 6. Histogram of complex metrics obtained from the model.

The network during the simulation maintains a maximum congestion limit of 30%. The congestion
threshold of each node queue is set to 20%. This means that a value above this will change the status
of the node to congested. Figure 7 shows the congestion status of the network when the SEHA
Algorithm 1 was applied and Figure 8 shows the congestion status of the network without using a
SEHA Algorithm 1.
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Figure 7. Congestion status of the network over the simulation applying the SEHA (Social Election
with Hidden Authorities Algorithm).

0

10

20

30

40

50

60

%
 
C
O
N
G
E
S
T
E
D
 
N
O
D
E
S

0 1 2 3 4 5 6 7 8

TICKS

Figure 8. Congestion status of the network in simulation using Random distribution.

In Figures 9 and 10, the congestion averages by node are shown, and it can be noticed that the
congested nodes amount are higher than those in the scenarios where SEHA Algorithm 1 was applied.
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After each agent negotiates, they obtain a utility reward, and Figure 11 shows the utility of all
agents during the simulation time using the SEHA algorithm. During the simulation with a random
flow distribution, the agents receive no utility. Both models complete the distribution of 42 flows
through the network to its destination node at the eighth tick.
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Figure 11. Utilities of each agent when the SEHA (Social Election with Hidden Authorities Algorithm)
is applied.

The values obtained to generate this graph are shown in Table A3 of Appendix A.

5.3. Simulation Using Topology with Degree Distribution

The following simulation was configured with different topology, using the degree of six as a
parameter to generate it. Figure 12 shows the view of the network in the simulator.

Figure 13 shows the complex metrics of degree, centrality and a classification of nodes in hubs or
no hubs obtained by the model when the simulation was initialized.

The results obtained by the second simulation are illustrated in Figures 14 and 15. Compared
with the results shown in Figure 14, the higher congested status of the network was less than 26%
using the SEHA Algorithm 1.
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Figure 12. Topology with degree distribution each color represents the type of preferences.
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Figure 13. Histograms of the complex metrics obtained.
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Figure 14. Average of congestion status of the network in the simulation applying the SEHA (Social
Election with Hidden Authorities Algorithm).
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Figure 15. Average of congestion in the network during simulation using random distribution.

Detailed information of the congestion average by node during both simulations is shown in
Figures 16 and 17.

According to the illustrations in Figures 16 and 17, the impact of congestion on the nodes of the
network is lower using the SEHA (Social Election with Hidden Authorities Algorithm) than when a
random distribution is used.

Finally, in Figure 18, the utilities of agents during the simulation are shown. The utilities obtained
by the agents represent the most visited nodes when a congestion emerges using the SEHA Algorithm.
Random distribution does not obtain utilities because there is no negotiation between agents to
determine the new hop of the flow. For better description of the result values, see Table A4 in
Appendix A.
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5.4. Comparison of Results

In Table 2, the outcome of 600 simulations are shown. The scenarios that were used for these
simulations were obtained by means of the link cost variation and a random initial distribution of
the flows. The comparison was made between the scenarios where the SEHA (Social Election with
Hidden Authorities Algorithm) was applied, in contrast with those in which the flows distribution
was performed in a random manner.

As described 300 additional simulations were generated to verify the behavior of the SEHA
(Social Election with Hidden Authorities Algorithm), varying the topology, node preferences and link
costs. In addition, 300 simulations were generated by configuring BehaviorSpace following the same
procedure, but the flow distribution was performed in a random manner, instead of using the SEHA
(Social Election with Hidden Authorities Algorithm). The outcome using NetLogo Behavior Space
with the initial values specified in Figure 19 is illustrated in Table 2.

The use of agent-based models to evaluate the performance of an algorithm is a suitable tool.
The results shows that, although the variation in the costs greatly influences the random distribution,
the affectation is minor when the SEHA (Social Election with Hidden Authorities Algorithm) is applied.
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In Figure 20, the behavior of both simulated scenarios are shown, where it is observed that the
outcome variation is smaller when the SEHA (Social Election with Hidden Authorities Algorithm)
algorithm is applied than when it is not.

Figure 19. Initialization of Behavior Space of Netlogo.

Table 2. Results obtained after 600 simulations with Behavior Space of NetLogo.

Number of
Runs

Flows Mean
Arrival Rate Cost

Social Election with Hidden
Authorities Algorithm Random Distribution

Mean of
Congested

Nodes

Standard
Deviation

Mean of
Congested

Nodes

Standard
Deviation

100 42 0.3 2.583 0.447 2.726 0.550
100 42 0.6 2.584 0.402 2.612 0.531
100 42 1.0 2.576 0.446 2.664 0.554
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Figure 20. Comparation of performance using the SEHA (Social Election with Hidden Authorities
Algorithm) and Random distribution of the flows.

6. Future Work

The integration of an agent that allows the automatic adaptation of network policies would bring
us closer to the goal of automating the network-management tasks. This algorithm can be integrated
into systems that require self-organization considering the connectivity between its components.

The proposed algorithm can be applied in a social network, where it is possible to identify those
members who have a high hierarchy given their number of connections, in order to prioritize the
messages that come from high hierarchy members.

7. Conclusions

The agent-based model allows the analysis of the results obtained to identify the patterns of
behavior of a network. In addition, the model provides information about how the congestion of a
network impacts the transmission of flows when classifying the nodes by their centrality.

Using the model to obtain the measures of complex networks of degree clustering and centrality
by considering the network topology is a way to identify the hierarchy of each node. The identification
of the nodes with greater centrality is one of the critical parameters of the SEHA Algorithm 1, which
allows establishing a tiebreaker and a better flow distribution.

Flow transmission in the network are optimized according to the preferences of the community
to which the congested node belongs, which exempts the network administrator from resolving
the congestion failure by selecting manually the type of flow that must be transmitted according to
its priority.

Considering that complex network metrics in a self-management system improves the network
performance by decreasing congestion, this algorithm mainly considers the nodes with greater
hierarchy in the network to transmit its flows because they have higher priority. The integration
of intelligent algorithms that allows the autonomous negotiation of the resources improves the
network performance.
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Appendix A

The cost of all links are random values, in the range of zero to one, and are listed in Table A1.
The preference values of each node are shown in Table A2, and these values are referenced in the

Figure 4 of the Simulated Experiment and Results section. In Table A2, the flow type are Data = 0,
Voice = 1 and Video = 2, and the order has an impact on the flow priority. The maximum size of queue
in each node is set to 10 and the threshold set in the simulation are 20%. This means that, over this
value, the bit of congestion ECG will be set to one, so a negotiation starts.

Table A4 provides the list of the agents’ utilities in the second simulation using the SEHA
algorithm and a network topology based on a degree distribution.

Table A1. Bidirectional links’ costs.

Cost
Link

End1 End2

0.442 node 1 node 0
0.759 node 1 node 3
0.788 node 1 node 6
0.778 node 1 node 7
0.848 node 1 node 16
0.668 node 2 node 1
0.293 node 4 node 3
0.609 node 5 node 2
0.577 node 5 node 13
0.165 node 7 node 10
0.217 node 8 node 2
0.392 node 8 node 17
0.517 node 8 node 19
0.045 node 9 node 3
0.850 node 9 node 14
0.790 node 11 node 3
0.924 node 12 node 7
0.053 node 15 node 2
0.322 node 17 node 22
0.089 node 18 node 1
0.678 node 20 node 15
0.364 node 21 node 20
0.801 node 23 node 15
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Table A2. Initialization values of nodes.

Source Node Color Preferences Num. Flows Type Flows Destination Node

0 yellow 1 2 0 1 1 21
1 yellow 1 2 0 4 1,0,2,0 10,21,7,9
2 green 0 1 2 1 2 14
3 pink 0 2 1 2 1,1 22,6
4 green 0 1 2 3 1,2,2 22,3,21
5 green 0 1 2 5 1,2,2,0,0 8,7,21,15,7
6 green 0 1 2 3 1,0,0 22,10,21
7 yellow 1 2 0 1 0 6
8 red 2 1 0 1 1 20
9 pink 0 2 1 1 2 7
10 orange 1 0 2 1 1 17
11 orange 1 0 2 2 0,2 19,5
12 green 0 1 2 2 1,0 1,2
13 gray 2 0 1 2 1,0 21,8
14 orange 1 0 2 3 1,2,0 23,23,1
15 gray 2 0 1 1 2 20
16 pink 0 2 1 1 1 1
17 pink 0 2 1 4 1,2,0,1 11,20,7,4
18 red 2 1 0 2 2,1 23,20
19 orange 1 0 2 2 2,2 12,10
20 gray 2 0 1 2 1,0 5,19
21 gray 2 0 1 2 2,2 8,19
22 yellow 1 2 0 3 2,1,2 13,8,3
23 pink 0 2 1 0 - -

Table A3. Agents’ utilities after negotiation.

Ticks/Agent in Node 1 2 3 4 5 6 7 8

node 0 −1 −1 −1 −1 −1 −1 −1 −1
node 1 1 −1 −1 −1 −1 −1 1 1
node 2 −1 1 −1 −1 −1 −1 −1 −1
node 3 −1 −1 −1 −1 −1 1 1 1
node 4 −1 −1 −1 −1 −1 1 −1 −1
node 5 −1 −1 −1 −1 −1 −1 −1 −1
node 6 −1 −1 −1 1 −1 −1 1 1
node 7 −1 −1 −1 −1 −1 1 −1 −1
node 8 1 −1 1 −1 1 −1 −1 −1
node 9 −1 −1 −1 −1 −1 −1 1 1

node 10 1 −1 −1 −1 −1 1 1 1
node 11 −1 −1 −1 −1 −1 −1 −1 −1
node 12 −1 −1 −1 −1 −1 −1 −1 −1
node 13 −1 1 −1 −1 −1 −1 −1 −1
node 14 −1 −1 −1 −1 −1 −1 −1 −1
node 15 −1 1 −1 1 −1 −1 −1 −1
node 16 −1 −1 −1 −1 −1 −1 −1 −1
node 17 −1 −1 −1 −1 −1 −1 1 1
node 18 1 −1 1 −1 1 −1 −1 −1
node 19 −1 −1 −1 −1 −1 −1 −1 −1
node 20 −1 −1 −1 −1 1 1 1 1
node 21 −1 −1 −1 1 −1 −1 −1 −1
node 22 −1 −1 −1 −1 −1 −1 −1 −1
node 23 −1 −1 −1 −1 1 −1 1 1
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Table A4. Agents’ utilities.

Ticks /Agent in Node 1 2 3 4 5 6 7 8

node 0 −1 1 −1 −1 −1 −1 −1 −1
node 1 −1 −1 1 1 1 1 −1 −1
node 2 −1 −1 −1 −1 −1 −1 −1 −1
node 3 −1 1 1 1 −1 1 −1 −1
node 4 −1 −1 −1 1 −1 −1 −1 −1
node 5 −1 −1 −1 −1 −1 −1 −1 −1
node 6 1 1 −1 −1 −1 1 −1 −1
node 7 1 1 −1 −1 1 1 1 1
node 8 −1 1 1 1 1 1 1 1
node 9 −1 −1 −1 −1 −1 −1 −1 −1

node 10 1 −1 −1 −1 1 1 1 1
node 11 −1 −1 −1 −1 −1 −1 −1 −1
node 12 −1 −1 1 −1 −1 −1 −1 −1
node 13 −1 −1 1 −1 −1 1 −1 −1
node 14 −1 −1 −1 1 −1 −1 −1 −1
node 15 −1 1 −1 1 1 −1 −1 −1
node 16 −1 1 1 1 1 −1 −1 −1
node 17 −1 −1 −1 −1 −1 −1 −1 −1
node 18 1 1 −1 −1 −1 −1 −1 −1
node 19 1 1 1 −1 −1 −1 −1 −1
node 20 1 −1 −1 1 −1 −1 −1 −1
node 21 −1 −1 −1 1 1 −1 −1 −1
node 22 −1 −1 −1 1 −1 −1 −1 −1
node 23 −1 −1 −1 −1 −1 −1 −1 −1
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