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Abstract: Artificial Neural Network (ANN) is a valuable and well-established inversion technique
for the estimation of geophysical parameters from satellite images. After training, ANNSs are able to
generate very fast products for several types of applications. Satellite remote sensing is an efficient
way to detect and map strong earthquake damage for contributing to post-disaster activities during
emergency phases. This work aims at presenting an application of the ANN inversion technique
addressed to the evaluation of building collapse ratio (CR), defined as the number of collapsed
buildings with respect to the total number of buildings in a city block, by employing optical and
SAR satellite data. This is done in order to directly relate changes in images with damage that has
occurred during strong earthquakes. Furthermore, once they have been trained, neural networks
can be used rapidly at application stage. The goal was to obtain a general tool suitable for re-use in
different scenarios. An ANN has been implemented in order to emulate a regression model and to
estimate the CR as a continuous function. The adopted ANN has been trained using some features
obtained from optical and Synthetic Aperture Radar (SAR) images, as inputs, and the corresponding
values of collapse ratio obtained from the survey of the 2010 M7 Haiti Earthquake, i.e., as target
output. As regards the optical data, we selected three change parameters: the Normalized Difference
Index (NDI), the Kullback-Leibler divergence (KLD), and Mutual Information (MI). Concerning
the SAR images, the Intensity Correlation Difference (ICD) and the KLD parameters have been
considered. Exploiting an object-oriented approach, a segmentation of the study area into several
regions has been performed. In particular, damage maps have been generated by considering a set
of polygons (in which satellite parameters have been calculated) extracted from the open source
Open Street Map (OSM) geo-database. The trained ANN has been proposed for the M6.0 Amatrice
earthquake that occurred on 24 August 2016, in central Italy, by using the features extracted from
Sentinel-2 and COSMO-SkyMed images as input. The results show that the ANN is able to retrieve
a building collapse ratio with good accuracy. In particular, the fusion approach modelled the collapse
ratio characterized by high values of CR (more than 0.5) over the historical center that agrees with
observed damages. Since the technique is independent from different typologies of input data (i.e., for
radiometric or spatial resolution characteristics), the study demonstrated the strength of the proposed
approach for estimating damaged areas and its importance in near real time monitoring activities,
owing to its fast application.
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1. Introduction

Artificial neural networks (ANN), computational modelling tools, have found wide acceptance in
many disciplines due to their adaptability to complex real world problems.

ANNSs have demonstrated their ability to model non-linear physics systems [1], involving complex
physical behaviors, and were applied to the analysis of remotely sensed images with promising

Appl. Sci. 2017, 7, 781; doi:10.3390/app7080781 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app7080781
http://www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 781 20f10

results. Some examples of applications are: retrieval of soil moisture and agricultural variables from
microwave radiometry [2], estimation of snow water equivalent and snow water depth from microwave
images [3], retrieval of leaf area index (LAI) and other biophysical variables from the MEdium
Resolution Imaging Spectrometer (MERIS) and MODerate-resolution Imaging Spectroradiometer
(MODIS) instruments [4], estimation of chlorophyll from MERIS [5], retrieval of volcanic ash and
sulphur dioxide from hyperspectral data [6]. ANNSs are also used, with good results, for rainfall
prediction involving other geophysical data [7,8].

Since an earthquake usually acts in a nonlinear way, the neural network algorithm can be an
appropriate method for damage estimation purposes since it demonstrated to be a good non-linear
approximator [9]. Recently, ANNs have been applied to detect damaged buildings, following an
earthquake, by using high spatial resolution optical images acquired after the seismic event [10].
A neural network based-approach is being implemented to assess the status of buildings after
earthquake excitation, predicting the displacement at different floors considering the wave energy
propagating only into the ground floor [11].

By using change features from satellite images, accurate and reliable damage mapping can be
obtained, exploiting both optical and radar sensors [12-14]. In Romaniello et al., 2016, an unsupervised
algorithm for damage classification purposes has been developed [14].

Currently, quantitative estimation of earthquake damage level as a continuous function, using an
ANN, has not yet been exploited and the present study represents a first attempt at applying an ANN
to both optical high resolution Sentinel-2 and Synthetic Aperture Radar (SAR) remote sensing data for
collapse ratio modelling. To the best of our knowledge, the methodology based on ANN has not been
utilized in modelling earthquake damage assessment.

In the present study, two different neural networks using different Earth Observation (EO) datasets
have been realized in order to model, as a continuous function, building damage. The first neural
network (NN) experiment used, as input, only features obtained from optical data, whilst the second
one (in a data fusion approach) also the features obtained from SAR images. NDI, KLD and MI
features from optical data, and ICD and KLD from SAR data were used. Regarding the SAR data,
KLD and MI parameters are very suitable features that can contribute to damage estimation [15];
the ICD demonstrated itself a very good damage proxy [13,16]. Concerning the optical data, the most
significant performances are related to the NDI, KLD [17], and MI indexes [18]. These features show
very good sensitivity to the collapse ratio.

The case study is the Central Italy strong earthquake, which took place on August 2016. On 24
August 2016 at 1:36 UTC, a M6.0 earthquake occurred in the Apennines of Central (hereafter Amatrice
earthquake) Italy at depth 8 km, over a NNW-SSE striking, WSW dipping normal fault [19], destroying
the closest towns to the epicenter—Amatrice, Accumoli and Arquata del Tronto—and causing near 300
fatalities. This earthquake revealed the importance of a rapid earthquake damage assessment, right
after a seismic event, which can address the civil protection interventions towards the most affected
areas. This work allowed to quantitatively evaluate the performance of NNs in terms of CR retrieval
accuracy and generalization capability.

2. Neural Network Approach and Employed Features

ANN s are based on the concept of the single artificial neuron, the ‘Perceptron’, introduced by [20]
to solve problems in the area of character recognition [21]. Using supervised learning, with the
Error-Correction Learning (ECL) rule for network weights adjustment, those networks can learn to
map from one data space to another using examples [22]. One of the most common and reliable
learning techniques is the back-propagation (BP) algorithm [23]. BP consists of two phases: in the
feedforward pass, an input vector is presented to the network and propagated forward to the output;
in the back-propagation phase, the network output is compared to a desired output; network weights
are then adjusted in accordance with an ECL rule [23-25]. Cross validation can be used to detect when
over-fitting starts during supervised training of a neural network; training is then stopped before
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convergence to avoid over-fitting (early stopping). Early stopping using cross validation was done by
splitting the training data into a training set, a cross-validation set, and a test set, and then training the
networks only using the training set and evaluating the per-example error on the test set on a sample
basis after a defined number of epochs. Finally, training was stopped when the error—the difference
between neural network output and target—on the cross validation set was higher than the previous
error value [26].

The performance of a trained ANN is generally assessed by computing the root mean square
error (RMSE) between expected values and activation values at the output nodes or, in the case of
classification, a percentage of correctly classified examples of the validation set. At the time our study
was carried out, the ground truth was unavailable for Amatrice earthquake, so a visual inspection
using high resolution images has been adopted.

From studies of past literature and development activities performed in a European research
project (APhoRISM, www.aphorism-project.eu), we identified and employed a set of features that
demonstrated a good sensitivity to damage at object scale. Regarding optical data, we used the ND],
KLD and MI change indexes. As far as SAR data is concerned, we considered the KLD and ICD
parameters. Note that all change indexes have been calculated at object scale, i.e., by considering
polygons that refer to city blocks. These latter have been extracted through the free geo-database of the
Open Street Map project.

The NDI parameter is defined as

POST; — PRE;

DI =22 1= i
NDL = 5657+ PRE,

)
where PRE; and POST; indicate the mean values of intensity, respectively for pre- and post-seismic
images, associated to i-th polygon (see also Figure 2 as example). The intensity values are obtained
averaging the Top of Atmosphere (TOA) Red-Green-Blue (RGB) reflectance and corrected by applying
the Flat Field procedure for atmospheric correction [27].

The MI index measures the correlation loss between pre- and post-seismic images (see Equation (2)).

MI; = — 1n(1 - riz) % 0.5 @)

where 7;? is the correlation between the pre- and post-seismic pixels within each polygon. Correlation
is obtained from intensity and backscattering values for optical and SAR data, rescpectively. MI is
inversely proportional to the damage grade.

The KLD parameter is defined as

KLD; =

(PRE; — POST;)* + Var(PRE;) + Var(POST;) L 1 2 @
2 Var(PRE;) = Var(POST;)

where PRE; and POST; are the same parameters in the Equation (1), and Var(PRE;) and Var(POST;)
are their variances within the i-th polygon. The KLD parameter has the same behavior of NDI: KLD
increasing values correspond to increasing damage level. The ICD parameter is calculated on the base
of the Pearson Correlation coefficient (p;) estimated on the pre-seismic SAR image pair (ICpre) and on
the co-seismic SAR image pair (ICcos). From these two intermediate outputs, we can compute the ICD

ICD; = ICpre — ICcos 4)

3. Dataset and NN Training

The training case study was the Mw 7.0 earthquake that hit Haiti on 12 January 2010. The epicenter
was located about 25 km west—southwest of Port-au-Prince city. The disastrous shock caused the
collapse of a huge number of buildings and widespread damage.
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Table 1 describes satellite dataset used which consists of GeoEye-1 optical images (one pre- and
one post-seismic), and three TerraSAR-X SAR images (two pre- and one post-seismic).

Table 1. EO data list for NN training.

Datatype Satellite Acquisition
Optical GeoEye-1 2009/10/01
Optical GeoEye-1 2010/01/13

SAR TerraSAR-X 2009/05/01
SAR TerraSAR-X 2009/10/13
SAR TerraSAR-X 2010/01/20

Optical images inputs, both for pre- and post-, consisted of TOA reflectances at 2 m spatial
resolution for RGB spectral bands; starting from these reflectances, the intensity values are derived
(as described in Section 2).

As regards SAR data, intensity images have been obtained by multi-looking 3 x 3 m TerraSAR-X
applying a re-sampling at 10 x 10 m.

The computation of change indexes based on EO imagery has been performed at object scale by
considering a set of polygons, extracted from the open source Open Street Map (OSM) geo-database
over Port-au-Prince. A total of 1513 polygons corresponding to city blocks of the affected areas have
been considered. All the features (NDIL, KLD, MI and ICD) are grouped in a unique dataset necessary
for the Neural Network approach.

In addition to satellite data, a Ground Truth (GT) survey for Port-au-Prince town, expressed
in terms of collapse ratio (CR), has been used (see Figure 1). The CR has been calculated by
using GT information collected during a post-earthquake survey and available from the JRC (Joint
Research Center) database, and considering the same polygons (city blocks) used for the satellite
features calculation.

. B o3-10

Figure 1. Collapse ratio (CR) for each polygon obtained from JRC survey data over Port-au-Prince.
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In this work, Back-Propagation Neural Network (BPNN) has been used [23]. The BPNN to model
CR was implemented using, as input, the features extracted from satellite images (see previous section,
e.g., NDI in Figure 2), and CR values as target output. The 1513 samples used for NN training were
split in Training, Cross Validation, and Test datasets of 65, 20 and 15%, respectively.

) . |o15-018
0 05 1 2 0.18-0.21
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s B 0.21-0.40

Figure 2. NDI map obtained from pre- and post-seismic GeoEye-1 images over Port-au-Prince.

A first network topology (Exp 1) consisted of only optical features as input (NDI, KLD and
MI), five hidden layers with variable number of neurons [5-10-20-10-5], and one output, the CR.
Furthermore, in order to perform a data fusion exercise, a different neural network using five inputs
was adopted (Exp 2), adding to the optical features also the SAR ones, i.e., IC and KLD.

Figure 3 shows the statistical distributions for CR, train (a), cross-validation (b) and test (c) sets
used during NN training phase. Despite of histograms put in evidence that values higher than 0.5 are
statistically not well represented, we can consider the dataset a good training ensemble, because it
covers the entire range of values.
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Figure 3. Distribution histograms for (a) training; (b) cross validation and (c) test of Haiti datasets used
in the training phase.

Results of NN training phase for Exp 1 and Exp 2 are depicted in Figures 4 and 5, respectively.
As regard the network using only optical features, the regression coefficient obtained applying the
network to the test dataset is 0.67 (Figure 4), whilst NN using both and optical features obtains 0.73
(Figure 5). In this phase, it seems that using more features improves the NN retrieval accuracy.
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Figure 4. Regression curves for training, cross validation, test and total sets, considering Exp 1.

Red squared regression curves describe the result obtained when an independent dataset is applied.
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Figure 5. Regression curves for training, validation, test, and total sets, considering Exp 2. Red squared

regression curves describe the result obtained when an independent dataset is applied.
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4. Application of the Trained NN and Results for the Central Italy Case Study

In order to evaluate the performance of NNs in terms of retrieval accuracy and generalization
capability, they were applied to the Amatrice earthquake. The goal is also to evaluate NN capability for
modelling the building collapse ratio. The satellite dataset is made up of two Sentinel-2 optical images
(1 pre- and 2 post-seismic), three COSMO-Sky SAR images (2 pre- and 1 post-seismic), and a building
footprint layer extracted by the Open Street Map service (see Table 2 for EO data characteristics).
Both optical and SAR data have a 10 m spatial resolution.

Table 2. EO data list for NN application.

Datatype Satellite Acquisition
Optical Sentinel-2 2016/08/14
Optical Sentinel-2 2016/09/04

SAR COSMO-Sky 2016/07/19
SAR COSMO-Sky 2016/08/20
SAR COSMO-Sky 2016/08/28

The Amatrice footprint layer extracted from OSM, which is at a single building scale, was modified
to obtain polygons surrounding more than one building. In this way, there are more pixels associated
to each polygon leading a better estimation of change features over the polygon itself. The resulting
layer consists of 112 polygons.

In the Figure 6, histograms for the CR obtained by the NN approach, Exp 1 (a) and Exp 2 (b),
are depicted.
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Figure 6. NN Collapse Ratio estimated after the M6.0 earthquake on 24 August 2016. (a) NN approach
using optical inputs and (b) optical and SAR.

The histogram comparison shows that Exp 1 estimates most of polygons with a CR less than 0.1
(92 polygons, 82% of total), which means no damage. Five polygons present a CR between 0.1 and
0.2 and just one between 0.2 and 0.3. Only about 13% of polygons have a CR higher than 0.3, which
spans from medium damaging to total collapsing. Specifically, three polygons with CR between 0.3
and 0.4, four between 0.4 and 0.6, six between 0.6 and 0.8, and only one higher than 0.8, indicating
total collapse.

The location of polygons is well shown in Figure 7a, which describes the damage CR maps
obtained analyzing post 24 August 2016. The map indicates that the severe damage is mainly retrieved
in the northeast part of the Amatrice (red blocks), although information from Civil Protection confirms
that collapses involved the whole historical center. This is confirmed by looking at an optical very high
resolution (VHR) image (Figure 8) acquired after the Amatrice seismic event.
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Figure 7. Amatrice CR maps obtained analyzing post 24 August 2016 remote sensing data: (a) NN
with only optical features as input; (b) NN using both optical and SAR features.

Figure 8. Amatrice historical center, post-earthquake damage from RGB VHR DigitalGlobe image.

The fusion of optical and SAR features significantly changes this distribution (Figure 7b),
where occurrences of CR less than 0.1 (blue blocks) drastically decrease with respect to the Exp
1 (19 polygons, only 17% of total). About 54% of polygons show a CR between 0.1 and 0.2 (grey blocks),
indicating light damage. Looking at map in Figure 7b, these light damages lie partially in the historical
center, but most of them are located in the southeast part of the city.

Considering only the historical center and the comparison with the VHR image (Figure 8),
we suppose that Exp 2, involving SAR features, is more sensitive to light/medium damage level.
Indeed, 14 polygons present a CR between 0.2 and 0.3, which indicate a medium damage level. We
also notice that these polygons are located in the southeast part of the historical city center, an area
involving severe damage as confirmed by the VHR image depicted in Figure 8. Considering CR higher
than 0.3, polygons retrieved by Exp 2 increase by about 27% (19 respects of previous 14 of Exp 1).

The NN employed for the data fusion approach (Figure 7b), better identifies the severely damaged
areas in the historical center, also where Exp 1 underestimated the collapses. At the same time, it seems
to overestimate the damage in other areas, especially outside of the historical center. Indeed, Exp 2
indicates zones characterized by building collapses also in the southeast and partially in the northwest
(Figure 7b). In this sense, the Exp 2 seems to provide a more realistic damage distribution: at first
glance the NN regression model using the fusion approach gives the best results better identifying
areas affected by collapses, whereas the Exp 1 seems to underestimate them.
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5. Conclusions

The present work shows that neural networks, once they have been trained, can be used to rapidly
retrieve building collapse ratios from optical and SAR remote sensed data. The implemented ANNs
modelled the collapse ratio with quite high accuracy when applied to the post Amatrice earthquake
independent dataset. High values of CR (more than 0.5) were retrieved over the historical center that
are in agreement with a damage assessment observed by optical VHR imagery. The fusion of optical
and SAR derived parameters seem to give a more reliable result using only optical data, even though
it probably underestimates the occurrences of collapse ratios higher than 0.5, due mainly to a minor
statistical characterization of values during the ANN training phase (only 3%).

Considering that the technique is independent of different types of input data, both for radiometric
characteristics and spatial resolution, our work has demonstrated that ANNSs are powerful tools able
to estimate damaged areas, and they are important in near real time monitoring activities, owing to
their fast application.

When looking at using an ANN approach in near real time monitoring, special care has to be
taken during the training phase. This is because the neural network needs to be fed and trained
continuously also during its operating phase in order to keep phenomena knowledge updated and
retrieval performance accurate at the operating stage.

Another aspect is related to the input data characteristics, such as the spatial resolution, which can
limit the neural network retrieval accuracy. In this case, a possible improvement could be the use of
VHR satellite data, which could provide information at a building scale.

Future work will consider earthquake surveys in order get ground truth datasets to make
a quantitative assessment of ANN performance. It will also consider extending the analysis to
other areas affected by 2016 Central Italy seismic sequence. Furthermore, because the described
approach needs both pre- and post-earthquake images, and in many cases a pre-earthquake image is
not available or not up to date, a future goal will be the application of Neural Network approaches
only using post-earthquake remote sensed images, available in near real time.
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