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Abstract: Planetary gearbox vibration signals have strong modulation features due to the amplitude
modulation and frequency modulation (AM-FM) effect of gear faults, as well as the amplitude
modulation (AM) effect of time-varying vibration transfer paths, on gear meshing vibrations.
This results in an involute sidebands structure in Fourier spectrum, possibly misleading fault
diagnosis. The modulating frequency of both amplitude modulation (AM) and frequency modulation
(FM) parts is closely related to the gear fault characteristic frequency. This inspires the idea of joint
amplitude and frequency demodulation analysis, thus addressing the complex sidebands issue
inherent in Fourier spectrum. Demodulation analysis requires mono-component signals for accurate
estimation of instantaneous frequency, and proper selection of an AM-FM component sensitive to
gear fault. To this end, we firstly decompose the complex signal into intrinsic mode functions (IMFs)
via variational mode decomposition (VMD), by exploiting its capability in decomposing complex
modulated signal into constituent AM-FM components. For effective application of VMD in complex
planetary gearbox signal analysis, we propose a method to determine a key parameter in VMD, i.e.,
the number of IMFs to be separated. For accurate instantaneous frequency estimation, we decompose
IMFs via empirical AM-FM decomposition, to remove the influence of AM on instantaneous frequency
estimation. Then, we select the sensitive IMF that contains the main gear fault information for further
demodulation analysis. In order to properly select the sensitive IMF, we propose a criterion based
on the gear vibration characteristics and the VMD properties. Finally, we obtain the amplitude
and frequency demodulated spectra by applying Fourier transform to the amplitude envelope and
instantaneous frequency of the selected sensitive IME. According to the characteristics exhibited in
the demodulated spectra, we can detect planetary gearbox fault. The proposed method is illustrated
via a numerical simulated planetary gearbox vibration signal, and is further validated using lab
experimental vibration signals of a planetary gearbox. Faults on all the three types of gear (sun,
planet and ring) are successfully identified.

Keywords: planetary gearbox; fault diagnosis; variational mode decomposition; empirical AM-FM
decomposition; demodulation

1. Introduction

Planetary gearboxes are widely employed in many engineering systems, such as helicopters and
wind turbines, for their unique merits of high load bearing capacity and large transmission ratio in a
compact structure [1-3]. Since planetary gearboxes are usually key units in drivetrains, it is vital to
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maintain them working reliably and steadily. Once a fault occurs to planetary gearboxes, it may result
in transmission deficiency, or even lead to shutdown of entire machinery. Therefore, planetary gearbox
fault diagnosis plays an important role.

To date, researchers have made important contributions to planetary gearbox fault diagnosis.
This includes fault vibration mechanism, fault feature extraction, fault pattern identification, and fault
prognosis, reported in [4-20], to name a few examples. Through dynamics modeling, Chaari et al. [4,5]
analyzed the effect of gear faults (tooth pitting and crack) on the meshing stiffness, and further
examined the effects of gear eccentricity and tooth profile error on vibration responses. Mark and
Hines [6,7] studied the effects of non-uniform planet loading due to gear imperfections and
the modulation effects of planet carrier torque on vibration spectral sidebands. Inalpolat and
Kahraman [8,9] investigated the gearbox configuration (such as the number of planets, the planet
position phasing, and the number of gear teeth) and the gear manufacturing errors on vibration
spectral sidebands. In order to extract fault signatures from vibration signals, McFadden [10,11]
studied the sideband asymmetry of planetary gearbox vibrations, and extended the time domain
averaging method to planetary gearbox vibration signal analysis. Samuel and Pines [12,13] proposed a
method to separate the planet and sun gear vibration signals, and a constrained adaptive wavelet lifting
method to analyze individual tooth mesh waveforms. Barszcza and Randall [14] applied the spectral
kurtosis method to detect the ring gear tooth crack in a planetary gearbox. Lei et al. [15] improved the
adaptive stochastic resonance method and applied it to extract the weak fault symptoms of a planetary
gearbox. Elasha et al. [16] analyzed vibration and acoustic emission data using adaptive filter, spectral
kurtosis and envelope spectrum, and found that acoustic emission more susceptible to planetary
bearing defects through a comparison study. In order to classify planetary gearbox fault patterns,
Qu et al. [17] presented a support vector machine based feature selection method, and applied it to
planet gear pitting degree classification. Zhao et al. [18] proposed to preserve the ordinal information
by ordinal ranking, and improved the accuracy of ordinal ranking by a correlation coefficients based
feature selection method. Lei et al. [19] identified the running condition of a planetary gearbox using
the multiclass relevance vector machine, with accumulative amplitudes of the planet carrier orders
and energy ratio based on difference spectra as indices. As for planetary gearbox fault prognosis,
Djeziri et al. [20] proposed a fault prognosis and remaining useful life prediction method for wind
turbine systems based on a physical model, data clustering and geolocation principal. These research
results have enriched the literature on planetary gearbox fault diagnosis.

Planetary gearbox vibration signals have strong modulation features, due to the amplitude
modulation (AM) and frequency modulation (FM) effects of gear fault, as well as the AM effect of
time-varying vibration transfer paths, on the gear meshing vibration. In the time domain, they are
a product of the multiple AM terms and the FM signal. According to the convolution property of
Fourier transform, in the frequency domain, their Fourier spectra amount to the convolution between
the respective Fourier spectrum of each AM term and the FM signal. Meanwhile, the Fourier spectrum
of an FM signal involves a Bessel series expansion of infinite orders. Therefore, planetary gearbox
vibration signal spectra exhibit a very intricate sideband structure.

Planetary gearbox fault diagnosis often relies on effective detection of the gear fault characteristic
frequency and monitoring its magnitude change. Through conventional Fourier spectrum analysis,
one has to identify the sideband spacing first, and then conduct fault diagnosis by matching it with
the gear fault characteristic frequency. However, it is not easy to pinpoint the gear fault characteristic
frequency via sideband analysis. Because of multiple modulations and their coupling effects, planetary
gearbox vibration signals feature a highly complex spectral structure: sideband clusters around
the carrier frequency (meshing frequency or its harmonics) and even sidebands within a sideband
cluster. The multiple modulation sources may result in different sideband spacing values. The spacing
between two adjacent sideband peaks may not exactly equal the gear fault characteristic frequency,
instead may equal the sum or difference of the gear fault characteristic frequency and the frequency
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of time-varying vibration transfer paths. This leads to difficulty in planetary gearbox fault diagnosis
through conventional Fourier spectrum analysis.

The modulating frequency of both the AM and the FM parts links to the gear fault characteristic
frequency. If we can separate the AM and the FM parts, the Fourier spectrum of AM part
or FM instantaneous frequency alone can directly reveal the gear fault characteristic frequency,
thus avoiding the complex sidebands inherent in Fourier spectrum of the whole AM-FM signal.
This inspires the idea of fault characteristic frequency identification through amplitude and frequency
demodulation analysis.

However, demodulation analysis needs proper selection of a sensitive AM-FM component
containing gear fault information. Most importantly, frequency demodulation analysis requires
effective mono-component decomposition for accurate instantaneous frequency estimation. Recently,
Dragomiretskiy and Zosso [21] proposed the variational mode decomposition (VMD). This method can
non-recursively decompose a complex multi-component signal into constituent AM-FM components,
and it is robust to noise. Wang and his colleagues [22-25] discovered the wavelet packet like
frequency band decomposition property of VMD based on fractal Gaussian noise simulations, extended
VMD from real-valued to complex-valued signals, and applied them to extract the fundamental,
sub-harmonics, super-harmonics, and impacts of rotor-stator rubbing fault, as well as the impulsive
components of rolling bearing fault. An and Zeng [26] utilized VMD to analyze the nonstationary
pressure fluctuation signal of a hydraulic turbine draft tube. They showed that VMD is better than
EMD in suppressing mode mixing and improving time-frequency readability. An and Yang [27]
developed a denoising method based on VMD and approximate entropy, they demonstrated its
better performance than wavelet transform, and applied it to hydropower unit vibration analysis.
Tang et al. [28] proposed to decompose signals into multiple components, and then use independent
component analysis to solve the underdetermined blind source separation problem. They detected
the compound fault of rolling bearings with the proposed method. Lv et al. [29] extracted features
from the VMD based time-frequency representation, and identified rolling bearing faults. Yi et al. [30]
improved the robustness of VMD to sampling and noise via particle swarm optimization, and utilized
the proposed method to detect rolling bearing faults. Liu et al. [31] determined the number of modes
in VMD following a correlation criterion, and presented a time-frequency analysis method based on
VMD and energy separation. They extracted the rotor-stator rub and oil-whirl fault feature using the
proposed method. Mahgoun et al. [32] used VMD to detect defect impulses under variable speeds
and loads, and verified the feasibility via analysis of gear transmission dynamics simulated signals.
Jiang et al. [33] incorporated bi-dimensional VMD with discriminant diffusion maps to analyze the
vibration signals of coal cutters, and detected the rolling bearing cracks. Yan et al. [34] applied
genetic algorithm to optimize the balancing parameter and the number of modes, and combined this
improved VMD with 1.5D envelope spectrum to extract compound fault signature of rolling bearings
and gearboxes. Zhang et al. [35] decomposed cutting force signals into constituent components via
VMD and wavelet packet decomposition, and detected milling chatter based on the energy entropy
of constituent components. Zhu et al. [36] proposed an adaptive version of VMD, by optimizing the
number of modes and data fidelity constraint with kurtosis as an optimization index via artificial
fish swarm algorithm, and they applied the method to rolling bearing fault detection. These studies
have demonstrated that VMD can effectively decompose complicated multi-component signals into
AM-FM components, and suppress noise interferences, thus enhancing fault features manifested by
modulations. Therefore, VMD provides an effective approach to demodulation analysis of planetary
gearbox vibration signals.

In this paper, two major contributions are made. Firstly, considering the complex AM-FM
features of planetary gearbox vibration signals, and exploiting the merits of VMD in AM-FM
component decomposition of complex modulated signals, we propose a joint amplitude and frequency
demodulation analysis idea for planetary gearbox fault diagnosis, thereby to overcome the difficulty
with conventional Fourier spectrum analysis due to sideband complexity, and reveal the gear fault
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feature in a more effective way. Secondly, in order for effective implementation of the proposed
demodulation analysis, we propose solutions to address the issues existing with application of VMD
in planetary gearbox vibration signal demodulation analysis. These solutions can also be extended
to applications of VMD in other signal analysis tasks. (1) The number of intrinsic mode functions
(IMFs) to be separated is a key parameter for VMD. We propose a criterion to determine the number
according to the spectral characteristics of planetary gearbox vibration signals. (2) Among those IMFs
obtained from VMD, which IMF contains the major information about and is sensitive to gear fault is
also an important issue. We propose a criterion to select the sensitive IMF for further demodulation
analysis, based on the modulation characteristics of gear vibration signals and the wavelet packet like
decomposition property of VMD. (3) Accurate instantaneous frequency estimation is necessary for
effective frequency demodulation analysis, but conventional Hilbert transform (HT) based approach
is subject to the constraint imposed by Bedrosian and Nuttall theorem [37]. We preprocess the IMFs
with empirical AM-FM decomposition by exploiting its capability to separate the carrier signal from
amplitude envelope of an AM-FM signal, to satisfy the non-overlap requirement of amplitude envelope
and carrier signal spectra by Bedrosian and Nuttall theorem.

Hereafter, this paper is organized as follows. Sections 2 and 3 introduce the principle of VMD and
empirical AM-FM decomposition, respectively. Section 4 proposes a joint amplitude and frequency
demodulation analysis method. Section 5 illustrates the method using a simulated planetary gearbox
signal. Section 6 further validates the method by analyzing the lab experimental datasets of a planetary
gearbox. Section 7 draws conclusions.

2. Variational Mode Decomposition

This section summarizes the principle of VMD based on [21]. VMD is an entirely non-recursive
decomposition method, and it extracts the constituent AM-FM components of a complex
multi-component signal adaptively and concurrently. It defines IMFs as explicit AM-FM models, and
relates the parameters of AM-FM models to the bandwidth of IMFs. According to the narrow-band
property of IMFs, the AM-FM parameters can be found by minimizing the bandwidth, thus obtaining
IMFs. This method has good merits over other available mode decomposition methods, such as
theoretical rationale and robustness to noise and sampling.

In essence, IMFs are AM-FM signals

u(t) = Ag(t) cos[gy(t)], @

where Ak(t) is the amplitude envelope, ¢k (t) is the instantaneous phase, and both the amplitude
envelope Aj(t) and the instantaneous frequency wy(t) = Mdet) vary much slower than the
instantaneous phase ¢ (t). Such IMFs of AM-FM nature have a limited bandwidth.

VMD decomposes a signal x(t) into an ensemble of IMFs u(t) that are band-limited about their
respective center frequency wy, while reconstructing the signal optimally. It iteratively updates each
IMF 1 (t) in the frequency domain, and then estimates the center frequency wy, as the center of gravity
of the IMF power spectrum.

Motivated by the narrow-band properties of the AM-FM IMF definition, each IMF is assumed to
be mostly compact around a center frequency wy, i.e. it has specific sparsity properties. The sparsity
prior of each IMF is described by its bandwidth. For each IMF uy(t), in order to assess its bandwidth,
its analytic signal is firstly computed by means of Hilbert transform to obtain a spectrum of unilateral
non-negative frequency. Then, its spectrum is shifted to baseband by multiplying with an exponential
harmonic tuned to the respective center frequency. Finally, the bandwidth can be estimated through
the squared /> norm of the gradient. The resulting constrained variational optimization problem is
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where §(+) is the Dirac delta function, the symbol * denotes the convolution operator, and K is the
number of IMFs to be extracted.

To render the optimization problem, Equation (2), into an unconstrained form, a quadratic penalty
term and a Lagrangian multiplier are introduced, for quick convergence and strict enforcement of the
constraint. Then, the objective function to be minimized becomes an augmented Lagrangian

L{ue(t)}, {wic}, AB)] = 0‘% | 2416(t) + 24 we(D)} exp(—jeoxt) 5

®G)
() - 217+ (A0, x0) - D)),
where A(t) is the Lagrange multiplier, « is the balancing parameter of the data-fidelity constraint, and
(-, -) stands for inner product.
The solution to the minimization problem, Equation (2), can now be found as the saddle point of
the augmented Lagrangian, Equation (3), in a sequence of iterative sub-optimizations [21].
Each IMF 1 (t) can be updated as a solution to a minimization problem equivalent to Equation (3)

u(t) = argminL ({ux(t) }, {wi}, A(H)]

uj
2 4)
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In the frequency domain, the solution to Equation (4) can be found as [19]

f(w) = ¥ i(w) + A (w)

. B iZk
i) = 1+ 20(w — wk)z . ©

Then, the IMF in the time domain u(#) can be obtained by inverse Fourier transforming Equation (5)
and taking the real part.

The center frequency wy associated with each IMF uy(t) can also be updated as a solution to a
minimization problem equivalent to Equation (3)

. v 1 -
wy = argminL ({ug(t)}, {wi}, A(t)] = argmin)) | ||§{[5(t) +]E] s u(t)yexp(—juwgt)|| . (6)
Wk Wk k 2
It can be found as the center of gravity of the associated IMF’s power spectrum [21]
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b ™

3 (w) Pdew

The complete algorithm of VMD is summarized as follows:

1. Initialization: Let {40 ()}, {&}}, AO(t), n be 0, and predefine convergence threshold e and the
number of IMFs K to be separated.

2. Update each IMF u(t) and its associated center frequency wy, fork =1: Kand all w > 0
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3. Update the Lagrangian multiplier, for all w > 0

A (W) = AM(w) + T[#(w) = Y0 (w)], (10)
k

where 7 is the Lagrangian multiplier update parameter.
4. Check the convergence condition

a1 () — ap ()]l e

P [EHG]

(t) and wy = wi™?,

(11)

If it is met, let u(t) = 0!

n = n+ 1, return to Step 2.

VMD decomposes a complex signal into a specific number of IMFs. These IMFs are AM-FM in
nature, thus we can estimate their amplitude envelope and instantaneous frequency. More importantly,
the non-recursive and concurrent decomposition nature of VMD effectively avoids the shortcoming

and terminate the decomposition. Otherwise, let

of recursive decomposition algorithms, such as sensitivity to noise and sampling, over-shooting or
under-shooting of upper and lower envelope via interpolation to extrema.

3. Empirical AM-FM Decomposition

To estimate instantaneous frequency accurately via commonly used Hilbert transform, it requires
the signal to be mono-component and satisfy Bedrosian and Nuttall theorem, i.e., the spectra of
carrier signal and amplitude envelope do not overlap in frequency domain [37]. However, the IMFs
obtained from VMD do not satisfy this condition automatically. In this case, amplitude envelope will
contaminate the carrier signal, and instantaneous frequency estimation via Hilbert transform is subject
to influences of amplitude envelope, leading to occasional negative frequency values.

To address this issue, we preprocess the IMFs with empirical AM-FM decomposition. For any
AM-FM component, its instantaneous frequency is essentially contained in the carrier signal. Empirical
AM-FM decomposition can separate an IMF of AM-FM nature into corresponding amplitude envelope
and carrier signal, thus removing the effect of AM term on instantaneous frequency estimation, and
fulfilling the requirement by Bedrosian and Nuttall theorem.

Empirical AM-FM decomposition is based on iterative applications of cubic spline fitting to the
local maxima of the signal absolute value, and separates the AM and FM parts of any IMF signal
uniquely but empirically through a normalization scheme [38]:

1. Initialization: Given an IMF u(t), set iteration index i = 1, residual signal ro(t) = u(t).

2. For the residual signal r;_1 (t), identify all the local maxima of its absolute value.

3. Fit to the local maxima using a cubic spline, obtaining the empirical envelope e;(t).

4. Normalize the residual signal r;_1(f) using the empirical envelope e;(t), obtaining the
normalized residual r;(t) = r’;%t()t). Using the absolute value data fitting, the normalized signal
is guaranteed symmetric about the zero mean.

5. Check the stop criterion, if r;(f) < 1 for all ¢, terminate the normalization, and designate the
empirical FM part c(t) = r;(t) = cos[p(¢ )} which is a pure FM function with unity amplitude, and the

AM part (amplitude envelope) a(t) = C( t) H ex(t). Otherwise, let i = i + 1, go to Step 1 and repeat

Steps 2-5.
After empirical AM-FM decomposition, the IMF can be written as

u(t) = a(t)c(t) = a(t) cos[¢p(t)]. (12)
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It separates any IMF empirically and uniquely into the corresponding amplitude envelope (AM)
and the carrier signal (FM) parts. The obtained normalized carrier signal c(¢) has unity amplitude,
thus satisfying the requirement by Bedrosian and Nuttall theorem automatically.

4. Procedure of Demodulation Analysis

Planetary gearbox vibration signals have strong AM-FM features. Gear faults are manifested by
the gear fault characteristic frequency that modulates the gear meshing vibration in terms of both
amplitude and frequency. Amplitude and frequency demodulation analysis is effective to identify the
modulating frequency of both the AM and the FM parts, thus providing an approach to extraction of
gear fault features.

Amplitude demodulation needs properly selecting a constituent component sensitive to the
gear fault, and frequency demodulation requires fine mono-component decomposition for accurate
estimation of instantaneous frequency. However, planetary gearbox vibration signals are usually
composed of complex multiple AM-FM components. It is difficult to reveal the modulation
characteristics from raw signals, due to their multi-component nature.

VMD is effective in decomposing complex signals into constituent AM-FM components, and
empirical AM-FM decomposition is capable to separate the carrier signal from any AM-FM component.
A fusion of these two methods provides an effective solution to estimation of instantaneous frequency
and amplitude envelope, and thereby offering insight into the modulation nature of planetary gearbox
vibration signals. In our proposed method, we exploit the advantages of VMD and empirical AM-FM
decomposition to jointly amplitude and frequency demodulate AM-FM signals for planetary gearbox
fault diagnosis. The procedure is detailed below.

1. Decompose the signal into some IMFs via VMD. The number of IMFs to be separated K
is a key parameter for VMD in real applications. We propose a criterion to determine the number
according to the AM-FM nature and the spectral characteristics of planetary gearbox vibration signals.
Planetary gearbox vibration signals can be modeled as a sum of some AM-FM signals considering their
modulation nature (see Appendix A). Each of these AM-FM signals has a specific center frequency
equal to one of the gear meshing frequency harmonics. Conversely, each gear meshing frequency
harmonic corresponds to an AM-FM component (an IMF equivalently). Therefore, the gear meshing
frequency harmonic orders covered in the effective frequency band of a signal, i.e. 0 through half the
sampling frequency, roughly amounts to the number of IMF center frequencies. Accordingly, we can

estimate the number of IMFs K = L 21;5mJ , where | -] is the floor operator, F; is the sampling frequency,
and fn, the gear meshing frequency.

2. Separate the amplitude envelope a(t) and the carrier signal c(t) of each IMF via empirical
AM-FM decomposition. For each IMF, calculate its instantaneous frequency based on the local phase
derivative of carrier signal c(t) using Hilbert transform

f(t) = 21nddtarctan{ HC[ES)] }, (13)

where H(-) stands for Hilbert transform. This instantaneous frequency estimation approach is called
normalized Hilbert transform (NHT).

3. Choose the IMF with an instantaneous frequency fluctuating around the gear meshing
frequency or its harmonics as a sensitive mono-component for further demodulation analysis, because

gear fault information are mainly carried by the meshing vibration or its harmonics. If more than one
IMF satisfies this condition, choose the IMF with a higher center frequency, since gear fault induced
vibration signals feature high frequency impulses.

4. Fourier transform the amplitude envelope and the instantaneous frequency of the selected
sensitive IMF, thus obtaining the amplitude and frequency demodulated spectra, i.e. envelope
spectrum and Fourier spectrum of instantaneous frequency.
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5. Diagnose the gear fault by matching peaks in the demodulated spectra with the gear fault
characteristic frequencies.

The envelope spectrum and the Fourier spectrum of instantaneous frequency are free from
complex sidebands. Therefore, the proposed amplitude and frequency demodulation analysis is
expected to be able to identify the modulating frequency related to gear fault characteristic frequency
more effectively.

5. Numerical Simulation Evaluation

In this section, we illustrate the proposed demodulation analysis with a numerical simulated
vibration signal of planetary gearboxes. Without loss of generality, we consider a signal synthetic of
three AM-FM components centered at the first three gear meshing frequency harmonics respectively.
According to the planetary gearbox fault vibration signal model in [39], the simulated signal is
generated by

x(t) = [1+0.5cos(2mfit)][1+ 0.5cos(27 f4t)]|cos[27T fmt + 0.5sin (27 f4t)]
+0.8[1 4 0.5 cos(27fit)][1 + 0.5 cos(27t fqt)|cos[ATT fmt + 0.5sin (27 f4t)] (14)
+0.5[1 4 0.5cos(27fit)][1 + 0.5 cos(27 f4t)]|cos[67T fmt + 0.5sin (2 fqt)] + n(t),

where fi, fq and fm are the vibration transfer path varying frequency, the gear fault characteristic
frequency and the gear meshing frequency respectively, and n(t) is a white Gaussian noise at a
signal-to-noise-ratio of 0 dB mimicking the background interferences. Table 1 lists the parameter values.

Table 1. Parameters in simulated signal.

Sional Length Sampling Meshing Gear Fault Transfer Path
8 8 Frequency F; Frequency f,, Frequency fy4 Frequency f;
10s 1300 Hz 182 Hz 42 Hz 16 Hz

Figure 1 shows the signal waveform, its Fourier spectrum and envelope spectrum. The effective
frequency band of this simulated signal is 0-650 Hz (Fs;/2 = 650 Hz), and covers up to the third
harmonics of gear meshing frequency fm = 182 Hz. According to the proposed criterion for selecting
the number of IMFs to be separated, we set the number K = 3 in the VMD.

1.5
3 8
E 4 || ‘, ﬁ 1.0 fm @
§ 0y ‘J E‘ 05 2f @
3fn @
_: ‘ ‘ ‘ ‘ 0 A Ly { L J[ |
- (0] 100 200 300 400 500 600
0 2 4 ] 6 8 10 Frequency [Hz]
Time [s]
(a) (b)

Frequency [Hz]

(©)

Figure 1. Simulated signal: (a) Waveform; (b) Fourier spectrum; and (c) Envelope spectrum.

In the Fourier spectrum, (Figure 1b), the gear meshing frequency, its harmonics up to third order,
and their associated sidebands dominate the signal. In the envelope spectrum, which is obtained by
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Fourier transforming the amplitude envelope of raw signal (Figure 1c), the gear fault frequency, transfer
path frequency, and their sum and difference combinations show up in a pronounced magnitude.

Figure 2 shows the three IMFs that are obtained by VMD and their instantaneous frequencies.
For each IME its instantaneous frequency is calculated via both NHT based on empirical AM-FM
decomposition and conventional Hilbert transform (HT) approaches. As shown in Figure 2b,d f,
negative values exist with HT results. This phenomenon does not comply with the physical meaning
of frequency. On the contrary, NHT results are free from the presence of misleading negative
values. This demonstrates that empirical AM-FM decomposition can improve instantaneous frequency
estimation, thus being helpful for further frequency demodulation analysis.
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Figure 2. Variational mode decomposition (VMD) results: (a) Intrinsic mode function (IMF) 1 waveform;
(b) IMF1 instantaneous frequency; (c) IMF2 waveform; (d) IMF2 instantaneous frequency; (e) IMF3
waveform; and (f) IMF3 instantaneous frequency.

For each IMF, its center frequency increases with the order of IMFs, and its instantaneous frequency
fluctuates around the gear meshing frequency or its harmonic. These characteristics are consistent
with both the numerical simulation settings and the findings from the Fourier spectrum. They also
match well with the wavelet packet like property of VMD. Based on these findings, the three IMFs
contain the major information about gear fault.

According to the proposed sensitive IMF selection criterion, we choose IMF1 as an informative
one, and calculate its amplitude envelope and instantaneous frequency following Step 5 of empirical
AM-FM decomposition in Section 3 and Step 2 of proposed analysis procedure in Section 4, respectively,
for further amplitude and frequency demodulation analysis. Figure 3 shows its envelope spectrum and
the Fourier spectrum of instantaneous frequency. The envelope spectrum (Figure 3a) shows a simpler
structure than the Fourier spectrum (Figure 1b), since it is free of involute sidebands. Peaks appear at
the time-varying transfer path frequency f;, the gear fault characteristic frequency f4, as well as their
sum and difference combination fy % f;. This feature is similar to the envelope spectrum of raw signal
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(Figure 1c), and shows that the proposed amplitude demodulation analysis of selected IMF is equally
effective as conventional envelope spectrum of raw signal. The Fourier spectrum of instantaneous
frequency (Figure 3b) exhibits a simpler structure than the envelope spectrum of both raw signal and
selected IMF (Figures 1c and 3a). Only one pronounced peak emerges, exactly corresponding to the
gear fault characteristic frequency f4. The proposed frequency demodulation analysis outperforms
both Fourier and envelope spectra. It not only overcomes the intricate sideband difficulty inherent
with Fourier spectrum, but also removes the irrelevant transfer path frequency existing in envelope
spectrum. Most of all, these findings are consistent with the gear fault vibration symptoms expected
in amplitude and frequency demodulated spectra [40], demonstrating the effectiveness of proposed
amplitude and frequency demodulation analysis method.

15
N
K =
._g g 10
< &
<
0 I
0 20 40 60 80 0 20 40 60 80
Frequency [Hz] Frequency [Hz]
(a) (b)

Figure 3. Demodulation analysis of IMF1: (a) Envelope spectrum; and (b) Fourier spectrum of
instantaneous frequency.

6. Lab Experimental Validation

6.1. Experimental Settings

Figure 4 shows the planetary gearbox experimental system (University of Science and Technology
Beijing, China), which consists of a drive motor, an encoder, a one-stage planetary gearbox and
a magnetic powder brake. Table 2 lists the configuration parameters of the planetary gearbox.
During experiments, the rotating frequency of the drive motor connecting to the sun gear shaft
is set to a constant speed of 24.94 Hz. Given the planetary gearbox configuration parameters and the
sun gear shaft rotating frequency, the characteristic frequencies are calculated, as listed in Table 3.
Aload of 18.75 Nm is applied to the planet carrier shaft by the magnetic powder brake. Accelerometers
are fixed to the planetary gearbox casing to measure vibrations, and the signal is collected at a frequency
of 20,480 Hz. In this section, the signal from the accelerometer at the top of the gearbox casing will be
analyzed. To simulate a gear fault, localized chipping is introduced to one tooth of the sun, one planet
and ring gear, respectively. Figure 5 shows the gear fault photos.

Table 2. Configuration parameters of planetary gearbox.

Gear Sun Planet (Number of Planets) Ring
Number of gear teeth 13 38 (3) 92

Table 3. Characteristic frequencies of planetary gearbox (Hz).

) Absolute Rotating Frequency Fault Characteristic Frequency
Meshing f,,

Sun fér) Planet Carrier f, Sun f, Planet f, Ring f.
284.19 24.94 3.09 65.55 7.48 9.27
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Figure 4. Planetary gearbox experimental system (1, drive motor; 2, encoder; 3, planetary gearbox;
4, accelerometer; 5, magnetic powder brake).

Figure 5. Gear fault: (a) Sun gear localized fault; (b) Planet gear localized fault; and (c) Ring gear
localized fault.

6.2. Signal Analysis

In order to alleviate the computational burden in VMD, we resample all the experimental signals
at a new sampling frequency of 3200 Hz. The new effective frequency band (0-1600 Hz) covers the
first five harmonics of the gear meshing frequency. The new resampled signal still contains the gear
fault information, because gear fault information is mainly carried by the gear meshing vibration and
its harmonics. According to the proposed criterion, we set the number of IMFs to be separated K =5,
in the following analyses.
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6.2.1. Sun Gear Fault

12 0of 19

Figure 6 shows the sun gear fault signal, its Fourier spectrum and envelope spectrum. Figure 7
displays the five IMFs output from VMD and their respective instantaneous frequency waveform.
Among them, IMF3 has a center frequency of 1136 Hz corresponding to four times the gear meshing
frequency, and its instantaneous frequency fluctuates around 1136 Hz, as shown in Figure 7f.
According to the sensitive IMF selection criterion, we choose IMF3 for further amplitude and frequency

demodulation analysis.
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Figure 7. VMD result: (a) IMF1 waveform; (b) IMF1 instantaneous frequency; (c) IMF2 waveform;
(d) IMF2 instantaneous frequency; (e) IMF3 waveform; (f) IME3 instantaneous frequency; (g) IMF4
waveform; (h) IMF4 instantaneous frequency; (i) IMF5 waveform; and (j) IMF5 instantaneous frequency.

Figure 8 shows the envelope spectrum and the Fourier spectrum of instantaneous frequency of
IME3. The envelope spectrum (Figure 8a) presents a similar structure to that of raw signal (Figure 6c¢).
The sun gear fault characteristic frequency fs appears with a prominent magnitude, indicating the
sun gear fault. In addition, the fractional harmonics of sun gear fault characteristic frequency, 1/3fs
and 2/3fs, also emerge with pronounced magnitudes, further confirming the occurrence of sun gear
fault. For a real planetary gearbox, it is impossible for all the planet gears to be perfectly identical.
The inevitable difference between planet gears will generate three different impulse trains when the
faulty sun gear meshes with the three planet gears, thus leading to presence of the fractional harmonics.
Meanwhile, the planet carrier rotating frequency harmonics (1~3) f., as well as their sum and difference
combinations with the fractional harmonics of sun gear fault characteristic frequency m/3fs & nf; also
have high magnitudes. This is because the sun gear fault will result in an uneven load distribution
among planet gears, and this uneven load distribution will magnify the modulation effect of planet
carrier rotation on gear meshing vibrations.

The Fourier spectrum of instantaneous frequency (Figure 8b) shows a simpler structure than
both the Fourier and envelope spectra (Figure 6b,c). Only four prominent peaks appear at the sun
gear fault characteristic frequency fs, as well as its sum combination with the planet carrier rotating
frequency fs + fc, twice the sun gear rotating frequency 2f;(r) and the third harmonic of planet
carrier rotating frequency 3f.. This implies existence of the sun gear fault, consistent with the actual
experimental setting.
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A comparison study again demonstrates the outperformance of proposed joint amplitude
and frequency demodulation analysis method over conventional Fourier and envelope spectra.
The proposed amplitude demodulation analysis of sensitive IMF avoids the difficulty due to intricate
sidebands in Fourier spectrum, and is equally effective as the envelope spectrum of raw signal (see
Figure 8a vs. Figure 6b,c). The proposed frequency demodulation analysis of sensitive IMF is free
from intricate sidebands, further suppresses the irrelevant transfer path effect, and highlights gear
fault features (see Figure 8b vs. Figure 6b,c).
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Figure 8. Demodulation analysis of IMF3: (a) Envelope spectrum; and (b) Fourier spectrum of
instantaneous frequency.

6.2.2. Planet Gear Fault

Figure 9 shows the planet gear fault signal and its Fourier spectrum. For this case, we choose
IMF5 for demodulation analysis based on the sensitive IMF selection criterion, because its center
frequency 1422 Hz is the highest and its instantaneous frequency ripples around the fifth harmonic of
gear meshing frequency.
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Figure 9. Planet gear fault signal: (a) Waveform; and (b) Fourier spectrum.

Figure 10 shows the amplitude and frequency demodulation analysis result. In the envelope
spectrum (Figure 10a), the planet carrier rotating frequency and its second harmonic (1~2)f. are
dominant, the planet gear fault characteristic frequency harmonics (1~3) fp, as well as their difference
combinations with the planet carrier rotating frequency mf, — nf., are also prominent. These findings
accord with theoretical expectations on the planet gear fault symptoms, and indicate the planet gear
fault. The planet gear fault will result in an uneven load distribution among planet gears and thereby
will magnify the AM effect of planet carrier rotation on gear meshing vibrations. Moreover, the AM
effect of planet gear fault is modulated by the time-varying transfer path due to planet carrier rotation.
These factors lead to presence of the planet gear fault characteristic frequency harmonics, the planet
carrier rotating frequency harmonics, and their sum and difference combinations, in the envelope
spectrum of planet gear fault case.

In the Fourier spectrum of instantaneous frequency (Figure 10b), peaks also appear at the planet
gear fault characteristic frequency harmonics mf,, the planet carrier rotating frequency harmonics
nfc, and their difference combinations mf, & nf.. Although it has a more complex structure than
theoretical expectations, considering the features revealed in the envelope spectrum, a comprehensive
analysis of amplitude and frequency demodulated spectra can still confirm the planet gear fault.
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Figure 10. Demodulation analysis of IMF5: (a) Envelope spectrum; and (b) Fourier spectrum of
instantaneous frequency.

6.2.3. Ring Gear Fault

Figure 11 exhibits the ring gear fault signal and its Fourier spectrum. According to the sensitive
IMEF selection criterion, we choose IMF2 for demodulation analysis, because it has a center frequency
of 284 Hz corresponding to the gear meshing frequency.
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Figure 11. Ring gear fault signal: (a) Waveform; and (b) Fourier spectrum.

Figure 12 displays the amplitude and frequency demodulation analysis result of IMF2. In the
envelope spectrum (Figure 12a), the ring gear fault characteristic frequency and its second harmonic
(1~2) f; are present with pronounced magnitudes. Meanwhile, prominent peaks show up at fractional
harmonics of the ring gear fault characteristic frequency (1~8)/3f;. Similar to the sun gear fault case,
it is the difference among the three planet gears that leads to three different impulse trains when
the faulty ring gear tooth meshes with planet gears and therefore presence of the ring gear fault
characteristic frequency fractional harmonics. In the Fourier spectrum of instantaneous frequency
(Figure 12b), peaks also appear at the ring gear fault characteristic frequency harmonics (1~3) fr, and
its fractional harmonics (1~8) /3 f;. These findings confirm the ring gear fault.
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Figure 12. Demodulation analysis of IMF2: (a) Envelope spectrum; and (b) Fourier spectrum of
instantaneous frequency.
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7. Summary and Conclusions

Planetary gearbox vibration signals have complex and multiple AM-FM features, and the
modulating frequency links to the gear fault. Thus, amplitude and frequency demodulation are
expected to be effective in gear fault feature extraction. VMD is effective in decomposing complex
modulated signals into their constituent AM-FM components, thus providing a potential approach
to demodulation analysis. In this paper, considering the modulation feature of planetary gearbox
vibration signals and the merits of VMD, we propose an amplitude and frequency demodulation
analysis method for planetary gearbox fault diagnosis. In order to make VMD efficient in real complex
signal analysis, the number of IMFs to be separated can be set as how many meshing frequency
harmonic orders is covered in the effective frequency band from 0 to half sampling frequency,
according to the spectral distribution characteristics around carrier frequencies of modulated signals.
Furthermore, to enable accurate instantaneous frequency estimation via Hilbert transform, IMFs can be
preprocessed via empirical AM-FM decomposition, thus avoiding contamination of AM on the carrier
signal, particularly negative frequency values. To extract gear fault feature effectively, sensitive IMF
can be selected as the one with a center frequency equal to meshing frequency or its harmonics, based
on the wavelet packet like property of VMD and the modulation characteristics of gear vibrations.
In the amplitude and frequency demodulated spectra, gear fault feature can be identified by matching
present peaks with theoretical gear characteristic frequencies. We validate the proposed method
through both numerical simulated and lab experimental signal analyses. Localized fault on all the
three types of gears (sun, planet and ring) are successfully diagnosed.
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Appendix A

Some of the key results of our earlier works [39,40] related to this study are summarized here.
Under constant speed and load conditions, faulty planetary gearbox vibration signals can be modeled
as AM-FM processes, with the gear pair meshing frequency or its harmonics as the signal carrier
frequency, whereas the gear characteristic frequency or its harmonics as the modulating frequency.
Such a signal can be expressed as

K
x(t) = h(t) ) ax(t) cos[27tk fmt + bi(t) + 6], (A1)
k=0
where h(t) describes the effect of vibration transfer path on the signal (as listed in Table A1), and

N N
a(t) =c¢ Z Agy cos(2mtnfat + ¢rn) = c[1 + Z Agn cos(2mtnfat + o)), (A2)

n=0 n=1

L
be(t) = ) By sin(27lfat + ¢p), (A3)
i=1
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are the AM and FM functions, respectively; Ay, > 0 and By; > 0 are the magnitudes of AM and FM,
respectively; c is a dimensionless constant depending on signal amplitude; 6, ¢ and ¢ are the initial
phases of a signal component, AM and FM, respectively; fn is the gear meshing frequency; f4 is the
gear fault characteristic frequency (as listed in Table A1); and N and L are the highest order of AM and
FM, respectively. In Equation (A2), whenn =0, Ayy =1 and ¢ = 0.

The function h(t) in Equation (A1) describes the effect of vibration transfer paths on the sensor
signal when the gear fault induced vibration propagates from the meshing location of the faulty gear
tooth to the sensor. Table Al lists the function k() for both localized and distributed fault cases on
each type of gear [39,40].

Table Al. Function h(t) describing the effect of vibration transfer path.

Gear Localized Fault Distributed Fault

Sun h(t) =1+ cos(27 fert)

Planet h(t) =1+ cos(2mfct) h(t) =1+ cos(2Np fct)
Ring h(t) = constant

References

1. Samuel, P.D.; Pines, D.]. A review of vibration-based techniques for helicopter transmission diagnostics.
J. Sound Vib. 2005, 282, 475-508. [CrossRef]

2. Lei, Y.G; Lin, J.; Zuo, M.].; He, Z]J. Condition monitoring and fault diagnosis of planetary gearboxes:
A review. Measurement 2014, 48, 292-305. [CrossRef]

3. Cooley, C.G.; Parker, R.G. A review of planetary and epicyclic gear dynamics and vibrations research.
Appl. Mech. Rev. 2014, 66, 040804. [CrossRef]

4. Chaari, F; Fakhfakh, T.; Haddar, M. Dynamic analysis of a planetary gear failure caused by tooth pitting and
cracking. J. Fail. Anal. Prev. 2006, 6, 73-78. [CrossRef]

5. Chaari, F; Fakhfakh, T.; Hbaieb, R.; Louati, J.; Haddar, M. Influence of manufacturing errors on the dynamic
behavior of planetary gears. Intern. J. Adv. Manuf. Technol. 2006, 27, 738-746. [CrossRef]

6. Mark, W.D.; Hines, J.A. Stationary transducer response to planetary-gear vibration excitation with
non-uniform planet loading. Mech. Syst. Signal Process. 2009, 23, 1366-1381. [CrossRef]

7.  Mark, W.D. Stationary transducer response to planetary-gear vibration excitation II: Effects of torque
modulations. Mech. Syst. Signal Process. 2009, 23, 2253-2259. [CrossRef]

8.  Inalpolat, M.; Kahraman, A. A theoretical and experimental investigation of modulation sidebands of
planetary gear sets. J. Sound Vib. 2009, 323, 677-696. [CrossRef]

9. Inalpolat, M.; Kahraman, A. A dynamic model to predict modulation sidebands of a planetary gear set
having manufacturing errors. J. Sound Vib. 2010, 329, 371-393. [CrossRef]

10. McFadden, P.D. A technique for calculating the time domain averages of the vibration of the individual
planet gears and the sun gear in an epicyclic gearbox. J. Sound Vib. 1991, 144, 163-172. [CrossRef]

11. McFadden, P.D. Window functions for the calculation of the time domain averages of the vibration of the
individual planet gears and sun gear in an epicyclic gearbox. J. Vib. Acoust. 1994, 116, 179-187. [CrossRef]

12.  Samuel, P.D,; Pines, D.J. Vibration separation methodology for planetary gear health monitoring. Proceeding
of SPIE-The International Society for Optical Engineering, Newport Beach, CA, USA, March 2000;
pp- 250-260.

13. Samuel, P.D.; Pines, D.J. Constrained adaptive lifting and the CAL4 metric for helicopter transmission
diagnostics. J. Sound Vib. 2009, 319, 698-718. [CrossRef]

14. Barszcz, T.; Randall, R.B. Application of spectral kurtosis for detection of a tooth crack in the planetary gear
of a wind turbine. Mech. Syst. Signal Prcoess. 2009, 23, 1352-1365. [CrossRef]

15. Lei, Y.G.; Han, D.; Lin, J.; He, Z.]. Planetary gearbox fault diagnosis using an adaptive stochastic resonance
method. Mech. Syst. Signal Process. 2013, 38, 113-124. [CrossRef]

16. Elasha, F; Greaves, M.; Mba, D.; Fang, D. A comparative study of the effectiveness of vibration and acoustic
emission in diagnosing a defective bearing in a planetry gearbox. Appl. Acoust. 2017, 115, 181-195. [CrossRef]


http://dx.doi.org/10.1016/j.jsv.2004.02.058
http://dx.doi.org/10.1016/j.measurement.2013.11.012
http://dx.doi.org/10.1115/1.4027812
http://dx.doi.org/10.1361/154770206X99343
http://dx.doi.org/10.1007/s00170-004-2240-2
http://dx.doi.org/10.1016/j.ymssp.2008.09.010
http://dx.doi.org/10.1016/j.ymssp.2009.03.005
http://dx.doi.org/10.1016/j.jsv.2009.01.004
http://dx.doi.org/10.1016/j.jsv.2009.09.022
http://dx.doi.org/10.1016/0022-460X(91)90739-7
http://dx.doi.org/10.1115/1.2930410
http://dx.doi.org/10.1016/j.jsv.2008.06.018
http://dx.doi.org/10.1016/j.ymssp.2008.07.019
http://dx.doi.org/10.1016/j.ymssp.2012.06.021
http://dx.doi.org/10.1016/j.apacoust.2016.07.026

Appl. Sci. 2017, 7, 775 18 0f 19

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Qu, J.; Liu, Z.; Zuo, M.J.; Huang, H.Z. Feature selection for damage degree classification of planetary
gearboxes using support vector machine. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 2012, 225,
2077-2089. [CrossRef]

Zhao, X.M.; Zuo, M.]; Liu, Z.L.; Hoseini, M.R. Diagnosis of artificially created surface damage levels of
planet gear teeth using ordinal ranking. Measurement 2013, 46, 132-144. [CrossRef]

Lei, Y.G.; Liu, Z.Y.; Wu, X.H; Li, N.P; Chen, W.; Lin, ]. Health condition identification of multi-stage planetary
gearboxes using a mRVM-based method. Mech. Syst. Signal Process. 2015, 60-61, 289-300. [CrossRef]
Djeziri, M.A.; Benmoussa, S.; Sanchez, R. Hybrid method for remaining useful life prediction in wind turbine
systems. Renew. Energ. 2014, in press. [CrossRef]

Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE. Trans. Signal Process. 2014, 62, 531-544.
[CrossRef]

Wang, Y.X.; Markert, R.; Xiang, ] W.; Zheng, W.G. Research on variational mode decomposition and its
application in detecting rub-impact fault of the rotor system. Mech. Syst. Signal Process. 2015, 60—61, 243-251.
[CrossRef]

Zhang, S.F.; Wang, Y.X.; He, S.L.; Jiang, Z.S. Bearing fault diagnosis based on variational mode decomposition
and total variation denoising. Meas. Sci. Technol. 2016, 27, 1-10. [CrossRef]

Wang, Y.X.; Markert, R. Filter bank property of variational mode decomposition and its applications.
Signal Process. 2016, 120, 509-521. [CrossRef]

Wang, Y.X,; Liu, EY,; Jiang, Z.S.; He, S.L.; Mo, Q.Y. Complex variational mode decomposition for signal
processing applications. Mech. Syst. Signal Process. 2017, 86, 75-85. [CrossRef]

An, X.L.; Zeng, H.T. Pressure fluctuation signal analysis of a hydraulic turbine based on variational mode
decomposition. Proc. Inst. Mech. Eng. Part A: . Power Energy 2015, 229, 978-991. [CrossRef]

An, X.; Yang, ]. Denoising of hydropower unit vibration signal based on variational mode decomposition
and approximate entropy. Trans. Inst. Meas. Control 2016, 38, 282-292. [CrossRef]

Tang, G.; Luo, G.G.; Zhang, W.H.; Yang, C.J.; Wang, H.Q. Underdetermined blind source separation with
variational mode decomposition for compound roller bearing fault signals. Sensors 2016, 16. [CrossRef]
[PubMed]

Lv, Z.L,; Tang, B.P.; Zhou, Y.; Zhou, C.D. A novel method for mechanical fault diagnosis based on variational
mode decomposition and multikernel support vector machine. Shock Vib. 2016. [CrossRef]

Yi, C.C.; Ly, Y;; Dang, Z. A fault diagnosis scheme for rolling bearing based on particle swarm optimization
in variational mode decomposition. Shock Vib. 2016, 2016, 9372691. [CrossRef]

Liu, SK; Tang, G.J.; Wang, X.L.; He, Y.L. Time-frequency analysis based on improved variational mode
decomposition and Teager energy operator for rotor system fault diagnosis. Math. Probl. Eng. 2016, 2016.
[CrossRef]

Mahgoun, H.; Chaari, F; Felkaoui, A. Detection of gear faults in variable rotating speed using variational
mode decomposition (VMD). Mech. Ind. 2016, 17. [CrossRef]

Jiang, Y.; Li, Z.X.; Zhang, C.; Hu, C.; Peng, Z. On the bi-dimensional variational decomposition applied to
nonstationary vibration signals for rolling bearing crack detection in coal cutters. Meas. Sci. Technol. 2016, 27.
[CrossRef]

Yan, X.A,; Jia, M.P,; Xiang, L. Compound fault diagnosis of rotating machinery based on OVMD and a
1.5-dimension envelope spectrum. Meas. Sci. Technol. 2016, 27. [CrossRef]

Zhang, Z.; Li, H.G.; Meng, G.; Tu, X.T.; Cheng, C.M. Chatter detection in milling process based on the energy
entropy of VMD and WPD. Int. |. Mach. Tool Manu. 2016, 108, 106-112. [CrossRef]

Zhu, J.; Wang, C.; Hu, Z.Y.; Kong, ER.; Liu, X.C. Adaptive variational mode decomposition based on artificial
fish swarm algorithm for fault diagnosis of rolling bearings. Proc. Inst. Mech. Eng. Part C: ]. Mech. Eng. Sci.
2017, 231, 635-654. [CrossRef]

Nuttall, A.H.; Bedrosian, E. On the quadrature approximation on the Hilbert transform of modulated signals.
Proc. IEEE 1966, 54, 1458-1459. [CrossRef]

Huang, N.E.; Wu, Z.H.; Long, S.R.; Arnold, K.C.; Chen, X.Y.; Blank, K. On instantaneous frequency.
Adv. Adapt. Data Anal. 2009, 1, 177-229. [CrossRef]


http://dx.doi.org/10.1177/0954406211404853
http://dx.doi.org/10.1016/j.measurement.2012.05.031
http://dx.doi.org/10.1016/j.ymssp.2015.01.014
http://dx.doi.org/10.1016/j.renene.2017.05.020
http://dx.doi.org/10.1109/TSP.2013.2288675
http://dx.doi.org/10.1016/j.ymssp.2015.02.020
http://dx.doi.org/10.1088/0957-0233/27/7/075101
http://dx.doi.org/10.1016/j.sigpro.2015.09.041
http://dx.doi.org/10.1016/j.ymssp.2016.09.032
http://dx.doi.org/10.1177/0957650915603613
http://dx.doi.org/10.1177/0142331215592064
http://dx.doi.org/10.3390/s16060897
http://www.ncbi.nlm.nih.gov/pubmed/27322268
http://dx.doi.org/10.1155/2016/3196465
http://dx.doi.org/10.1155/2016/9372691
http://dx.doi.org/10.1155/2016/1713046
http://dx.doi.org/10.1051/meca/2015058
http://dx.doi.org/10.1088/0957-0233/27/6/065103
http://dx.doi.org/10.1088/0957-0233/27/7/075002
http://dx.doi.org/10.1016/j.ijmachtools.2016.06.002
http://dx.doi.org/10.1177/0954406215623311
http://dx.doi.org/10.1109/PROC.1966.5138
http://dx.doi.org/10.1142/S1793536909000096

Appl. Sci. 2017, 7, 775 19 0f 19

39. Feng, Z.P; Zuo, M.]. Vibration signal models for fault diagnosis of planetary gearboxes. J. Sound Vib. 2012,
331, 4919-4939. [CrossRef]

40. Feng, Z.P; Liang, M.; Zhang, Y.; Hou, S.M. Fault diagnosis for wind turbine planetary gearboxes
via demodulation analysis based on ensemble empirical mode decomposition and energy separation.
Renew. Energy 2012, 47, 112-126. [CrossRef]

® © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1016/j.jsv.2012.05.039
http://dx.doi.org/10.1016/j.renene.2012.04.019
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Variational Mode Decomposition 
	Empirical AM-FM Decomposition 
	Procedure of Demodulation Analysis 
	Numerical Simulation Evaluation 
	Lab Experimental Validation 
	Experimental Settings 
	Signal Analysis 
	Sun Gear Fault 
	Planet Gear Fault 
	Ring Gear Fault 


	Summary and Conclusions 
	

