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Abstract: In this paper, we propose a 3 dimensional (3D) model identification method based on
weighted implicit shape representation (WISR) and panoramic view. The WISR is used for 3D
shape normalization. The 3D shape normalization method normalizes a 3D model by scaling,
translation, and rotation with respect to the scale factor, center, and principal axes. The major
advantage of the WISR is reduction of the influences caused by shape deformation and partial
removal. The well-known scale-invariant feature transform descriptors are extracted from the
panoramic view of the 3D model for feature matching. The panoramic view is a range image obtained
by projecting a 3D model to the surface of a cylinder which is parallel to a principal axis determined
by the 3D shape normalization. Because of using only one range image, the proposed method can
provide small size of features and fast matching speed. The precision of the identification is 92% with
1200 models that consist of 24 deformed versions of 50 classes. The average feature size and matching
time are 4.1 KB and 1.9 s.

Keywords: 3D model identification; shape normalization; weighted implicit shape representation;
panoramic view; scale-invariant feature transform

1. Introduction

Development of 3 dimensional (3D) printing technology has led to the explosive growth
of 3D models recently. Hence the 3D printing services are increasing rapidly [1,2]. However,
copyright infringement of 3D models has become an issue for 3D printing ecosystem of product
distribution websites, 3D scanning and design-sharing [3,4]. To prevent the copyrighted 3D models
from distributing and using illegally, the identification of 3D models remains.

2 dimensional (2D) view-based 3D model identification has a high discriminative property for 3D
model representation [5–11]. Generally, a 2D view image is a range image obtained from a viewpoint
located on a 3D model’s bounding sphere. The identification is implemented by matching the features
extracted from the range images. However, the existent approaches suffer from big size of features and
slow matching speed. To overcome these problems, we propose an approach using only one range
image, which means a panoramic view is used for identification. The panoramic view bridges the gaps
between the range images rendered from multiple views. It is obtained by projecting a 3D model onto
the surface of a cylinder, which is parallel to a principal axis determined by 3D shape normalization.
The purpose of the 3D shape normalization is to normalize 3D models into a canonical coordinate
frame to guarantee a unique representation [12–14]. Nevertheless, how to determine the principal axes
is the keypoint. The most common method is principal component analysis (PCA). However, it is not
preferable when 3D models have unobvious orientations or undergo large deformations. If the shape
normalization cannot determine the principal axes of a query model as similar as those of original
model in database, the identification needs many more range images to match them. Implicit shape
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representation (ISR) was described in [13] for normalizing 3D articulated models. However, it has
some limitations when some parts of a 3D model are removed or when a 3D model undergoes a large
deformation. In this paper, the 3D shape normalization uses a weighted ISR (WISR) to reduce the
influence caused by shape deformation and partial removal. It estimates the number of clusters based
on rate distortion theory [15]. It also shows the most representative part for one viewpoint of the six
degree of freedom.

After the shape normalization, the model is wrapped by the cylinder to generate a range image.
The range image is used for providing features of the model. The feature used in our approach is the
scale invariant feature transform (SIFT) descriptor [16]. The SIFT is generally used to extract geometric
transformation invariant local features from images [17,18]. It detects interest points called keypoints
and assigns orientation information to each keypoint based on local gradient directions. With the SIFT
descriptor, object recognition approaches can achieve high performance in feature matching. In this
paper, the 3D models are identified by matching the SIFT descriptors of the query model with those in
database. In the section of experimental results, we show the comparisons between the precision of
identification of the proposed method and those of other methods.

2. Related Work

Several researches have been conducted to group 3D models into corresponding categories by
matching the features and comparing the similarities of the models [5–11,14,19–22]. The matching
and comparison are implemented on a huge dataset containing various models of different poses and
shapes. The models are mainly classified into two types: rigid models and non-rigid (deformable)
models. Early works are rigid model-based approaches. In this paper, we focus on the identification of
non-rigid models.

3D model identification methods are classified into two categories: view-based and model-based
methods [6,7]. Model based methods include geometric moment [19], volumetric descriptor [20],
surface distribution [21], surface geometry [22]. However, the geometry and topology based methods
are generally computationally cost and are fragile to 3D model removal. View-based methods have
a high discriminative property for 3D model representation [5–11]. A 2D view image is a range
image obtained from a viewpoint located on a 3D model’s bounding sphere. After the range image is
obtained, image processing technologies are applied to the range image for extracting features. To be
invariant against geometrical transformation, researchers proposed shape normalization methods to
preprocess the 3D models before extracting the features.

Several view-based methods have been proposed. In Ref. [9], authors proposed a view based
3D model retrieval method using the SIFT and a bag-of-features approach. The bag-of-features was
inspired by the bag-of-words in the text retrieval approach, which classifies documents by histograms
of words in the text. The method extracted SIFT features from the range images of the model viewed
from dozens of viewpoints located uniformly around the model. The bag-of-features was composed of
the SIFT features. The well-known k-means clustering algorithm was applied to the bag-of-features to
classify the features and generate visual words. The visual words are integrated in to a histogram and
become a feature vector of the model. However, the large number of the range images leads to large
capacity of features and slow matching speed.

In [10,11], authors proposed 3D model descriptors using the panoramic views which can describe
the orientation and position of the model’s surface. In [10], the panoramic views were obtained
by projecting the model to surfaces of cylinders parallel to three principal axes. The principal axes
were obtained by using continuous PCA and normal PCA. For each cylinder, the coefficients of 2D
discrete Fourier transform and 2D discrete wavelet transform were extracted to generate the 3D
shape descriptors. However, these descriptors are not suitable for distinguishing the 3D models well.
In [11], the exes were perpendicular to the surfaces of a dodecahedron generated around the model.
Three panoramic views were obtained from each axis. The other two panoramic views were obtained
from additional two axes which are orthogonal to each other and to the principal axis. Then, the SIFT
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features were extracted to generate the 3D model descriptors. However, because of using dozens of
panoramic views, the method leads to large capacity of features and slow matching speed.

In [8], authors normalized the model with the PCA and extracted 18 views from the vertices of
a bounding 32-hedron of the model. The 3D model descriptors were composed of 2D Zernike moments,
2D Krawtchouk moments and coefficients of Fourier transform. However, the PCA is fragile to partial
removed and deformed models, which means the PCA can’t extract the same axes from the deformed
and removed models as those of original models. Hence, the different axes lead to different views and
descriptors. Eventually, the method can’t identify the deformed and partial removed versions of the
original models.

In [13], authors proposed a shape normalization method for 3D volumetric models using ISR.
The ISR is a set of minimum Euclidean distance values between the surface of the model and the voxels
inside the surface. It is invariant to translation and rotation. The method computed an initial center of
the model with the ISR and voxels inside the model. It also computed an initial principal axis with the
PCA. Then the center and three principal axes were iteratively upgraded based on implicit intensity
value and principal axis dependent weight function. Finally, the method translated, rotated and scaled
the model with the final center, principal axes and a scale factor which was computed with the ISR.

In [23], the competition results of SHREC 2015 range scans based 3D shape retrieval were
presented. The best performance was achieved by a SIFT based cross-domain manifold ranking method.
However the precision was about 70%. In [24], the results of the SHREC 2015 Track: Non-rigid 3D
shape retrieval were presented. The best performance was achieved by a method of super vector-local
statistical features. However, the local statistical feature extraction and matching is time consuming.
The matching time is over 50 s for 907 models [25].

In [26], authors proposed a view-based 3D model retrieval method using bipartite graph matching
and multi-feature collaboration. The complement descriptors were extracted from the interior region
and contour of 3D models. The employed three types of features: Zernike moments, bag of visual
words descriptor and Fourier descriptor to construct bipartite graphs. However, because of using
various types of features, it is time consuming.

In [27], the discriminative information of 2D projective views were learned for 3D model
retrieval. The dissimilarity between discriminative ability and view’s semantic is investigated by
classification performance. An effective and simple measurement is used to study the discriminative
ability. The discriminative information is used for view set matching with a reverse distance metric.
Various features were employed to boost the retrieval method. However, each model was represented
by 216 views. The feature size is too large. The querying time is 1.7 s for 330 models. It is also
time consuming.

In 2015, five leading feature extraction algorithms: SIFT, speeded-up robust features, binary
robust independent elementary features, binary robust invariant scalable keypoints and Fast retina
keypoint, were used to generate keypoint descriptors of radiographs for classification of bone age
assessment [28]. After comparing the five algorithms, the SIFT was found to perform best based on
precision. In 2016, a survey was presented to evaluate various object recognition methods based on
local invariant features from a robotics perspective [29]. The evaluation results reported that the best
performing keypoint descriptor is the SIFT and it is very robust to real-world conditions. Based on the
previous research results on pattern recognition and computer vision, we decide to extract the SIFT
descriptors as the features of 3D models.

3. 3D Shape Normalization Using WISR

3D shape normalization is a process of adjusting the orientation, location, and size of a given
3D model into a canonical coordinate frame. A 3D model is usually composed of a main body part
and branch parts (e.g., arms and legs). To reduce the effect caused by the deformation or abscission
of branch parts when determining the principal axes, we increase the weight of the main body part.
The procedure of weight calculation requires three steps. The first step is automatically estimating the
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number of clusters based on rate distortion theory [15]. With the clustering method, we can distinguish
the main body part and the branch parts. However, different 3D models have different shapes and
topologies that lead to different main body and branch parts. Therefore, a method of automatically
estimating the number of clusters is required. The second step is performing the k-means algorithm
with the estimated number and calculating the distance among cluster centers. The third step is
calculating the number of points inside each cluster sphere. Generally, the number of points inside
a main body part is greater than that of a branch part. Thus the weight is obtained based on the
number of points.

First of all, N random points P = {pi|i = 1, . . . , N} are generated inside the surface of a model.
A measure of cluster dispersion called distortion d is defined as Equation (1). It is derived from
Mahalanobis distance.

d =
N

∑
i=1

(
pi − cpi

)TΓ−1(pi − cpi

)
(1)

where Γ is the covariance and cpi is the closest center to a given point pi. The cluster centers are
obtained by using the k-means algorithm. We iteratively fit k ∈ {1, K} clusters to the points P.
Therefore, there are K distortions dk corresponding to K clusters. Each dk denotes cluster dispersion of
k clusters. After evaluating the distortions with 1 to K partitions, the dk is transformed as follows

Jk = d−
m
2

k − d−
m
2

k−1 (2)

where m is the dimension of the points, thus m is equal to 3. The−m
2 is a transform power motivated by

asymptotic reasoning. The number of clusters is set to be k′ = argmaxk{Jk}. The k′ is the ideal number
of clusters. Then the k-means algorithm is performed to partition the P into k′ clusters. The points
near the boundaries of clusters interfere with the relation between the points and the main body and
branch parts. Therefore, we only consider the points inside a sphere with a specific radius. First we
compute a distance cd between two cluster centers as follows:

cda,b =

√
(ca − cb)

2, a, b = 1, . . . , k′ (3)

Then we can obtain C = k′ − 1 + k′ − 2+, . . . ,+k′ − (k′ − 1) distances. The radius is defined as
r = min

{
cda,b

}
/2. The weight of each cluster is the number of nearest points within the radius from

each center. The nearest points set of the jth cluster center cj is defined as Sj =

{
i
∣∣∣∣√(cj − pi

)2 ≤ r
}

.

The weight wj of cluster j is the the number of the elements in the Sj. The ISR is defined as
f (p) = min{||p− q||}, which is the minimum Euclidean distance from p to vertices q on the surface of
the model. The wj is applied to the ISR of nearest points of cluster center j to produce WISR as follows

f ′(pi) =

{
f (pi)·wj, i f i ∈ Sj.

f (pi), otherwise.
(4)

The points nearest to the cluster center inside a main body are much more than those inside
a branch. Therefore, the weight of the main body will be increased, whereas that of the branch will
be decreased. To reduce the influence of surface deformation of main body, we quantize the WISR
and delete some values which are less than a specified threshold. We use search-based optimization
of Otsu’s criterion to find 5 thresholds T = {ti|i = 1, . . . , 5}. We delete the values of f ′(pi) by setting
them to be 0, if they are less than t2. The ISR and WISR of a mouse model are shown in Figure 1.
To illustrate their salient characteristic more clearly, the figures are shown in xy-plane.
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Figure 1. ISR (implicit shape representation) and WISR (weighted implicit shape representation) of mouse 
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It is moved to the origin of coordinate to solve the normalization of translation. It represents 
the weighted average of all points in a model. It is much closer to the center of main body than 
conventional barycenter. To normalize a model size, a scale factor is defined as follows 

Figure 1. ISR (implicit shape representation) and WISR (weighted implicit shape representation) of
mouse model; (a) ISR; (b) WISR.

The principal axes are calculated by singular value decomposition. The points p corresponding
to the existing f ′(pi) are selected for analyzing the principal axes. The center of gravity of a model is
defined as

o =
∑N

i=1( f ′(pi)·pi)

∑N
i=1 f ′(pi)

(5)
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It is moved to the origin of coordinate to solve the normalization of translation. It represents
the weighted average of all points in a model. It is much closer to the center of main body than
conventional barycenter. To normalize a model size, a scale factor is defined as follows

s = 3

√√√√ N

∑
i=1

f ′(pi) (6)

It is based on the volume of the model and is effective in normalizing the 3D model size. Finally,
the 3D model is normalized by achieving scaling, translation, and rotation with respect to the scale
factor, center, and principal axes.

4. Panoramic View Generation

Once the shape normalization has been done, one panoramic view will be generated.
First, a cylinder is generated around a 3D model as shown in Figure 2a. Its center and axis are the
center and the first principal axis of the model. Its radius is defined as R = 2·max{||o− q||}. Its height
is the height of the model. We sample the axis of the cylinder with a sample rate F. Each sample point
of the axis is a center of a cross section of the cylinder. For each cross section, M rays are emanated
from each center to the surface of the cylinder. Thus, the degree between each ray is 2π/M. Each ray
may have more than 1 intersection with the surface of the model. The distance rd ∈ [0, R] from a center
to the furthest intersection of the ray is mapped to a value in the range of [0, 1] for representing one
pixel in the F×M range image. After generating the panoramic view, SIFT descriptors are extracted
from the panoramic view and stored as the feature of the model. Figure 2b shows the SIFT descriptors
of panoramic view-based range image.
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show their fronts to a view point, which means the deformed and removed models were well 
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Figure 2. The cylinder around a model and its panoramic view-based range image; (a) Cylinder;
(b) Panoramic view-based range image.

The matching procedure of the SIFT descriptors uses the Euclidean distance as in [16]. Suppose
the SIFT descriptor of a query model is VQ = (vq1, vq2, . . . , vqn) and that of a model in database is
VD = (vd1, vd2, . . . , vdn). The distance D between the two descriptor is given by

D =

√
n

∑
i=1

(vqi − vdi)
2, (7)

A keypoint with the least distance value is defined as a matched keypoint. We match the keypoints
of the query model to those of the models in the database and obtain the number of matched keypoints.
Finally, we identify the model with the maximum number of matched keypoints as the original model
of the query model.

5. Experimental Results

In this section, some experimental results about the shape normalizations are shown first.
To achieve high precision of 3D model identification, how to accurately normalize the shapes of
the models is of great significance in practice. Figure 3a,c are original sumotori and tortoise models.
Figure 3b is deformed version of sumotori model by articulating around its joints in different ways.
Figure 3d is partially removed version of tortoise model. There is a certain extent of difference between
the original models and deformed and removed models. If we extract 6 range images from each view
point of six degree of freedom, we can obtain 24 possible poses of a 3D model [8]. We only selected the
most representative range image from all possible poses of a model. Figure 4a–l show the range images
which have the most representative surface of the models using PCA, ISR, and WISR, respectively.
The main body and face in Figure 4b are oblique. Figure 4d shows left side of the model. Figure 4f,h
show the range images were viewed obliquely from above. Both Figure 4j,l show their fronts to a view
point, which means the deformed and removed models were well normalized using WISR.
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and deformed sumotori model, original and partially removed tortoise model; ISR (e–h): original 
and deformed sumotori model, original and partially removed tortoise model; and WISR (i–l): original 
and deformed sumotori model, original and partially removed tortoise model. 
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Figure 4. The most representative range images of shape normalized models using PCA (a–d): original
and deformed sumotori model, original and partially removed tortoise model; ISR (e–h): original and
deformed sumotori model, original and partially removed tortoise model; and WISR (i–l): original and
deformed sumotori model, original and partially removed tortoise model.

We evaluated the proposed identification method with 1200 non-rigid 3D models in SHREC 2015
benchmark. The models consist of 24 deformed versions of 50 classes. We selected one model for
each class to compose 50 query models. We also experimented with the other 3D model identification
methods: combination of PCA and SIFT (PCAS) [9], that of continuous PCA, normal PCA, 2D discrete
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Fourier transform, and 2D discrete wavelet transform (CPCA) [10], and that of dodecahedron and
SIFT (DODE) [11]. Two types of experiments were performed to evaluate the performances of the
methods. First one is to identify the 50 original query models. Then we removed some parts of the
models such as arms and legs. Second experiment is to identify the 50 partially removed query models.
The percentage of removal ranges from 6.1% to 33.6%. The average percentage is 13.8%. We set the
range of the number of clusters from 1 to 10, which means the K is set to 10. Both the sample rate F
and the number of rays M are set to be 180. We performed the experiments on an IBM compatible
computer with a 3.4 GHz CPU and a 4 GB random-access memory. The average feature size and
matching time of the corresponding method for 1200 models are shown in Table 1. Because of using
only one range image, the proposed method provides small size of feature and fast matching speed.
Figure 5 shows the precision of identification for each method. Although the feature size is greatly
reduced, the precision is still greater than those of the other 3 methods even with the removed versions.

Table 1. Average feature size and matching time; PCAS: combination of PCA and SIFT; CPCA:
combination of continuous PCA, normal PCA, 2D discrete Fourier transform, and 2D discrete wavelet
transform; DODE: combination of dodecahedron and SIFT.

Method PCAS CPCA DODE Proposed

Size (KB) 19.4 36 110.1 4.1
Time (s) 26.4 80.3 223.5 1.9

Appl. 2017, 7, 764 9 of 11 

removed some parts of the models such as arms and legs. Second experiment is to identify the  
50 partially removed query models. The percentage of removal ranges from 6.1% to 33.6%.  
The average percentage is 13.8%. We set the range of the number of clusters from 1 to 10, which 
means the ܭ is set to 10. Both the sample rate ܨ and the number of rays ܯ are set to be 180.  
We performed the experiments on an IBM compatible computer with a 3.4 GHz CPU and a 4 GB 
random-access memory. The average feature size and matching time of the corresponding method 
for 1200 models are shown in Table 1. Because of using only one range image, the proposed method 
provides small size of feature and fast matching speed. Figure 5 shows the precision of 
identification for each method. Although the feature size is greatly reduced, the precision is still 
greater than those of the other 3 methods even with the removed versions. 

Table 1. Average feature size and matching time; PCAS: combination of PCA and SIFT; CPCA: 
combination of continuous PCA, normal PCA, 2D discrete Fourier transform, and 2D discrete 
wavelet transform; DODE: combination of dodecahedron and SIFT. 

Method PCAS CPCA DODE Proposed 
Size (KB) 19.4 36 110.1 4.1 
Time (s) 26.4 80.3 223.5 1.9 

 

Figure 5. Precision of 3D model identification. 

6. Conclusions 
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Figure 5. Precision of 3D model identification.

6. Conclusions

In this paper, we have proposed a 3D model identification method, which consists of WISR-based
3D shape normalization and panoramic view for feature extraction. To achieve high precision of 3D
model identification with 2D view-based approach, how to accurately normalize the shapes of the
models has great significance in practice. The proposed 3D shape normalization clusters random
points inside a model and defines the number of nearest neighbors within a specified radius from each
cluster center as the weight. The weight is applied to ISR to produce WISR for reducing the influence
caused by shape deformation and partial removal. A panoramic view is generated by projecting a 3D
model onto the surface of a cylinder for extracting SIFT descriptors. The average feature size and
matching time are 4.1 KB and 1.9 s. The precision of identification of original models is 92% and
that of removed versions is 64%. The experimental results show the performance of the 3D model
identification is significantly improved. In the future work, we will optimize the identification method
and increase the precision of the identification.
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