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Abstract:



In dry turning operation, various parameters influence the cutting force and contribute in machining precision. Generally, the numerical cutting models are adopted to establish the optimum cutting parameters and results are substantiated with the experimental findings. In this paper, the optimal turning parameters of AA2024-T351 alloy are determined through Abaqus/Explicit numerical cutting simulations by employing the Johnson-Cook thermo-viscoplastic-damage material model. Turning simulations were verified with published experimental data. Considering the constrained and nonlinear optimization problem, the artificial neural networks (ANN) were executed for training, testing, and performance evaluation of the numerical simulations data. Two feedforward backpropagation neural networks were developed with ten hidden neutrons in each hidden layer. The Log-Sigmoid transfer function and the Levenberg-Marquardt algorithm were applied in the model. The ANN models were studied with four input parameters: the cutting speed (200, 400, and 800 m/min), tool rake angle (5°, 10°, 14.8°, and 17.5°), cutting feed (0.3 and 0.4 mm), and the contact friction coefficients (0.1 and 0.15).The two target parameters include the tool-chip interface temperature and the cutting reaction force. The performance of the trained data was evaluated using root-mean-square error and correlation coefficients. The ANN predicted values were compared both with the Abaqus simulations and the published experimental findings. All of the results are found in good approximation to each other. The performance of the ANN models demonstrated the fidelity of solving and predicting the optimum process parameters.
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1. Introduction


The aluminum alloys have gained the prime significance in diverse engineering applications. Machining characteristics of these alloys depend upon the appropriate cutting parameters, such as the cutting speed, cutting feed, cutting tool geometry, clamping scheme, and the tool wear rate. Because of the costly experimentation, assessment of the appropriate cutting parameters implies the application of numerical cutting simulations. However, the execution of numerical cutting simulations implicates a detailed understanding of different engineering processes that involve during the machining cutting action. Likewise, the material damage at a high strain rate makes it difficult to comprehend the tool-chip interaction [1,2]. Generally, the crack and material damage behavior are elaborated with the Johson-Cook (JC) plasticity material model and damage evolution law [3] which undertakes the large deformations, high strain rates, and temperature-dependent viscoplasticity.



In the turning operation, cutting tool geometry plays a dynamic role in influential cutting force and the chip temperature. Recently, different research efforts have been conducted to describe the behavior of material cutting during the turning operation. Lo [4] described the effect of tool rake angle on the chip morphology by using an elastic-plastic model. Sutter [5] studied the interaction of cutting speed and the chip morphology with high-speed cameras. Dahlman et al. [6] investigated the effect of tool rake angle on material residual stresses during the turning process. Attanasio et al. [7] also described the behavior of material residual stresses in the orthogonal cutting process. Yanda et al. [8] and Axinte et al. [9] worked on the experimental investigations of cutting forces. Saglam et al. [10] conducted some experiments to study the cutting forces and tool-tip temperature at different feeds and rake angles. Shi et al. [11] performed the numerical cutting simulations to explain the influence of contact friction and tool rake angles upon the thermo-mechanical properties. Zhang et al. [12] studied the effect of shear stresses on chip morphology. Neseli et al. [13] carried out a detailed study on surface finish during the turning operation. Dogu et al. [14] performed a detailed study to identify the cutting temperature by estimating the sensible heat energy.



Many researchers have employed the heuristic optimization techniques to identify the optimal cutting parameters of aluminum alloys. D’Addona and Teti [15] used the genetic algorithm to identify the optimized turning parameters. Marko et al. [16] identified the optimized turning parameters by applying the particle swarm optimization. Prasanth and Raj [17] estimated the optimal cutting parameters of a cylindrical turning process by using the artificial bee colony algorithm. Amer et al. [18] studied the optimized turning parameters by integrating the genetic algorithm with support vector regression and the artificial neural networks. D’Addona et al. [15] investigated the tool wear and its pattern by applying the DNA-based computing. Bruni et al. [19] worked on the surface roughness modeling of finish face milling under dry cutting conditions by applying the artificial neural networks. Researchers have also identified the efficient use of ANN models in other metal machining processes; for example, the prediction of cutting forces, machining vibrations, tool wear rate [20], milling and drilling [21,22,23], the skin pass rolling [24], etc. Similarly, ANNs have been applied effectively to determine the machining surface roughness [25,26,27] and the optimal cutting conditions [28,29].



In this study, the ANN is considered because of the complex nonlinear optimization problem. As compared to the traditional approaches, the ANN can learn the solutions and predict the complex interactions of the input and output data with significant accuracy [30]. The ANN function was inspired by the natural biological neurons, which act as parallel distributed processors [31]. Neurons have the capability for sorting and storing the empirical knowledge, and to generate the output from a series of the inputs. The basic components of a neural network comprise neutrons (nodes or processing element) and the synaptic weights (connections). The synaptic weights with a positive and negative value represent the excitatory and inhibitory connection. Inputs weighted by the respective synaptic weights are accumulated together, which represent the accumulating function. The summation result is passed on to an activation function (non-linear) which determines the neutron response.



Hopfield [32] and Kohonen [33] triggered a new interest in artificial neural networks. Now, the ANNs are believed to be effective machine learning tools for predictive modeling and optimization. The architecture of neural networks (ANN) consist of three discrete layers: the input layer, data processing or hidden layers and the output layer. Activation functions produce the outputs when a weighted sum of the input neurons is provided. Conversely, when data are presented as the input vector, the output is generated by computing the dot products of the input vector and the weight vector. Different activation functions are used to analyze different ANN studies. The most common are the Sigmoid function, the logistic, and the hyperbolic tangent. Based upon the direction of flow signals, the neural networks are classified into feedforward and recurrent. In the feedforward network, signals propagate from the input into the output, while in the recurrent network; signals may propagate backward from any neuron. With the feedforward network, weights are optimized by a gradient-descent method, and the performance is evaluated by mean-square-error. Mostly, the output is obtained by employing the sigmoid function. The back propagation neural networks (multi-layered) work through the procedure of error back-propagation and assume a sigmoid logistic function. Neural networks may also be classified according to the learning process in which networks evaluate and adjust the weight of the nodes of each layer in an iterative procedure. Supervised learning networks employ the delta rule for error minimization. The supervised feedforward network includes the perceptron [34], Boltzman machine [35], Hamming networks [36], linear associative memory [37], and counter propagation network [38]. The back-propagation learning algorithm for multilayer perceptron was introduced by Werbos and rediscovered independently by other researchers. It is common among the networks in which learning process is carried from known examples [39,40]. In the artificial network design, determination of the number of hidden layers and the number of nodes in each layer are most decisive tasks. Generally, one hidden layer is used for the networks that involve some approximate functions [41] and two layers are used for the networks involving some learning functions.




2. Problem Statement


Identification of the optimal turning parameters is a challenging task. This meticulous effort can be substituted by performing the parametric sensitivity analysis of a representative numerical cutting model. Normally, the fidelity of numerical simulations is evaluated by comparing with the standard experimental results. Subsequently, reliable simulation data can further be optimized by employing some heuristic optimization technique. This concept is implemented in this research by performing the numerical cutting simulations through Abaqus/Explicit (Abaqus, 6.16, Dassault Systemes, Johnston, RI, USA, 2016). Simulation results were compared and verified with published experimental data [42] The artificial neural networks (ANN) were employed to identify the optimized parameters.




3. Numerical Framework


3.1. Cutting Simulations


In this study, Johnson-Cook (JC) material damage model is applied for numerical cutting simulation of AA2024. The constitutive equation describing the von Mises stress due to chipped off material is described as [3]:


[image: there is no content]



(1)




where [image: there is no content] represents the equivalent stress, A is the material yield strength (MPa); B is the hardening modulus; n shows the work hardening exponent; C is the material constant for strain hardening rate; m is the thermal softening coefficient; Troom is the reference ambient temperature.



Tmelt is the material melting temperature, [image: there is no content] is the equivalent plastic strain, [image: there is no content] is the plastic strain rate, [image: there is no content] is the reference strain rate.



The damage evolution of an element can be expressed by using the classical damage law:


[image: there is no content]



(2)




where [image: there is no content] is the increment of equivalent plastic strain and [image: there is no content] is the equivalent strain to fracture. Fracture occurs when D is equal to 1. The plastic strain at damage initiation [image: there is no content] is expressed as [3]:


[image: there is no content]



(3)




where D1 represents the initial failure strain; D2 gives the exponential factor; D3 deals with triaxiality factor; D4 is the strain rate factor; D5 is the temperature factor; P is the average normal stress; and [image: there is no content] is the von Mises equivalent stress.



Generally, D1 to D5 values are determined through experiments [43]. The equivalent plastic strain with a scalar damage parameter ω can be expressed by [44,45]:


[image: there is no content]



(4)







Hillerborg et al. [46] proposed the fracture energy (Gf) per unit area of the crack [6]:


[image: there is no content]



(5)




where L is the characteristic length of an element and [image: there is no content] is the equivalent plastic displacement at failure. [image: there is no content] is computed by the following equation [47]:
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(6)







Under the applied force, damage evolution laws can be expressed as [42]:
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(7)
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(8)







In dry turning operation, heat is generated due to the plastic deformation, which can be expressed as:


[image: there is no content]



(9)




where qp is the heat generation rate and ηp is the inelastic heat fraction.



Heat generated due to the contact friction is expressed as:


[image: there is no content]



(10)




where τf is the shear stress given by Coulomb friction law and γ is the slip strain rate.




3.2. Artificial Neural Network


The backpropagation neural network was applied due to the complex optimization problem. Back-prop algorithm executes iteratively, so the change in weights is carried out incrementally. Figure 1 explains the basic architecture of ANN model adopted in this research. There are three essential operations of the neutron. The synaptic weights w with a positive value make an excitatory connection and negative value an inhibitory connection. The summation function sums up the entire input signals y. The subscript a denotes the output layer; b is the hidden layer; and c is the input layer. wba represents the weight from the hidden to the output layer; wcb is the weight from the input to the hidden layer; y is the actual activation value; t is the targeted value (desired activation); and xb is the net input. In a multi-layered feedforward network, the accuracy of a solution is measured by taking the mean-square-error which is the difference between targeted output and the actual output. Let, bth be the output layer, then the error is calculated as [31]:


[image: there is no content]



(11)




where b {0,1,…,B} means the bth layer has a total B nodes, yb is the actual activation of the output nodes, and tb is the desired activation (target). The error E propagates backward towards the input layer. Since the mean square error (E) generates a two-dimensional surface, the gradient descent approach is applied to explore the grand minima. A change in weight for a node connecting the layer c to the layer b is given by [48]:


[image: there is no content]



(12)




where α represents the learning rate. By applying the chain rule, a derivative of the mean square error E with respect to w can be expanded as [48]:


[image: there is no content]



(13)






Figure 1. Basic architecture of an ANN.
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Derivative of the net input with respect to the weight is given by:


[image: there is no content]



(14)




where c {0,1,…,C}, yc is the actual activation of nodes, and wcb is the weight from input to the hidden layer. The first two terms of Equation (13) are replaced with:


[image: there is no content]



(15)







The output is obtained by employing the sigmoid function, which is expressed as [41]:


[image: there is no content]



(16)







Change in weight is calculated by considering the nodes connecting the input layer c to the layer b:


[image: there is no content]



(17)




where yc is the activation of the node at layer c, N and (N − 1) are the iterations (epoch), η represents the momentum (a real value 0, 1), and βb is the error term. The momentum was introduced by Rumelhart [48] to incorporate the influence of past iterations in updating the weight.





4. Methodology


4.1. Turning Simulation—2024-T351


The 2D numerical model developed for the cutting simulations is shown in Figure 2. The work piece was developed into three sections: the chipped off material, the damage zone at tool-chip interface, and the uncut material. The configuration of the work piece into three different sections was essential to define different material properties, constitutive relationships, contact conditions, and the material damage laws. For example, JC material damage model and the damage evolution law were applied in the damage zone with a specific fracture energy; JC material damage model with a different fracture energy and the contact conditions were defined in the chipped off material; and the uncut material section was defined without JC damage parameters. The assembly of three parts was done by applying the standard join constraint (tie constraint) available in Abaqus. A tie constraint fuses the model surfaces with different mesh sizes and element types. Due to tie condition, each node at the slave surface attains the same displacement, stress, temperature, pressure, etc. corresponding to its closest node at the master surface. Tie condition makes the model computationally expensive and requires a compatible mesh between the part instances. Generally, Abaqus picks the slave surface with a finer mesh. For fidelity of the results of a multi-parts model assembled with the standard tie constraint, interested readers may refer to the online Abaqus documentation (tie constraints, Section 34.3.1, Abaqus Analysis User’s Manual) [49].


Figure 2. Turning simulations model.
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The model comprises 4134 four nodes quadrilateral continuum elements with plane strain (CPE4RT) and coupled temperature-displacement conditions. Cutting tool geometry consists of a nose radius (Rn) of 0.02 mm and a clearance angle 7°. A parametric sensitivity analysis was performed with different rake angles, cutting speeds, chip thickness, and the contact conditions to study the effect of tool rake angle on the chip temperature, the effect of contact friction on the cutting reaction force, the effect of cutting speeds on the equivalent plastic strain, the effect of feed upon the chip temperature, and the effect of friction coefficients on chip temperature. The cutting tool was constrained in y-direction and a self-contact was defined over the chip surface to avoid the penetration of deformed chip elements into the uncut chip and cutting tool. Contact conditions were established between the contact interfaces of the cutting tool, chip, damage zone, and the uncut material [50]. Selection of the proper friction coefficient and governing law is a critical and sensitive task in numerical cutting simulations. The friction characteristic at the tool-chip interface is difficult to determine since it is influenced by many factors; such as, the local cutting speed, contact pressure, temperature, cutting tool, work piece material, etc. [51]. An improper selection of the friction coefficient affects the results and findings. Extensive studies have been reported on the interaction of the tool-chip interface during the dry turning process. Several models have also been proposed to determine the contact friction. The most widely used method to determine the contact friction is Zorev’s stick-slip friction model [52] which is also known as an extended Columb’s law. In the present numerical simulations, the interaction between AA2024 material and the tungsten carbide tool insert, two different values of the friction coefficients (0.1 and 0.15) are used considering the similar experimental conditions [42] and also investigated by Zorev’s friction model.



Different properties and parameters used in the model are given in Table 1 [42]. The outcomes of turning simulations were compared with the available experimental results, given in Table 2 [42]. Cutting force evolution and its comparison with the experimental results is shown in Figure 3. A summary of 64 cutting simulations is given in Table 3, where V is the cutting force (m/min); C is the feed (0.4 mm); F is the contact friction; RF (N) is the cutting reaction force; R (degrees) is the tool rake angle; and T is the temperature of the tool-chip interface. For further details, interested readers may consult the published work in Saleem et al. [42].


Figure 3. Parametric sensitivity analysis (cutting reaction force (N), chip stress (MPa), and tool-chip interface temperate (°C)) [53].
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Table 1. Work piece and cutting tool properties.







	
Physical Parameters




	
Property

	
Work Piece (A2024-T351)

	
Tool (Tungsten Carbide)






	
Density, ρ (Kg/m3)

	
2700

	
11,900




	
Elastic modulus, E (Gpa)

	
73

	
534




	
Poisson ratio, ν

	
0.33

	
0.22




	
Specific heat, Cp (J·Kg−1·°C−1)

	
Cp = 0.557T + 877.6

	
400




	
Thermal conductivity, λ (W·m−1·C−1)

	
25 ≤ T ≤ 300: λ = 0.247T + 114.4

300 ≤ T ≤ Tmelt: λ = −0.125T + 226.0

	
50




	
Expansion, α (µmm−1·°C−1)

	
α + 8.9 × 10−3T + 22.2

	
-




	
Tmelt (°C)

	
520

	
-




	
Troom (°C)

	
25

	
25




	
Johnson-Cook Material Parameters (Identified for A2024-T351)




	
A (MPa)

	
B (Mpa)

	
n

	
C

	
m

	
D1

	
D2

	
D3

	
D4

	
D5




	
352

	
440

	
0.42

	
0.0083

	
1

	
0.13

	
0.13

	
−1.5

	
0.011

	
0










Table 2. Experimental results—Turning AA2024 [42].







	
Feed, f (mm)

	
Parameter

	
Cutting Speed, V (m/min)




	
200

	
400

	
800






	
0.3

	
Force

	
778 N

	
769 N

	
769 N




	
Frequency

	
128 Hz

	
290 Hz/37.8 kHz

	
500 Hz/90.7 kHz




	
0.4

	
Force

	
988 N

	
978 N

	
976 N




	
Frequency

	
120 Hz/10.3 kHz

	
351 Hz/32.4 kHz

	
889 Hz/64.8 kHz




	
0.5

	
Force

	
1216 N

	
1196 N

	
1192 N




	
Frequency

	
256 Hz/16.2 kHz

	
476 Hz/22.7 kHz

	
1026 Hz/45.3 kHz










Table 3. Parametric sensitivity analysis (turning simulations).







	
S No.

	
V

	
C

	
F

	
R

	
RF

	
T

	
S No.

	
V

	
C

	
F

	
R

	
RF

	
T






	
1

	
200

	
0.4

	
0.1

	
5

	
500

	
226

	
33

	
200

	
0.3

	
0.1

	
10

	
790

	
236




	
2

	
400

	
0.4

	
0.1

	
5

	
600

	
256

	
34

	
400

	
0.3

	
0.1

	
10

	
800

	
262




	
3

	
600

	
0.4

	
0.1

	
5

	
650

	
269

	
35

	
600

	
0.3

	
0.1

	
10

	
990

	
273




	
4

	
800

	
0.4

	
0.1

	
5

	
700

	
288

	
36

	
800

	
0.3

	
0.1

	
10

	
1000

	
302




	
5

	
200

	
0.4

	
0.1

	
10

	
800

	
232

	
37

	
200

	
0.3

	
0.15

	
10

	
800

	
232




	
6

	
400

	
0.4

	
0.1

	
10

	
700

	
262

	
38

	
400

	
0.3

	
0.15

	
10

	
870

	
258




	
7

	
600

	
0.4

	
0.1

	
10

	
650

	
276

	
39

	
600

	
0.3

	
0.15

	
10

	
590

	
285




	
8

	
800

	
0.4

	
0.1

	
10

	
490

	
292

	
40

	
800

	
0.3

	
0.15

	
10

	
780

	
306




	
9

	
200

	
0.4

	
0.1

	
14.8

	
700

	
246

	
41

	
200

	
0.4

	
0.15

	
14.8

	
750

	
246




	
10

	
400

	
0.4

	
0.1

	
14.8

	
800

	
267

	
42

	
400

	
0.4

	
0.15

	
14.8

	
775

	
275




	
11

	
600

	
0.4

	
0.1

	
14.8

	
600

	
279

	
43

	
600

	
0.4

	
0.15

	
14.8

	
870

	
289




	
12

	
800

	
0.4

	
0.1

	
14.8

	
550

	
307

	
44

	
800

	
0.4

	
0.15

	
14.8

	
900

	
317




	
13

	
200

	
0.4

	
0.1

	
17.5

	
790

	
248

	
45

	
200

	
0.3

	
0.1

	
14.8

	
790

	
238




	
14

	
400

	
0.4

	
0.1

	
17.5

	
795

	
279

	
46

	
400

	
0.3

	
0.1

	
14.8

	
800

	
269




	
15

	
600

	
0.4

	
0.1

	
17.5

	
870

	
292

	
47

	
600

	
0.3

	
0.1

	
14.8

	
990

	
274




	
16

	
800

	
0.4

	
0.1

	
17.5

	
895

	
324

	
48

	
800

	
0.3

	
0.1

	
14.8

	
1000

	
310




	
17

	
200

	
0.4

	
0.15

	
5

	
750

	
232

	
49

	
200

	
0.3

	
0.15

	
14.8

	
800

	
258




	
18

	
400

	
0.4

	
0.15

	
5

	
775

	
254

	
50

	
400

	
0.3

	
0.15

	
14.8

	
870

	
283




	
19

	
600

	
0.4

	
0.15

	
5

	
870

	
292

	
51

	
600

	
0.3

	
0.15

	
14.8

	
590

	
302




	
20

	
800

	
0.4

	
0.15

	
5

	
900

	
308

	
52

	
800

	
0.3

	
0.15

	
14.8

	
780

	
317




	
21

	
200

	
0.3

	
0.1

	
5

	
790

	
221

	
53

	
200

	
0.4

	
0.15

	
17.5

	
750

	
268




	
22

	
400

	
0.3

	
0.1

	
5

	
800

	
254

	
54

	
400

	
0.4

	
0.15

	
17.5

	
775

	
278




	
23

	
600

	
0.3

	
0.1

	
5

	
990

	
267

	
55

	
600

	
0.4

	
0.15

	
17.5

	
870

	
298




	
24

	
800

	
0.3

	
0.1

	
5

	
1000

	
288

	
56

	
800

	
0.4

	
0.15

	
17.5

	
900

	
329




	
25

	
200

	
0.3

	
0.15

	
5

	
800

	
212

	
57

	
200

	
0.3

	
0.1

	
17.5

	
790

	
260




	
26

	
400

	
0.3

	
0.15

	
5

	
870

	
242

	
58

	
400

	
0.3

	
0.1

	
17.5

	
800

	
282




	
27

	
600

	
0.3

	
0.15

	
5

	
590

	
273

	
59

	
600

	
0.3

	
0.1

	
17.5

	
990

	
295




	
28

	
800

	
0.3

	
0.15

	
5

	
780

	
295

	
60

	
800

	
0.3

	
0.1

	
17.5

	
1000

	
324




	
29

	
200

	
0.4

	
0.15

	
10

	
750

	
238

	
61

	
200

	
0.3

	
0.15

	
17.5

	
800

	
272




	
30

	
400

	
0.4

	
0.15

	
10

	
775

	
268

	
62

	
400

	
0.3

	
0.15

	
17.5

	
870

	
297




	
31

	
600

	
0.4

	
0.15

	
10

	
870

	
276

	
63

	
600

	
0.3

	
0.15

	
17.5

	
590

	
314




	
32

	
800

	
0.4

	
0.15

	
10

	
900

	
306

	
64

	
800

	
0.3

	
0.15

	
17.5

	
780

	
335











4.2. Artificial Neural Network (Modeling and Analysis)


The artificial neural network model adopted for this study is shown in Figure 4. The model consists of three layers; the input layer, the hidden layer, and the output layer. The input parameters to the ANN model consist of the cutting parameters studied during the numerical simulations, and the outputs are the corresponding cutting reaction force and tool-chip interface temperature. The four input parameters consist of cutting force (V in m/min), cutting feed (C in 0.4 mm), contact friction (F), cutting reaction force (RF in Newtons), tool rake angle (R in degree), and the temperature at tool chip interface (T in °C). The output layer consists of two neurons: the cutting reaction force RF (N) and tool–chip interface temperature T (°C).


Figure 4. ANN model for cutting simulations.
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The MATLAB (R2013, The MathWorks, Natick, MA, USA, 2013), neural network toolbox was used for training and testing of the simulations data. Training of the network was accomplished by considering the 64 numerical simulations. The output (cutting reaction force and tool-chip interface temperature) and the corresponding input parameters of these simulations are given in Table 3. Design of the numerical experiments could also be accomplished with some standard technique (such as Taguchi’s configuration). In this research, different combinations of the input parameters were selected by considering the range of each parameter used in actual machining experiments. With four input parameters, all the possible combinations result into 4 × 4 × 2 × 2 = 64 design of numerical experiments.



Considering the available experimental data [42], the Abaqus simulations run at serial 13, 14, 16, 57, 58, and 60 were used for validation of the ANN model. The input parameters of these simulations are similar to the corresponding cutting conditions in actual experiments. The standard feedforward backpropagation neural network was studied by considering the Log-Sigmoid transfer function (LOGSIG). The Log-sigmoid transfer function is used for training the data in multi-layer networks with back-propagation algorithm [54,55,56]. The selection of optimal number of hidden layers is a difficult task. The optimal numbers of hidden layers are determined by training several networks and estimating the error. A few hidden layers may cause a high training error due to under-fitting and too many hidden layers may cause a high generalization error due to over-fitting. Selection also depends upon the numbers of input and output layers, learning function, the ANN architecture, the activation function, and the training algorithm. For the proposed ANN architecture, the numbers of neurons in the hidden layers were determined through a trial-and-error method. The best configuration was observed with two hidden layers and 10 neurons in each layer. The ANNs predicted outcomes and properties were evaluated by considering the mean-square-error and regression analysis. The predicted outcomes were validated with the published experimental results [42]. Details of the machining experiments, testing scheme, and the measurement techniques are described in the published article. The ANN parameters for training and testing are given in Table 4.



Table 4. ANN network and training parameters.







	
Function

	
Value

	
Description






	
Training function

	
-

	
TRAINLM




	
Adaptation learning function

	
-

	
LEARNGDM




	
Network type

	
-

	
Feed-forward backprop




	
Transfer function

	
-

	
LOGSIG




	
net.trainParam.epochs

	
1000

	
Maximum number of epochs to train




	
net.trainParam.goal

	
0

	
Performance goal




	
net.trainParam.showCommandLine

	
false

	
Generate command-line output




	
net.trainParam.showWindow

	
true

	
Show training GUI




	
net.trainParam.lr

	
0.01

	
Learning rate




	
net.trainParam.max_fail

	
6

	
Maximum validation failures




	
net.trainParam.min_grad

	
1 × 10−7

	
Minimum performance gradient




	
net.trainParam.show

	
25

	
Epochs between displays




	
net.trainParam.time

	
inf

	
Maximum time to train in seconds










The default Levenberg-Marquardt algorithm was used for training the network. The maximum validation checks (max_fail) function was taken as 6. This parameter (max_fail) serves as a training function parameter and ensures the maximum number of validation checks before the training is stopped. Therefore, it must be a positive integer. The validation fails are total successive iterations that the validation performance fails to decrease or when the validation MSE (mean-square-error) increases the max_fail value. This criterion can be changed by setting the parameter net.trainParam.max_fail. A large number of trainings show the over training and Matlab tries to stop the training after 6 failed in a row. In the back-propagation, the learning rate and the momentum factor are very significant to determine the learning speed and accuracy [57]. The learning rate controls the changes in the weights during the training process. The momentum factor manages the speed of network training. It defines the fraction of preceding weight changes to be included in the current weight changes. Termination of the training depends upon the magnitude of the gradient and the number of validation checks. In case, when the training reaches the minimum of the performance, the gradient becomes very small. For example, the training stops when the magnitude of the gradient is less than 1 × 10−5. This limit can be adjusted by setting the parameter net.trainParam.min_grad.



Figure 5a shows the performance, training statistics, and the convergence plots for testing and training networks of tool-chip interface temperature. The performance plot (mean square error of all data sets) is shown on a logarithmic scale. The training mean square error must show a decreasing trend. Here, the training plot shows a perfect training. The other two plots explain the network simulation results after the training. The training was terminated when the validation error increased to 16 epochs, and the best validation performance was obtained as 16.58 at 10th epoch. The test set error and the validations set error have also shown the similar characteristics. Figure 5b shows the coefficients of regression. The R-plots explain the significance between the target (desired output) and the ANN output (actual output). The dashed line in each plot represents the targeted values (the difference between the perfect result and outputs). The best-fit linear regression line between the outputs and targets is represented by a solid line. The correlation coefficient (R) gives the relationship between the outputs and the targets.


Figure 5. (a) Neural network performance plot for tool-chip interface temperature (T); (b) Neural network regression plots for chip-tool interface temperature (T); (c) Neural network performance and gradient epochs (chip-tool interface temperature); (d) Neural training and the output window for chip-tool interface temperature (T).
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The maximum value of the correlation coefficient (R2) and a minimum value of the root mean square error defines a good ANN model. For an exact linear relationship, R must be closer or equal to one. The values of coefficients for training and testing data are founded to be 0.996 and 0.953, respectively. For a perfect fit, the distribution of data should be along a 45° line, which shows that the network outputs are equal to the targets. From Figure 5b, it was observed that the targeted output R for training is 0.99695, validation is 0.98939), and testing is 0.95314. The corresponding total response is 0.999018. R = 0.999018 verifies that the ANN output perfectly matches with the target (precise linear relevance). The overall response verifies that the training has produced the optimal results, and the model can entertain the new inputs. Values of all the coefficients are very close to 1, so the training value is highly acceptable. Figure 5d is a caption window that shows the validation of ANN model and also explains the output of the neural network during the training and training developments. Figure 5c shows the model evolution, validation, and the corresponding gradient of epochs. For the temperature prediction model, the gradient of epochs was attained as 31.548.



The second ANN model for cutting reaction force was developed by keeping the same input parameters, as shown in Figure 4. The ANN parameters for training and testing are presented in Table 4. The training and performance evaluation of the network was accomplished with 64 data sets, given in Table 3. The standard feedforward backpropagation neural network was considered with Log-Sigmoid transfer function (LOGSIG) and Levenberg-Marquardt algorithm. The optimized network was detected with 10 neurons in the hidden layers. The ANN predicted outcomes were evaluated by comparing with the published experimental results [42]. The ANN predicted values and the performance curves of cutting reaction force are shown in Figure 6a–d. Figure 6a illustrates the performance, training statistics, and the convergence plots for training the network. The performance curve shown in Figure 6a demonstrates a perfect training; the test set error, and the validation set error plots also interpret the similar characteristics. Training was completed when the validation error increased to 16 epochs, and the best validation performance was attained as 57.4402 at 10th epoch. The regression analysis is shown in Figure 6b. The coefficients of regression value for training and testing data were attained as 0.99801 and 0.96738, respectively. The targeted output value of the validation and corresponding total response are 0.99512 and 0.98768, respectively. The overall results demonstrate a precise linear relevance and validate the model for accommodating the new inputs and simulating the final results. Figure 5c illustrates the model validation and the corresponding gradient of epochs. The gradient of epochs was attained as 97.3974. The network configuration, the optimization scheme, and the validation of ANN model are shown as a caption window in Figure 6d.


Figure 6. (a) Neural network performance plot for cutting reaction force (RF); (b) Neural network regression plots for cutting reaction force (RF); (c) Neural network performance and gradient epochs for cutting reaction force (RF); (d) Neural training and output window for cutting reaction force (RF).
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A comparison of the numerical simulation results with the ANN predicted values is presented in Table 5. The term RF_Pd gives the predicted reaction force, Err is the error, % Err is the percent error, T is the chip-tool interface temperature, and T_Pd is the chip-tool interface predicted temperature. The performance of the ANN model elaborates the deviation (error) between the actual and predicted values. In Table 5, the maximum percentage errors of the cutting reaction force and the chip-tool interface temperature are found to be 2.55 and 3.34, respectively. The calculated errors are found reasonable and demonstrate the conformance of ANN predicted results.



Table 5. ANN predicted results for cutting reaction force and tool-chip interface temperature.







	
Sr

	
RF

	
RF_Pd

	
Err

	
% Err

	
T

	
T_Pd

	
Err

	
% Err

	
Sr

	
RF

	
RF_Pd

	
Err

	
% Err

	
T

	
T_Pd

	
Err

	
% Err






	
1

	
894

	
895.142

	
−1.142

	
0.13

	
226

	
223.742

	
2.258

	
1.01

	
33

	
759

	
765.873

	
−6.873

	
0.90

	
236

	
235.283

	
0.717

	
0.30




	
2

	
897

	
895.548

	
1.452

	
0.16

	
253

	
244.829

	
8.171

	
3.34

	
34

	
763

	
768.117

	
−5.117

	
0.67

	
262

	
262.117

	
−0.117

	
0.04




	
3

	
889

	
890.221

	
−1.221

	
0.14

	
269

	
267.909

	
1.091

	
0.41

	
35

	
758

	
766.854

	
−8.854

	
1.15

	
273

	
280.794

	
−7.794

	
2.78




	
4

	
902

	
901.591

	
0.409

	
0.05

	
288

	
288.045

	
−0.045

	
0.02

	
36

	
766

	
759.777

	
6.223

	
0.82

	
302

	
302.936

	
−0.936

	
0.31




	
5

	
932

	
930.203

	
1.797

	
0.19

	
232

	
232.349

	
−0.349

	
0.15

	
37

	
749

	
750.858

	
−1.858

	
0.25

	
232

	
229.872

	
2.128

	
0.93




	
6

	
916

	
917.691

	
−1.691

	
0.18

	
262

	
257.464

	
4.536

	
1.76

	
38

	
747

	
751.467

	
−4.467

	
0.59

	
258

	
258.786

	
−0.786

	
0.30




	
7

	
940

	
943.037

	
−24.037

	
2.55

	
276

	
275.471

	
0.529

	
0.19

	
39

	
755

	
749.117

	
5.883

	
0.79

	
285

	
286.262

	
−1.262

	
0.44




	
8

	
927

	
927.464

	
−0.464

	
0.05

	
292

	
300.272

	
−8.272

	
2.75

	
40

	
761

	
761.831

	
−0.831

	
0.11

	
306

	
298.731

	
7.27

	
2.43




	
9

	
941

	
947.089

	
−6.089

	
0.64

	
246

	
246.158

	
−0.158

	
0.06

	
41

	
782

	
784.039

	
−2.039

	
0.26

	
246

	
250.562

	
−4.562

	
1.82




	
10

	
961

	
967.501

	
−6.501

	
0.67

	
267

	
264.683

	
2.317

	
0.88

	
42

	
788

	
786.756

	
1.244

	
0.16

	
275

	
271.851

	
3.149

	
1.16




	
11

	
966

	
967.813

	
−1.813

	
0.19

	
279

	
279.071

	
−0.071

	
0.03

	
43

	
802

	
793.798

	
8.202

	
1.03

	
289

	
288.391

	
0.609

	
0.21




	
12

	
961

	
961.414

	
−0.414

	
0.04

	
307

	
308.542

	
−1.542

	
0.50

	
44

	
795

	
792.96

	
2.04

	
0.26

	
317

	
316.946

	
0.054

	
0.02




	
13

	
972

	
965.348

	
6.652

	
0.69

	
248

	
249.811

	
−1.811

	
0.72

	
45

	
769

	
766.923

	
2.077

	
0.27

	
243

	
248.703

	
−5.703

	
2.29




	
14

	
963

	
967.893

	
−4.893

	
0.51

	
279

	
269.815

	
9.185

	
3.40

	
46

	
766

	
768.563

	
−2.563

	
0.33

	
269

	
265.957

	
3.043

	
1.14




	
15

	
969

	
966.936

	
2.064

	
0.21

	
292

	
292.275

	
−0.275

	
0.09

	
47

	
772

	
768.587

	
3.414

	
0.44

	
274

	
278.352

	
−4.352

	
1.56




	
16

	
968

	
961.213

	
6.787

	
0.71

	
324

	
322.473

	
1.527

	
0.47

	
48

	
771

	
766.894

	
4.106

	
0.54

	
310

	
308.193

	
1.807

	
0.59




	
17

	
809

	
808.894

	
0.106

	
0.01

	
232

	
230.953

	
1.047

	
0.45

	
49

	
769

	
760.925

	
8.075

	
1.06

	
258

	
258.4

	
−0.4

	
0.15




	
18

	
793

	
794.405

	
−1.405

	
0.18

	
254

	
254.239

	
−0.238

	
0.09

	
50

	
764

	
760.161

	
3.839

	
0.51

	
283

	
281.565

	
1.435

	
0.51




	
19

	
789

	
797.68

	
−8.68

	
1.09

	
292

	
292.763

	
−0.763

	
0.26

	
51

	
769

	
772.293

	
−3.293

	
0.43

	
302

	
306.103

	
−4.103

	
1.34




	
20

	
803

	
808.702

	
−5.702

	
0.71

	
308

	
311.076

	
−3.076

	
0.99

	
52

	
777

	
772.493

	
4.507

	
0.58

	
317

	
320.696

	
−3.696

	
1.15




	
21

	
791

	
789.775

	
1.225

	
0.16

	
221

	
220.145

	
0.855

	
0.39

	
53

	
758

	
757.214

	
0.786

	
0.10

	
268

	
263.894

	
4.106

	
1.56




	
22

	
807

	
812.016

	
−5.016

	
0.62

	
250

	
243.514

	
6.486

	
2.66

	
54

	
749

	
751.408

	
−2.408

	
0.32

	
278

	
283.013

	
−5.013

	
1.77




	
23

	
812

	
813.088

	
−1.088

	
0.13

	
267

	
268.369

	
−1.369

	
0.51

	
55

	
757

	
752.948

	
4.052

	
0.54

	
298

	
301.925

	
−3.925

	
1.30




	
24

	
802

	
802.765

	
−0.765

	
0.10

	
288

	
286.363

	
1.637

	
0.57

	
56

	
753

	
755.523

	
−2.523

	
0.33

	
329

	
326.994

	
2.006

	
0.61




	
25

	
770

	
767.839

	
2.161

	
0.28

	
212

	
216.614

	
−4.614

	
2.13

	
57

	
777

	
767.369

	
9.631

	
1.26

	
260

	
260.84

	
−0.84

	
0.32




	
26

	
778

	
774.318

	
3.682

	
0.48

	
242

	
240.884

	
1.117

	
0.46

	
58

	
769

	
768.689

	
0.311

	
0.04

	
282

	
280.904

	
1.096

	
0.39




	
27

	
771

	
773.548

	
−2.548

	
0.33

	
273

	
274.535

	
−1.535

	
0.56

	
59

	
770

	
768.827

	
1.173

	
0.15

	
295

	
297.827

	
−2.827

	
0.95




	
28

	
773

	
774.605

	
−1.605

	
0.21

	
295

	
293.259

	
1.741

	
0.59

	
60

	
773

	
768.391

	
4.609

	
0.60

	
324

	
323.903

	
0.097

	
0.03




	
29

	
811

	
817.177

	
−6.177

	
0.76

	
238

	
236.89

	
1.111

	
0.47

	
61

	
761

	
761.483

	
−0.483

	
0.06

	
272

	
274.182

	
−2.182

	
0.80




	
30

	
765

	
767.603

	
−2.603

	
0.34

	
268

	
261.441

	
6.56

	
2.51

	
62

	
789

	
786.054

	
2.946

	
0.37

	
297

	
293.622

	
3.378

	
1.15




	
31

	
762

	
755.355

	
6.645

	
0.88

	
276

	
282.471

	
−6.471

	
2.29

	
63

	
777

	
775.854

	
1.146

	
0.15

	
314

	
316.673

	
−2.673

	
0.84




	
32

	
748

	
756.486

	
−8.486

	
1.12

	
306

	
303.79

	
2.21

	
0.73

	
64

	
765

	
764.144

	
0.856

	
0.11

	
335

	
328.871

	
6.129

	
1.86










The ANN predicted values of tool-chip interface temperatures and reaction forces were compared with the experimental results [42,58]. Values are presented in Table 6, where the term % Err shows the percent error; ANN_Sim RF is the ANN simulated reaction force; Exp_RF is the experimental value of the reaction force; ANN_Sim T is the ANN simulated temperature; and Abq Sim_T is the Abaqus simulated chip–tool interface temperature. The ANN simulated values of cutting reaction force and tool–chip interface temperatures are found in good approximation with the experimental results [42]. This shows that the ANN models developed for the temperature and reaction force can be used effectively for predicting the optimal parameters. The maximum percentage errors for ANN predicted reaction force and the chip–tool interface temperatures are 3.4 and 3.2, respectively. Figure 7 implies a good agreement between experimental and ANN simulated outcomes.


Figure 7. Comparison of experimental [42] and ANN simulated results.
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Table 6. Comparisons of experimental [42] and ANN simulated results.







	
Sample_RF




	
V

	
200

	
400

	
800

	
200

	
400

	
800




	
C

	
0.4

	
0.4

	
0.4

	
0.3

	
0.3

	
0.3




	
F

	
0.1

	
0.1

	
0.1

	
0.1

	
0.1

	
0.1




	
R

	
17.5

	
17.5

	
17.5

	
17.5

	
17.5

	
17.5




	
ANN_Sim RF

	
965.348

	
907.893

	
961.213

	
767.369

	
768.689

	
768.391




	
Exp_RF

	
988

	
878

	
976

	
778

	
769

	
769




	
% Error

	
2.346511

	
3.292569

	
1.538411

	
1.385383

	
0.040445

	
0.079257




	
Sample_T




	
V

	
200

	
400

	
800

	
200

	
400

	
800




	
C

	
0.4

	
0.4

	
0.4

	
0.3

	
0.3

	
0.3




	
F

	
0.1

	
0.1

	
0.1

	
0.1

	
0.1

	
0.1




	
R

	
17.5

	
17.5

	
17.5

	
17.5

	
17.5

	
17.5




	
ANN_Sim T

	
249.811

	
269.815

	
322.473

	
257.711

	
279.899

	
320.662




	
Abq Sim T

	
248

	
279

	
324

	
260

	
282

	
324




	
% Error

	
0.724869

	
3.404223

	
0.473621

	
0.888087

	
0.75052

	
1.041003












5. Conclusions


In this study, the dry turning process parameters (cutting speed, feed rate, tool rake angle, and contact friction coefficient) were investigated through Abaqus/Explicit numerical simulations and optimized with ANN models. The ANN predicted outcomes demonstrated that the designed intelligence models produced the reliable training data. Subsequently, training data were used to simulate the optimum cutting parameters. The maximum percentage errors between the ANN predicted and experimental results for the cutting reaction force and temperature are found to be 2.55 and 3.34, respectively. The small errors validate the conformance of ANN predictive models. The coefficients of regression for training, testing, and validation data showed a perfect linear relationship and closer to one. The performance curves and regression analysis of both models represent the consistency of the solution. The presented research demonstrates that an integrated ANN-FEM approach can be applied effectively to predict the reliable turning process parameters.
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Nomenclature




	γ
	tool rake angle



	Vc
	cutting velocity



	f
	cutting feed



	μ
	contact friction coefficient



	[image: there is no content]
	equivalent stress



	A
	material yield strength (MPa) at room temperature



	B
	material hardening modulus



	n
	work hardening exponent



	C
	material constant for strain hardening rate



	m
	thermal softening coefficient



	Troom
	reference ambient temperature



	Tmelt
	melting temperature



	[image: there is no content]
	equivalent plastic strain



	Δ[image: there is no content]
	increment of equivalent plastic strain during damage evolution



	[image: there is no content]
	equivalent strain to fracture



	D1
	initial failure strain



	D2
	exponential factor



	D3
	triaxiality factor



	D4
	strain rate factor



	D5
	temperature factor



	P
	average normal stress



	E
	modulus of elasticity of material



	υ
	Poisson ratio



	qp
	heat generation rate



	ηp
	inelastic heat fraction



	τf
	shear stress by Coulomb friction law



	[image: there is no content]
	plastic strain rate



	[image: there is no content]
	reference strain rate



	W
	synaptic weights



	y
	input signals to the respective neutron’s



	a
	output layer of ANN



	b
	hidden layer of ANN



	t
	represents a target value (desired activation)



	E
	error



	A
	learning rate



	N
	iteration (epoch)



	Η
	momentum



	RF
	reaction force



	RF_Pd
	predicted reaction force



	Err
	error



	% Err
	percent error



	T
	chip-tool interface temperature



	T_Pd
	chip-tool interface predicted temperature



	ANN_Sim RF
	ANN simulated reaction force



	Exp_RF
	Experimental value of reaction force



	ANN_Sim T
	ANN simulated temperature



	Abq Sim T
	Abaqus simulated chip-tool interface temperature
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