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Abstract: A sensor failure will lead to sensor measurement distortion, and may reduce the reliability of
the whole structure analysis. This paper studies the method of monitoring information reconstruction
based on the correlation degree. For the faulty sensor, the correlation degree of the normal response
of this sensor and the measurements of the other sensors is calculated, which is also called the
correlation degree of reconstructed variables and response variables. By comparing the correlation
degrees, the response variables, which are needed to establish the correlation model, are determined.
The correlation model between the reconstructed variables and the response variables is established
by the partial least square method. The value of the correlation degrees between the reconstructed
variables and the response variables, the amount of the monitoring data which is used to determine
the coefficients of the correlation model, and the number of the response variables are used to
discuss the influence factors of the reconstruction error. The stress measurements of structural health
monitoring system of Shenzhen Bay Stadium is taken as an example, and the effectiveness of the
method is verified and the practicability of the method is illustrated.

Keywords: structural health monitoring; responses reconstruction; correlation model; stress
measurements; Shenzhen Bay Stadium

1. Introduction

The sensors are the basic instruments of the structural health monitoring system, while the
measurements of sensors are the necessary information for estimating the structural safety. However,
the operation duration of a sensor is limited and the sensor measurements may be abnormal because of
sensor failure or environmental influences [1]. The technique for reconstructing the sensor information
should be developed as a result, which can ensure saving the complete monitoring information for
structural safety estimation. The monitoring information is diverse in the different measured locations
and the different types of structural responses, which are correlated with each other to some extent [2].
That is to say, it is necessary to reconstruct the information for the failure sensor using the effective
correlation model between the failure sensor and the other normal sensors.

For the sensor information reconstruction, the researchers proposed several methods to solve the
question. For the problem of data distortion in the structural health monitoring system of a bridge,
Huang [3] analyzed the relationship of the monitoring data by using Granger causality testing [4]
in which the sensor data with a closer relationship is selected to be the input vector for an extreme
learning machine to recover the missing sensor signal data. However, the individual prediction value
could be a large error, and the training results need to be further improved because the tendency of
the predicted data is not consistent with the theory value. The radial basis function (RBF) neural
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network model is another method to recover the unreliable data, which is also easy to fall into a
local optimum [5]. The Kalman filtering method was proposed to build the model between structural
displacements and structural accelerations [6], in which the structural model parameters and external
excitation should be known in advance. The method of data compression sampling is used for data
recovery of wireless sensors, while the recovery data error would be larger for the accelerations when
the sparse of the original data becomes worse [7]. Feng [8] proposed a data recovery method based on
a least square support vector machine. A forecasting model based on the method is established, and
signal recovery is accomplished by on-line learning diagnosis. However, this method mainly aims
at the data reconstruction of the sensor within short duration, and the effect is not good for a high
sampling rate and for long-term failure prediction.

This paper, thus, focuses on the structural responses and the correlation model between the
reconstructed variable and the response variable is established, which can be used for reconstructing
the sensor information. In this paper, the correlation degree and the partial least square method are
applied to the data reconstruction of the fault sensors. As the strain sensors are placed on the roof
steel structure of Shenzhen Bay Stadium, the strain measurements represent the distributed responses
of the structure and have an inherent association, which is suitable to verify the effectiveness of the
proposed method in the paper as well.

2. Correlation Model of Monitoring Data

2.1. Correlation Analysis of Monitoring Data

The monitoring structural responses from different locations and different types of sensors are
in the correlated relationship. The Pearson correlation coefficient is an index to measure the linear
correlation degree of structural responses.

The structural response matrix of m measuring points under the load in # time steps is denoted
as X:

X11 X122 Xim
X21 X22 cc Xom
X:{Xl X2 ... Xm}: ; ; . . 1)
Xnl Xn2  Xnm
T
X; = [ X Xpo e Xig } )

In the Equations (1) and (2), x; represents the measurements of the measuring point i under the
load of # time steps. When the fault sensor works in normal, the measurement of the measuring point
where the fault sensor located is denoted as y. The Pearson product-moment correlation coefficient [9]
of the measurement from the arbitrary measuring point and the measuring point where the faulty
sensor located is denoted as p;
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In Equation (3), oy, and oy represent the response variance of the measurement point i and
the fault sensor, respectively; cov(x;,y) is covariance, x;(k) and y(k) represent the measurement of
point i and the fault sensor in the k' time step, respectively; Hy, and py are the mean value of the
measurements x; and y, respectively.

2.2. Correlation Modeling Using Partial Least Squares and Multiple Regression

2.2.1. Reconstructed Variable and Response Variables

The correlation coefficients of the normal measurement of fault sensor and the measurements of
the other sensors are calculated, which are also called the correlation coefficients of the reconstructed
variable and response variables. The correlation matrix can be denoted as P:

P = [ p1 P2t Pm } 7)

The correlation coefficients are sorted from larger value to small value based on their absolute
values, while the updated correlation coefficient’s sorting matrix can be denoted as Dp:

Dp=1{(0); (o) - () } ®)

(0); represents the i correlation coefficient absolute value, while (p); is the largest correlation
coefficient absolute value and (o), is the smallest correlation coefficient absolute value, respectively.
The corresponding measurement to (p); is denoted as (x);, while the updated structural response
sorting matrix can be denoted as Dx:

Dx={(x) () - K} ©)

The faulty sensor information is considered as the reconstructed variable Yp, and p measurements
are selected as response variables Xp:

Xp={(x); () - (), } (10)

Yp = {y} (11)
2.2.2. Establishment of Correlation Model Using the Partial Least Square Method

The reconstructed variables and response variables are standardized as:

(X)l* _ (X)io__ u’(x)i (12)
(x);
«_ Y My
Y=, (13)

The response variables Xp and the reconstructed variable Yp are standardized into Ey and
Fy, respectively:

Bo={(0] (x); - () | (14)
Fo = {y’} (15)

The main components set of Eg and Fy can be obtained by using principal component analysis,
which are denoted as T and U, respectively:

T:{h ty ot mtA} (16)
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Uz{ Uy Uy e Up e uA} (17)

The regression equations regarding Ey and Fy using partial least squares [10] and first principal
components are:

Eo = tip1’ +E1 (18)
Fo=tr' +F 19)
where the regression coefficient vector is:
ETt1
p1=—"— (20)
1]l
Elt
r = 0 12 (21)
[It1]]

The regression equations for the i principal component are:
By1 = tipy’ + By (22)

F,_ 1=t +F, (23)

where the regression coefficient vector is:

El |t
h—1h
Pr=""1 (24)
e
F[_t
r = L% (25)
1Al
The relationship between the 1" principal component t, and the 1" axis of Ey is:
tp = Ep_qwy, (26)

where w;, is the unit eigenvector corresponding to the maximum eigenvalue 0,2 of matrix
By 1 Fy 1 Fy 1 "By
According to the Equations (18), (19), (22), and (23), Ep and Fy can be expressed as:

Eg=tipr’ +hpy’ +---+hpy’ +Ey (27)
Fyp = t1r1T+t2r2T+~~~—0—thrhT+Fh (28)

Substituting Equation (26) into Equation (22) yields:
By = By (1— wyipy ) (29)

Substituting Equations (26) and (29) into Equation (27) yields:
L T
E, = E[ [(T-wjp;") (30)
=1
Substituting Equation (30) into Equation (26) yields:
h—1

ty = Bp_qwy, = Bo[ [ (1= wjp;")wy, = Egwy,* 31)
=1
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h—1

Wpx = H (I — W]P]T)Wh (32)
j=1

Substituting Equation (31) into Equation (28) yields:
Fy = E0W1*I‘1T + -+ Eowh*rhT +Fy (33)

Assuming the number of the principal components is & when the principal components satisfy
the cross-validation principle. Meanwhile, F;, approaches 0, which can be ignored. Equation (33) is
written as:

Fo = Eo(wi*t; ! 4+ -+ w,r,]) (34)

Substituting Equations (14) and (15) into Equation (34) yields:

- -
rwip™
= ML
* * * h *
ye = 1007 - (9] o005 X W @)
.
L Wiy
L j=1 J
If:
h
O(l'* = ZI‘JW]Z* (36)
j=1
then:
Y= e (X)) 4o (), )

Substituting Equations (12) and (13) into Equation (37), the correlation model between the
reconstructed variable and the response variables is:

y(i) = aa(x(i)) + - - + op(x(0)) , + x0 (38)

2.2.3. The Reconstruction Error Evaluation Index

The average absolute error between the reconstructed value and actual value ¢; is:

1 n
ea =3 ly(k) = yo(K)| (39)
i=k
The average relative error between the reconstructed value and actual value ¢, is:

y(k) — yo(k)
yo(k)

x 100% (40)

where y (k) represents the reconstructed response of k! time step of the supposed fault sensor, and yg (k)
represents the actual response of k™ time step of the supposed fault sensor, respectively.
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3. Reconstruction to Stress Measurements of Shenzhen Bay Stadium

3.1. Project Description

The structural health monitoring system of Shenzhen Bay Stadium began to be implemented in
2010, while the continuous monitoring of the steel roof in both the construction phase and service
phase began to be carried out at the same time [11]. The stress measurements of the sensors located at
the support members are chosen as the basic analysis data for example. The layout of sensors located
at the support members are shown in Figures 1 and 2. There are six supports, two rods of which are
being monitored and four stress monitoring points are arranged on each rod; the sensor installation of
support is shown in Figure 3. For example, the number of eight stress monitoring points at support 3-1
can be denoted as 3-1-1, 3-1-2, 3-1-3, 3-1-4, 3-1-5, 3-1-6, 3-1-7, and 3-1-8, respectively.

Figure 1. Stress monitoring point of the support connecting rod.

Figure 2. Distribution of the stress sensor.

Figure 3. The sensor installation of two support connecting rods.

3.2. The Correlation Model of the Reconstructed Variable and the Response Variables

The sensor at location 3-1-4 is assumed to be failure on 16 May 2014. The stress monitoring
information of this point is considered as the reconstructed variable. The measurements of the other
locations are considered as the available response variables. The stress monitoring data from 7 May
2014 to 10 May 2014 are selected to calculate the correlation coefficients between measurements from
location 3-1-4 and the other locations, which are shown in Table 1.
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Table 1. The correlation degree of stress monitoring data between stress sensor 3-1-4 and other
stress sensors.

Ranking  Sensor Location Correlation Coefficient Ranking  Sensor Location Correlation Coefficient
1 3-1-8 0.6831 18 3-1-2 0.2076
2 3-6-6 0.5437 19 3-6-1 0.1975
3 3-3-2 0.5194 20 3-5-1 0.1962
4 3-2-8 0.4656 21 3-1-3 0.1623
5 3-1-7 0.4212 22 3-2-7 0.1113
6 3-2-4 0.4121 23 3-6-8 0.0915
7 3-1-6 0.4006 24 3-3-7 0.0742
8 3-2-6 0.3735 25 3-2-2 0.0632
9 3-5-7 0.3688 26 3-3-1 0.0624
10 3-2-3 0.3677 27 3-3-3 0.0547
11 3-5-4 0.3608 28 3-2-5 0.0424
12 3-6-3 0.3512 29 3-5-2 0.0214
13 3-5-5 0.3425 30 3-5-8 0.0156
14 3-3-6 0.3289 31 3-5-3 0.0141
15 3-5-6 0.2745 32 3-6-4 0.0108
16 3-1-5 0.2608 33 3-2-1 0.0031
17 3-1-1 0.2487 - - -

In Equation (38), there is no exact number demanded of the response variables, which may depend
on the detailed examples and the special value of the correlation coefficients. Generally speaking,
the historical measurements can be used to identify the effectiveness when the different number of
responses variables selected. If four response variables are chosen to build the correlation model,
that is to say, p = 4, then:

Dp = {0.6831 —0.5437 —0.5194 0.4656} (41)

Xp={ (0 0, (X5 (0,

03-1-8(t) 03-6-6(t) 03-3-2(t) 0'37278(’%)}

Yp1 = {y1}= {637174(1‘)} (43)

The correlation model of the reconstructed variable and the response variable is:

(42)

y1(i) = 1.01(x(i)); + 0.05(x(i)), — 0.09(x(i))5 + 0.10(x(i)), — 20.73 (44)

The stress monitoring data of the stress sensor 3-6-6, 3-3-2, 3-1-8, and 3-2-8 are used to reconstruct
the stress measurements of the sensor located at point 3-1-4 on 16 May 2014. The contrast curves
between reconstructed values and actual values are shown in Figure 4. The reconstructed values
have the same trend as the actual values, and there are small differences between them. The average
absolute error is 0.89 MPa and the relative error is 2.71%.

Actual value § 5
.30 —Reconstructed value =4+
g I v g
S "o4F 5}
7 g®
g -34 § 2 4
& 5
o
_3(§ L r I I L g . . . . .
00 400 800 12:00 16:00 20:00 24:0C 'Ioo;oo 4:00 8:00 12:00 16:00 20:00 24:00
Time Time
(@) (b)

Figure 4. The comparison between the reconstructed value and the actual value: (a) the curve of
reconstructed value and the actual value; and (b) the curve of absolute error.
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3.3. Influence of Correlation Degree on Reconstruction Error

In order to discuss the influences of the selection of response variables, two additional cases are
discussed, which are:

Xp2 =191 (X153 (1s (15 (X6 } (45)
=14 03-5-5(t) 03-3-6(t) 03-5-6(f) 03-1-5(t) }
and:
Xps =191 (X3 (X3 Oz (X33 } (46)
=1 03-5-8(t) 03-5-3(f) 03-6-a(t) 032-1(f) }
The correlation model using Xp is:
y2(i) = 0.02(x(1)) 13 4 0.01(x(i)) 14 + 0.39(x(i) )15 + 0.02(x(i) )1 — 23.85 (47)

The contrast curves between reconstructed values and actual values are shown in Figure 5.
The average absolute error is 0.97 MPa and the relative error is 2.97%.

-28 - . T 5
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~30r —Reconstructed value | 40
© =
% -32f 1 5 3k
Z S
R e =R ]
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_363 : : : : . 3] . . . . .
00 400 800 12:00 16:00 20:00 24:.0C D:(S):OO 400 800 1200 16:00 20:00 24:.00
Time Time
(a) (b)

Figure 5. The reconstructed value and the actual value using response variable Xp;: (a) the curve of
the reconstructed value and the actual value; and (b) the curve of reconstruction error.

The correlation model using Xp3 is:
y3(i) = —0.01(x(7) )5y + 0.01(x(7) )53 — 0.01(x(i) )5, — 0.01(x(i))45 — 32.03 (48)

The contrast curves between reconstructed values and actual values are shown in Figure 6.
The average absolute error is 1.03 MPa and the relative error is 3.13%.

-28 5
Actual value s
= -30p —Reconstructed value | S 4r
S 32 S 3
r’/ o
& -34¢ B 2F |
7] =
-3y 2 1WJ——
o
—308 ; : : : . 5 . . . : :
00 400 800 1200 16:00 20:00 24:0C Dt00:00 400 800 12:.00 16:00 20:00 24:00
Time Time
(@) (b)

Figure 6. The reconstructed value and the actual value using response variable Xp3: (a) the curve of
the reconstructed value and the actual value; and (b) the curve of reconstruction error.

The errors of the reconstructed information using different correlation coefficients of the response
variables are summarized in Table 2.
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Table 2. The summarized errors using different response variables.

Response Variables e, (MPa) ep
Xp1 0.89 2.71%
Xpo 0.97 2.97%
Xp3 1.03 3.13%

It can be seen from Table 2 that the errors become larger when the coefficients of response
variables become smaller, in which the average absolute error and relative error are minimum
when Xp; is chosen as the response variables. It indicated that the response variables with closer
correlation to the reconstructed variable should be chosen, which is better for the reconstruction of the
sensor measurements.

3.4. Influence of Monitoring Data Quantity on Reconstruction Error

In order to discuss the influences of the selection of response variables, two additional cases
are discussed. The original stress monitoring data is collected from 7 May 2014 to 10 May 2014 to
calculate the correlation coefficients between measurements from location 3-1-4 and the other locations.
The stress monitoring data of two additional cases are from 7 May 2014 to 12 May 2014 and from 7 May
2014 to 14 May 2014, respectively.

The correlation model using stress monitoring data from 7 May 2014 to 12 May 2014 is:

ya(i) = 0.89(x(i)); + 0.09(x(i)), — 0.20(x(i))5 + 0.04(x(i)), — 33.62 (49)

The contrast curves between reconstructed values and actual values are shown in Figure 7.
The average absolute error is 0.65 MPa and the relative error is 1.99%.

-28 =5
Actual value s
- 301 —Reconstructed value T4
< =
Lol A =
= -32¢ ‘ — s3
2 S
& -34r 3 2t ,
& 2
g
'308:00 4:00 8:.00 12:00 16:00 20:00 24:00 ’IOO:OO 4:00 800 12:00 16:00 20:00 24:00
Time Time

@) (b)

Figure 7. The reconstructed value and the actual value using data from 7 May 2014 to 12 May 2014:
(a) the curve of reconstructed value and the actual value; and (b) the curve of reconstruction error.

The correlation model using stress monitoring data from 7 May 2014 to 14 May 2014 is:
ys(i) = 0.35(x(7)); — 0.16(x(i)), — 0.11(x(i))5 + 0.03(x(i) ), — 39.45 (50)

The contrast curves between the reconstructed values and the actual values are shown in Figure 8.
The average absolute error is 0.22 MPa and the relative error is 0.68%.

The errors of the reconstructed information using stress monitoring data from different time
periods are summarized in Table 3.

It can be seen from Table 3 that the errors become smaller when the quantity of stress monitoring
data become larger, in which the average absolute error and relative error are a minimum when the
stress monitoring data from 7 May 2014 to 12 May 2014 is chosen to build the correlation model.
This indicated that the larger quantity of stress monitoring data should be used, which is better
for reconstruction of sensor measurements. In theory, the number of measurements larger than the
unknown coefficients is the basic requirement for regression function identification; in fact, there are
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noises and temperature effects included in the measurements, the measurements in at least one full
day are better.

Table 3. The summarized errors using stress monitoring data from different time periods.

Data Acquisition Time e, (MPa) ep
2014.05.07~2014.05.10 0.89 2.71%
2014.05.07~2014.05.12 0.65 1.99%
2014.05.07~2014.05.14 0.22 0.68%

-28 . . S5
Actual value =
= -30¢ — Reconstructed value S 4
R e b e 23
o -36} § 1k
Poo 400 800 1200 1600 2000 2400 €000 400 800 1200 1600 2000 2400

Time Time

(a) (b)
Figure 8. The reconstructed value and actual value using data from 7 May 2014 to 14 May 2014: (a) the
curve of the reconstructed value and the actual value; and (b) the curve of the reconstruction error.
3.5. Influence of Response Variable Number on Reconstruction Error

In order to discuss the influences of the different number of response variables, three additional
cases are discussed, which are:

Xes={(x); ()2 (K5 (g (05 } 51)
Xoo= {1 (X2 95 Ky (05 K |} (52)
Xep= {0y (2 (s (s ()5 (K (05 ) (53)

The correlation model using Xps is:
ye(i) = 1.33(x(7)); +0.10(x(i)), — 0.03(x(i)); — 0.08(x (7)), — 0.20(x(i))5 — 32.82 (54)

The contrast curves between reconstructed values and actual values are shown in Figure 9.
The average absolute error is 0.80 MPa and the relative error is 2.45%.

-28 =5
Actual value s
. -30 — Reconstructed value T4
S 32t S 3t
z =]
£ -34 g 2
= =
n =
-36 g 1:‘“—‘%
g
-3&00 4:00 8:00 12:00 16:00 20:00 24:00 D:00200 4:00 800 12:00 16:00 20:00 24:00
Time Time

(a) (b)

Figure 9. The reconstructed value and actual value using response variables Xps: (a) the curve of the
reconstructed value and the actual value; and (b) the curve of reconstruction error.

The correlation model using Xp is:

y7(i) = 1.33(x(i)); + 0.11(x(i)), — 0.04(x(i))5 — 0.11(x(i)), — 0.16(x(i))5 + 0.08(x(i) ) — 30.95 (55)
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The contrast curves between reconstructed values and actual values are shown in Figure 10.
The average absolute error is 0.80 MPa and the relative error is 2.44%.

-28 S5

Actual value s

= -30¢ ——Reconstructed value 1 T 4r

St e S 31

b3 2

S -341 o 2r

£ s

08500 4:00 8:00 12:00 16:00 20:00 24:00 @ (9100 4:00 8:00 12:00 16:00 20:00 24:00
Time Time

(a) (b)

Figure 10. The reconstructed value and actual value using response variables Xpg: (a) the curve of the
reconstructed value and the actual value; and (b) the curve of reconstruction error.

The correlation model using Xpy is
ys = 1.30(x); +0.09(x), — 0.07(x)5 — 0.08(x), — 0.19(x)5 + 0.12(x), + 0.13(x), — 26.93 (56)

The contrast curves between the reconstructed values and the actual values are shown in Figure 11.
The average absolute error is 0.77 MPa and the relative error is 2.36%.

-28 5
Actual value s
= -30 —Reconstructed value T4
Sagf eI s 3
k73 2
g -34 g 2t
» =
-36 2 lMWMW
o
_3(? . . . . . S ‘ . . . .
‘00 400 800 1200 16:00 20:00 24:0C o (9:00 400 800 12:00 16:00 20:00 24:00
Time Time

(@) (b)

Figure 11. The reconstructed value and actual value of the response variables Xpy: (a) the curve of
reconstructed value and the actual value; and (b) the curve of the reconstruction error.

The errors of the reconstructed information using different number of the response variables are
summarized in Table 4.

Table 4. The summarized errors using different number of the response variables.

Response Variable e, (MPa) ep
Xp1 0.89 2.71%
Xps 0.80 2.45%
Xpe 0.80 2.44%
Xpy 0.77 2.36%

It can be seen from Table 4 that the errors become smaller when the number of response variables
become larger, in which the average absolute error and relative error are minimum when Xpy is chosen
as the response variables. However, there is only a slight difference between these discussed cases,
and the number of the response variables with the same level of correlation coefficients influencing the
errors of the reconstructed variables.
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4. Conclusions

In this paper, a method of sensor information reconstruction based on the correlation degree is
proposed. The monitoring information of a faulty sensor can be reconstructed by the correlation model
and the measurements of other normal sensors. Based on the structural health monitoring system of
Shenzhen Bay Stadium, the stress measurements of sensors located at support members are used to
verify the proposed method. Furthermore, the influences for the errors of reconstructed monitoring
information of a faulty sensor caused by three kinds of factors are discussed in the paper, which are
the selection of response variables with different correlation, the quantity of the measurements from
different time periods, and the number of response variables. The selection of response variables and
the quantity of the measurements from different time periods are two main factors, which influence the
reconstructed information errors for the faulty sensor directly. The number of the response variables
influences the errors of reconstructed information a little if the selected response variables are in the
same correlation level to reconstructed variable. Furthermore, the proposed method is verified its
effectiveness to a real world project.
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