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Abstract: The recently developed smart strand offers the possibility of measuring the prestress force
of the tendon from jacking and all along its service life. In the present study, a method estimating
the force distribution in all the tendons of a prestressed concrete (PSC) girder installed with one
smart strand is proposed. The force distribution in the prestressed tendons is formulated by the
friction and the anchorage slip, and is obtained through an optimization process with respect to the
compatibility conditions and equilibrium of the forces in the section of the PSC girder. The validation
of the proposed method through a numerical example and experiment shows that it can be used to
estimate the force developed in the tendon.
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1. Introduction

The prestress force in a prestressed concrete (PSC) structure is mostly introduced by means of
steel strand. Since such steel strands are the most important member of the PSC structure, their rupture
is likely to degrade structural health. It is noteworthy that, despite its primary role, it has been
challenging to directly measure the prestress distribution within the structure prior to the development
of the smart strand [1–5]. The prestress force was estimated indirectly by a formula calculating the loss
of prestress using the hydraulic pressure measured externally at the jacked end of the structure and
the change in the length of the tendon before and after prestressing [6–8].

The recent development of the smart strand, which can measure the strain of the strand all along
its service from jacking, offers the possibility of accurately measuring the distribution of the prestress
force in the tendon. The smart strand can be fabricated by attaching the optical fiber between the
neighboring helical wires [4,5] or by replacing the steel core wire with a core wire in which the optical
fiber is embedded. In such case, the core wire is made by inserting the optical fiber inside a hollow steel
tube [2] or by pultruding a carbon fiber reinforced polymer (CFRP) rod [1] or a glass fiber reinforced
polymer (GFRP) rod [3] with the optical fiber monolithically. Moreover, the strain can be measured at
the locations at which the fiber Bragg grating (FBG) is engraved in the optical fiber [1,2] or all along
the optical fiber using the Brillouin wave [9]. Figure 1 presents a typical configuration of the smart
strand in which the steel core wire is replaced by a core wire with sensing function.

As shown in Figure 2, the PSC girder is generally prestressed by several tendons. Each tendon
experiences some loss in prestress force due to the friction and the anchorage slip during the
prestressing process. This results to the occurrence of discrepancy between the prestress forces
developed outside and inside the structure. Moreover, the prestress force in a previously jacked tendon
diminishes due to the shrinkage of the concrete structure generated by the subsequent jacking of the
other tendons. Since there was no way to measure the force in the tendon before the development
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of the smart strand, these losses of the prestress force were estimated by an indirect method [6].
However, the appearance of the smart strand opens up the possibility of measuring the change in
the prestress force in the tendon all along the jacking process, thus directly computing the loss of the
prestress force.Appl. Sci. 2017, 7, 1319 2 of 13 
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Figure 2. Prestressed concrete (PSC) girder with multiple tendons.

Ideally, the smart strand should be installed in each tendon to directly measure the change of
prestress force in the tendons. However, in practice, the smart strand is installed only in a limited
number of the tendons because of the higher cost of the smart strand compared to the conventional
strand. Accordingly, this study intends to propose a method for estimating the prestress force
distribution in all the tendons of the PSC girder when only one smart strand is installed as shown in
Figure 2.

2. Formulations

The formulation is done in the case where the smart strand is installed in the first tendon to be
prestressed in the PSC girder with multiple tendons. This condition that the tendon installed with the
smart strand must be prestressed first is essential for knowing the force distribution in all the tendons
equipping the PSC girder. The present formulation can be applied through slight adjustment to the
case where several smart strands are installed.

The prestress forces developed by the individual strands in a tendon differ to each other
at the ends of the girder due to the braiding of the strands and the difference in their initial
lengths [10–12]. This situation leads the prestress forces of the individual strands to also differ
to each other inside the tendon itself. Consequently, the prestress force distribution in an individual
strand resembles the prestress force distribution curve considering the friction but does not coincide
exactly with it. However, the force distribution of the tendon consisting of bundles of these strands
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fits with the prestress force distribution curve considering the friction by the force equilibrium.
Therefore, the prestress force of the jacked tendon can be expressed as follows [7,8].

Fkp
ij = Fkp

i exp
(
−µαij − κlij

)
(1)

where µ and κ are respectively the curvature friction coefficient and the wobble friction coefficient;
αij and κij are respectively the changes in curvature and arclength in the jth section of the ith tendon;

and Fkp
i and Fkp

ij are respectively the prestress force in the anchor of the ith tendon and the prestress
force in the jth section at the kth jacking stage. The values of αij and κij can be obtained from the profile

of the tendon. The value of Fkp
i is also known since it is the jacking force applied during prestressing.

Accordingly, the unknowns in the prestress force distribution of the tendon are µ and κ of which values,
once determined, will allow the computation of the prestress force (Fkp

ij ) in each section of the tendon.
The wedge is inserted after jacking. In this process, the anchorage slip occurs between the wedge

and anchorage head. This anchorage slip provokes the change in the prestress force of the tendon at
the jacked end, which can be expressed as follows [7,8].

Fks
ij = Fks

i

(
Fkp

i , µ, κ, ∆
)

(2)

where ∆ is the anchorage slip.
Since the tendon including the smart strand is prestressed first in this study, k = 1 and i = 1.

Equations (1) and (2) can thus be rewritten as follows for the tendon with the smart strand.

F1p
1j = F1p

1 exp
(
−µα1j − κl1j

)
(3)

F1s
1j = F1s

1

(
F1p

1 , µ, κ, ∆
)

(4)

Dividing the prestress forces obtained from Equations (3) and (4) by the area (Ap1) and the elastic

modulus (Ep1) of the tendon gives the strains (ε1p
1j , ε1s

1j ). The elastic moduli of the conventional and
smart strands composing the tendon are presented in the studies of Mattock [13] and Cho et al. [14].

After prestressing of the first tendon including the smart strand, the strain developed in each
section of the concrete girder experiences changes due to the prestressing of the subsequent tendon.
This also leads the prestress force of the previously prestressed tendon to change. Such changes in the
strain must satisfy the following force equilibrium in each section.

∑ ∆F = Ft
ij cos θij +

k−1

∑
i=1

Epi Api∆εt
ij cos θij+

∫
Aj

Ec∆εt
c,jdA = 0 (5)

∑ ∆Mz = Ft
ij cos θijyij +

k−1

∑
i=1

Epi Api∆εt
ij cos θijyij+

∫
Aj

Ec∆εt
c,jyjdA = 0 (6)

∑ ∆My = Ft
ij cos θijzij +

k−1

∑
i=1

Epi Api∆εt
ij cos θijzij+

∫
Aj

Ec∆εt
c,jzjdA = 0 (7)

where t denotes the prestressing stage (t = 2p, 2s, 3p, 3s, . . .); Ft
ij is the prestress force of the tendon

prestressed in each stage and can be obtained by means of Equations (1) and (2); ∆εt
c, j

(
= εt

c,j − εt−1
c,j

)
is the change in the strain of concrete occurring in the current stage; and, ∆εt

ij

(
= εt

ij − εt−1
ij

)
is the

strain change experienced in the previously prestressed tendon at the current stage.
Assuming that a plane section of the concrete structure before deformation remains plane after

deformation, the strain change (∆εt
c,j) per prestressing stage in the concrete section can be expressed

as follows.
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∆εt
c,j = ∆εt

co,j − yj∆κt
cz,j + zj∆κt

cy,j (8)

where ∆εt
co,j, ∆κt

cz,j and ∆κt
cy,j respectively denote the strain change in the neutral axis of the jth section

at the tth prestressing stage, and the curvature changes with respect to the z-axis and y-axis (Figure 3);
yj and zj respectively represent the distances from the neutral axis of the section in the y-direction and
z-direction.
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The integrated terms related to concrete in Equations (5)–(7) are arranged in Appendix A.
Moreover, if we assume that the prestressed tendon and concrete behave monolithically, the strain

increment of the prestressed tendon can be expressed as follows using the strain of concrete.

∆εt
ij = ∆εt

co,j − yij∆κt
cz,j + zij∆κt

cy,j (9)

The unknowns in Equations (3)–(7) can be subdivided into the variables that keep constant values
at each prestressing stage and those whose values vary. The variables that remain constant at
each prestressing stage are µ, κ, ∆ for the tendon and Ec for concrete. The variables with varying
values at each prestressing stage are ∆εt

co,j, ∆κt
cz,j, and ∆κt

cy, j for the deformation of concrete in each
section. Among them, the unknowns representing the deformation of concrete can be obtained by
the equilibrium of the forces given in Equations (5)–(7). Consequently, the problem of evaluating
the tendon prestress force in the PSC girder is transformed to a problem searching for the curvature
friction coefficient and wobble friction coefficient of the tendon, the anchorage slip, and the elastic
modulus of concrete.

Solving Equations (5)–(7) for each section and at every prestressing stage provides then the strain
state of the tendons. Among these so-obtained strains, an optimization problem can be formulated so
as to minimize the difference between the strain increment

(
∆εt

1j

)
of the tendon including the smart

strand and the strain increment
(

∆εt
1j,exp

)
measured by the smart strand. Equation (10) formulates

the optimization problem which, once solved, will allow the remaining four other unknowns to
be obtained.

Minimize ∑
t

m

∑
j=1
‖ ∆εt

1j − ∆εt
1j,exp ‖ (10)

Each prestressing stage is subdivided into a substage (kp) in which the tendon is tensioned
by the hydraulic jack, and another substage (ks) in which the wedge is fixed in the anchor head.
The anchorage slip cannot be obtained in substage-kp because this substage is related only to the
curvature friction coefficient, the wobble friction coefficient and the elastic modulus. Besides, all the
unknowns can be obtained in substage-ks because this substage relates not only the curvature friction
coefficient, the wobble friction coefficient, and the elastic modulus but also the anchorage slip.
Accordingly, Equation (10) must consider the anchoring stage in order to obtain the anchorage slip.

Substituting the curvature friction coefficient, wobble friction coefficient, anchorage slip and
elastic modulus obtained through this optimization process in Equations (1) and (2) enables us to find
the strain distribution in the tendons at the prestressing stage and anchoring stage. The further strain
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increment caused by additional prestressing can be obtained using Equation (9). The final tendon
strain distribution can thus be described by summing them up until the last prestressing stage.

3. Numerical Verification

3.1. Without Variation

Figure 4 presents the example adopted to verify numerically the formulation process described in
Section 2. The 20-m-long PSC girder (width of 0.6 m, height of 2.0 m) is equipped with three 12-strand
tendons. The prestress force of each tendon is 2476 kN, and prestressing is performed sequentially
downward from the tendon at the top (tendon #1). The smart strand is installed in tendon #1 and the
strain is measured at seven points.
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for the girder shown in Figure 4. Figure 5 compares the tendon prestress forces for each of these analysis
cases. The dots for tendon #1 indicate the measured values used as input during the optimization in
Equation (10). The dots of tendons #2 and #3 represent the values obtained by finite element analysis
for comparison and are not used in the optimization. The lines of each tendon plot the prestress forces
obtained through optimization and are seen to be in good agreement with the measured or analytical
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Coefficient
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3.2. With Variation

Figure 5 corresponds to the ideal case where the prestress force measured by the smart strand
coincides with the average prestress force of the tendon. However, Cho et al. [10] reported that, in
reality, the prestress forces developed in the strands of the tendon differ to each other due to the
braiding of the strands and that the prestress force distribution of the strands inside the tendon follows
a normal distribution N

(
fmean, σ2

f

)
where fmean is the average prestress force of the tendon and σf is

the standard deviation among the prestress forces.

σf = 0.019 fmean + 2.286 [kN] (11)

Consequently, the strain measured in the smart strand will also exhibit a pattern different to the
ideal case. Need is thus to verify if the proposed method would provide an accurate estimation of
the tendon force in such a non-ideal case. To that goal, assume the following expression for the strain
measured by the smart strand.

ε
1p
1j,exp =

F1p
1 exp

(
−µα1j − κl1j

)
Ep Ap

+ var (12)

where var follows the normal distribution N
(
εmean, σ2

ε

)
. The strain σε can be obtained by dividing

Equation (11) by the elastic modulus and area of the strand.
Optimization is then performed by applying the variation expressed by Equation (12) in the

strain measured by the smart strand for the analysis case A. This optimization was carried out on
10 variations and the results are arranged in Table 2. The average values for each of the optimization
variables show minimal error compared to the original system. In addition, the normalized error of the
smart strand exhibits an average of about 2.9% and indicates the feasibility of the proposed method.

Figure 6 plots the strains measured by the smart strand together with the corresponding
optimized strains for the variations with the smallest error, largest error and median error. Even if
the measured strain profiles are very different to the ideal case, the tendon strain distribution
resulting from the optimization appears to be very close to the ideal case. For the worst level of
correspondence in Figure 6c, the error reaches only 3.6% at the location with the largest difference.
Consequently, the method proposed in this study appears to be sufficiently applicable even in the
case where the strain measured by the smart strand exhibits a different distribution profile due to the
braiding of the strands.

Table 2. Optimization results for variations where the strain measured by the smart strand shows
definite fluctuation.

Variation Curvature Friction
Coefficient (/rad)

Wobble Friction
Coefficient (/m)

Working Stroke of
Anchorage (mm)

Elastic Modulus
(MPa)

Normalized
Strain Error (%)

1 0.21 0.0020 6.0 33,943.9 1.0
2 0.19 0.0020 6.5 33,926.2 1.2
3 0.20 0.0020 6.6 33,896.1 1.6
4 0.17 0.0020 6.3 34,001.2 1.7
5 0.16 0.0019 7.2 33,922.2 2.6
6 0.22 0.0021 6.7 33,836.8 2.7
7 0.16 0.0019 6.1 34,057.1 2.8
8 0.26 0.0021 6.1 33,842.9 4.0
9 0.24 0.0021 6.7 33,784.2 4.1
10 0.12 0.0018 5.2 34,291.5 7.3

Average 0.19 0.002 6.3 33,950.2 2.9
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4. Experimental Validation and Discussions

The validity of the proposed method is verified experimentally as shown in Figure 7. The shape
and size of the specimen are those of the girder adopted in the numerical analysis (Figure 4). The girder
specimen is prestressed by three 12-strand tendons. The prestress force is 2109 kN in Tendon #1,
2045 kN in Tendon #2, and 2032 kN in Tendon #3. Jacking is done sequentially from Tendon #1
to Tendon #2 to Tendon #3. Tendon #1 and Tendon #2 are equipped smart strands having 7 FBGs,
and Tendon #3 is installed with a smart strand having 5 FBGs.

Figure 8 plots the strains measured by the smart strands at each jacking stage. The strain is
seen to decrease as much as the position becomes farther from the jacked end because of the friction
within the tendon. In addition, the strain reduces at the jacked end due to the anchorage slip that
occurred after setting. However, the measured strain does not fit exactly with the prestress force
distribution predicted by the formula considering the friction due to the intertwisting of the strands
inside the tendon.

Optimization was conducted by the proposed method using the values measured by the smart
strand of Tendon #1. The results provided a curvature friction coefficient of 0.123/rad, a wobble friction
coefficient of 0.0037/m, an anchorage slip of 4.65 mm, and a concrete elastic modulus of 25.2 GPa.

The strain distribution in each tendon could then be obtained based upon the optimization results.
Figure 9 compares the measured prestress force distributions with the optimized ones from the start to
the end of the jacking process. In the graphs, the gray lines represent the 95% confidence interval for
the prestress force distribution of each strand. These lines were obtained from the average prestress
force of the tendon resulting from optimization and standard deviation calculated by Equation (11).

The optimization results are seen to resemble the measured values but to not be in perfect
coincidence. This can be attributed to the fact that the prestress force of each individual strand in the
tendon is normally distributed and then the measured values of the smart strands is not necessarily
identical to the average values of each tendon. This explains the apparent difference between the
experimental values and the optimized average values. Moreover, the optimized value can have a
certain level of error in the determination due to fluctuation of the measured value, as can be seen from
the numerical verification. However, most of the values measured by the smart strands fall within
the 95% confidence interval obtained from the optimized average prestress force. This proves that
the proposed method can be applied even in the case where the measured value is not the average
prestress force and indicates that the method can be used to estimate the prestress force distribution in
the tendon.
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of Tendon #1; (c) Jacking of Tendon #2; (d) Setting of Tendon #2; (e) Jacking of Tendon #3; (f) Setting of
Tendon #3.
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However, as shown in Section 3.2, the accuracy degrades when the measured strains diverge
significantly from the average. Further study shall investigate the relation between the extent by which
the measured strains diverge from the average and the accuracy of the proposed method. The prestress
force varies continuously not only during jacking but also all along the service life of the structure,
and influences the behavior of the structure [15,16]. Consequently, there is also need for a method
estimating the change of the prestress force during jacking as well as with respect to time.

5. Conclusions

This study proposed a method estimating the final prestress force distribution in individual
tendons of a PSC girder using the smart strand. This method expresses the tendon prestress force
distribution in terms of parameters related to the friction and the anchorage slip and, correlates
it to the compatibility and force equilibrium conditions in the PSC girder section at the sensing
locations of the smart strand. The validity of the proposed method was verified numerically and
experimentally. The numerical verification dealt with the cases where the strain measured by the smart
strand agreed or disagreed with the prestress force distribution predicted by the formula considering
the friction. The numerical results confirmed that the proposed method could estimate the prestress
force distribution within a definite level of error. The experimental validation showed that the proposed
method could provide prestress forces falling within 95% confidence interval even when the measured
strain was not the average. Accordingly, the proposed method can be applied to estimate the prestress
force distribution in the tendon. A method estimating the change in the prestress force not only
during jacking but also all along the service life of the prestressed structure shall also be developed in
the future.
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Appendix A

The integrated terms related to concrete forces in Equations (5)–(7) are arranged as follows by
means of Equation (8).∫

Aj
Ec∆εt

c,jdA = Ec Ac,j∆εt
co,j − EcQcz,j∆κt

cz,j + EcQcy,j∆κt
cy,j (A1)

∫
Aj

Ec∆εt
c,jyjdA = EcQcz,j∆εt

co,j − Ec Icz,j∆κt
cz,j + Ec Iyz∆κt

cy,j (A2)

∫
Aj

Ec∆εt
c,jzjdA = EcQcy,j∆εt

co,j − Ec Iyz∆κt
cz,j + Ec Icy,j∆κt

cy,j (A3)

where Ac,j =
∫

Aj dA; Qcz,j =
∫

Aj ydA; Qcy,j =
∫

Aj zdA; Icz,j =
∫

Aj y2dA; Icy,j =
∫

Aj z2dA; and,
Icyz,j =

∫
Aj yzdA. When the cross-section is symmetric with respect to the y-axis, Qcy,j = Icyz,j = 0.

When the cross-section is symmetric with respect to the z-axis, Qcz,j = Icyz,j = 0.
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11. Chandoga, M.; Jaroševič, A. Rehabilitation and monitored prestressing of corroded tendons. In Proceedings
of the Fib Symposium: Structural Concrete and Time, La Plata, Argentina, 28–30 September 2005; pp. 1–8.

12. Cho, K.; Park, S.Y.; Cho, J.-R.; Kim, S.T.; Park, Y.-H. Estimation of prestress force distribution in the
multi-strand system of prestressed concrete structures. Sensors 2015, 15, 14079–14092. [CrossRef] [PubMed]

13. Mattock, A.H. Flexural strength of prestressed concrete sections by programmable calculator. PCI J. 1979, 24,
32–54. [CrossRef]

14. Cho, K.; Kim, S.T.; Cho, J.-R.; Park, Y.-H. Analytical model of nonlinear stress-strain relation for a strand
made of two materials. Materials 2017, 10, 1003. [CrossRef]

15. Noble, D.; Nogal, M.; O’Connor, A.; Pakrashi, V. The effect of prestress force magnitude and eccentricity
on the natural bending frequencies of uncracked prestressed concrete beams. J. Sound Vib. 2016, 365, 22–44.
[CrossRef]

16. Noble, D.; Nogal, M.; O’Connor, A.; Pakrashi, V. The Effect of Post-Tensioning Force Magnitude and Eccentricity
on the Natural Bending Frequency of Cracked Post-Tensioned Concrete Beams; Journal of Physics: Conference
Series; IOP Publishing: Bristol, UK, 2015; p. 012047.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s17071654
http://www.ncbi.nlm.nih.gov/pubmed/28718826
http://dx.doi.org/10.1177/1045389X09347021
http://dx.doi.org/10.1088/0964-1726/25/9/095051
http://dx.doi.org/10.1016/j.nucengdes.2013.12.038
http://dx.doi.org/10.1155/2012/804394
http://dx.doi.org/10.3390/s16081317
http://www.ncbi.nlm.nih.gov/pubmed/27548172
http://dx.doi.org/10.3390/s150614079
http://www.ncbi.nlm.nih.gov/pubmed/26083230
http://dx.doi.org/10.15554/pcij.01011979.32.54
http://dx.doi.org/10.3390/ma10091003
http://dx.doi.org/10.1016/j.jsv.2015.11.047
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Formulations 
	Numerical Verification 
	Without Variation 
	With Variation 

	Experimental Validation and Discussions 
	Conclusions 
	

