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Abstract: The failure of a computer system because of a software failure can lead to tremendous losses
to society; therefore, software reliability is a critical issue in software development. As software has
become more prevalent, software reliability has also become a major concern in software development.
We need to predict the fluctuations in software reliability and reduce the cost of software testing:
therefore, a software development process that considers the release time, cost, reliability, and risk is
indispensable. We thus need to develop a model to accurately predict the defects in new software
products. In this paper, we propose a new non-homogeneous Poisson process (NHPP) software
reliability model, with S-shaped growth curve for use during the software development process,
and relate it to a fault detection rate function when considering random operating environments.
An explicit mean value function solution for the proposed model is presented. Examples are provided
to illustrate the goodness-of-fit of the proposed model, along with several existing NHPP models that
are based on two sets of failure data collected from software applications. The results show that the
proposed model fits the data more closely than other existing NHPP models to a significant extent.
Finally, we propose a model to determine optimal release policies, in which the total software system
cost is minimized depending on the given environment.

Keywords: software reliability; non-homogeneous Poisson process; optimal release time; mean
squared error

1. Introduction

‘Software’ is a generic term for a computer program and its associated documents. Software is
divided into operating systems and application software. As new hardware is developed, the price
decreases; thus, hardware is frequently upgraded at low cost, and software becomes the primary cost
driver. The failure of a computer system because of a software failure can cause significant losses to
society. Therefore, software reliability is a critical issue in software development. This problem requires
finding a balance between meeting user requirements and minimizing the testing costs. It is necessary
to know in the planning cycle the fluctuation of software reliability and the cost of testing, in order to
reduce costs during the software testing stage, thus a software development process that considers
the release time, cost, reliability, and risk is indispensable. In addition, it is necessary to develop a
model to predict the defects in software products. To estimate reliability metrics, such as the number
of residual faults, the failure rate, and the overall reliability of the software, various non-homogeneous
Poisson process (NHPP) software reliability models have been developed using a fault intensity rate
function and mean value function within a controlled testing environment. The purpose of many
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NHPP software reliability models is to obtain an explicit formula for the mean value function, m(t),
which is applied to the software testing data to make predictions on software failures and reliability
in field environments [1]. A few researchers have evaluated a generalized software reliability model
that captures the uncertainty of an environment and its effects on the software failure rate, and have
developed a NHPP software reliability model when considering the uncertainty of the system fault
detection rate per unit of time subject to the operating environment [2–4]. Inoue et al. [5] developed a
bivariate software reliability growth model that considers the uncertainty of the change in the software
failure-occurrence phenomenon at the change-point for improved accuracy. Okamura and Dohi [6]
introduced a phase-type software reliability model and developed parameter estimation algorithms
using grouped data. Song et al. [7,8] recently developed an NHPP software reliability model to
consider a three-parameter fault detection rate, and applied a Weibull fault detection rate function
during the software development process. They related the model to the error detection rate function
by considering the uncertainty of the operating environment. In addition, Li and Pham [9] proposed a
model accounting for the uncertainty of the operating environment under the condition that the fault
content function is a linear function of the testing time, and that the fault detection rate is based on the
testing coverage.

In this paper, we discuss a new NHPP software reliability model with S-shaped growth curve
applicable to the software development process and relate it to the fault detection rate function when
considering random operating environments. We examine the goodness-of-fit of the proposed model
and other existing NHPP models that are based on several sets of software failure data, and then
determine the optimal release times that minimize the expected total software cost under given
conditions. The explicit solution of the mean value function for the new NHPP software reliability
model is derived in Section 2. Criteria for the model comparisons and the selection of the best model
are discussed in Section 3. The optimal release policy is discussed in Section 4, and the results of a
model analysis and the optimal release times are discussed in Section 5. Finally, Section 6 provides
some concluding remarks.

2. A New NHPP Software Reliability Model

2.1. Non-Homogeneous Poisson Process

The software fault detection process has been formulated using a popular counting process.
The counting process {N(t), t ≥ 0} is a non-homogeneous Poisson process (NHPP) with an intensity
function λ(t), if it satisfies the following condition.

(I) N(0) = 0
(II) Independent increments

(III)
∫ t2

t1
λ(t)dt, (t2 ≥ t1): the average of the number of failures in the interval [t1, t2]

Assuming that the software failure/defect conforms to the NHPP condition, N(t)(t ≥ 0) represents
the cumulative number of failures up to the point of execution, and m(t) is the mean value function.
The mean value function m(t) and the intensity function λ(t) satisfy the following relationship.

m(t) =
∫ t

0
λ(s)ds,

dm(t)
dt

= λ(t). (1)

N(t) is a Poisson distribution involving the mean value function, m(t), and can be expressed as:

Pr{N(t) = n} = {m(t)}n

n!
exp{−m(t)}, n = 0, 1, 2, 3 . . . . (2)

2.2. General NHPP Software Reliability Model

Pham et al. [10] formalized the general framework for NHPP-based software reliability and
provided analytical expressions for the mean value function m(t) using differential equations.
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The mean value function m(t) of the general NHPP software reliability model with different values for
a(t) and b(t), which reflects various assumptions of the software testing process, can be obtained with
the initial condition N(0) = 0.

d m(t)
dt

= b(t)[a(t)−m(t)]. (3)

The general solution of (1) is

m(t) = e−B(t)
[

m0 +
∫ t

t0

a(s)b(s)eB(s)bs
]

(4)

where B(t) =
∫ t

t0
b(s)ds, and m(t0) = m0 is the marginal condition of (2).

2.3. New NHPP Software Reliability Model

Pham [3] formulated a generalized NHPP software reliability model that incorporated uncertainty
in the operating environment as follows:

d m(t)
dt

= η[b(t)][N−m(t)], (5)

where η is a random variable that represents the uncertainty of the system fault detection rate in the
operating environment with a probability density function g; b(t) is the fault detection rate function,
which also represents the average failure rate caused by faults; N is the expected number of faults
that exists in the software before testing; and, m(t) is the expected number of errors detected by time t
(the mean value function).

Thus, a generalized mean value function, m(t), where the initial condition m(0) = 0, is given by

m(t) =
∫
η

N
(

1− e−η
∫ t

0 b(x)dx
)

dg(η). (6)

The mean value function [11] from (4) using the random variable η has a generalized probability
density function g with two parameters α ≥ 0 and β ≥ 0 and is given by

m(t) = N

(
1− β

β+
∫ t

0 b(s)ds

)α

, (7)

where b(t) is the fault detection rate per fault per unit of time.
We propose an NHPP software reliability model including the random operating environment

using Equations (3)–(5) and the following assumptions [7,8]:

(a) The occurrence of a software failure follows a non-homogeneous Poisson process.
(b) Faults during execution can cause software failure.

(c)
The software failure detection rate at any time depends on both the fault detection rate and the number of
remaining faults in the software at that time.

(d) Debugging is performed to remove faults immediately when a software failure occurs.

(e)
New faults may be introduced into the software system, regardless of whether other faults are removed
or not.

(f) The fault detection rate b(t) can be expressed by (6).

(g)
The random operating environment is captured if unit failure detection rate b(t) is multiplied by a factor
η that represents the uncertainty of the system fault detection rate in the field

In this paper, we consider the fault detection rate function b(t) to be as follows:

b(t) =
a2t

1 + at
, a > 0, a, b > 0, (8)
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We obtain a new NHPP software reliability model with S-shaped growth curve subject to random
operating environments, m(t), that can be used to determine the expected number of software failures
detected by time t by substituting function b(t) above into (5) so that:

m(t) = N
(

1− β

β+ at− ln(1 + at)

)α

. (9)

3. Criteria for Model Comparisons

Theoretically, once the analytical expression for mean value function m(t) is derived, then the
parameters in m(t) can be estimated using parameter estimation methods (MLE: the maximum
likelihood estimation method, LSE: the least square estimation method); however, in practice, accurate
estimates may not be obtained by the MLE, particularly under certain conditions where the mean
value function m(t) is too complex. The model parameters to be estimated in the mean value function
m(t) can then be obtained using a MATLAB program that is based on the LSE method. Six common
criteria; the mean squared error (MSE), Akaike’s information criterion (AIC), the predictive ratio risk
(PRR), the predictive power (PP), the sum of absolute errors (SAE), and R-square (R2) will be used for
the goodness-of-fit estimation of the proposed model, and to compare the proposed model with other
existing models, as listed in Table 1. These criteria are described as follows.

The MSE is

MSE =
∑n

i=0(m̂(ti)− yi)
2

n−m
. (10)

AIC [12] is
AIC = −2 log L + 2m. (11)

The PRR [13] is

PRR = ∑n
i=0

(
m̂(ti)− yi

m̂(ti)

)2

. (12)

The PP [13] is

PP = ∑n
i=0

(
m̂(ti)− yi

yi

)2

. (13)

The SAE [8] is
SAE = ∑n

i=0|m̂(ti)− yi|. (14)

The correlation index of the regression curve equation (R2) [9] is

R2 = 1− ∑n
i=0(m̂(ti)− yi)

2

∑n
i=0(yi − yi)

2 . (15)

Here, m̂(ti) is the estimated cumulative number of failures at ti for i = 1, 2, · · · , n; yi is the
total number of failures observed at time ti; n is the actual data which includes the total number of
observations; and, m is the number of unknown parameters in the model.

The MSE measures the distance of a model estimate from the actual data that includes the total
number of observations and the number of unknown parameters in the model. AIC is measured
to compare the capability of each model in terms of maximizing the likelihood function (L), while
considering the degrees of freedom. The PRR measures the distance of the model estimates from the
actual data against the model estimate. The PP measures the distance of the model estimates from the
actual data. The SAE measures the absolute distance of the model. For five of these criteria, i.e., MSE,
AIC, PRR, PP, and SAE, the smaller the value is, the closer the model fits relative to other models run
on the same dataset. On the other hand, R2 should be close to 1.
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We use (8) below to obtain the confidence interval [13] of the proposed NHPP software reliability
model. The confidence interval is described as follows;

m̂(t)± Zα/2

√
m̂(t), (16)

where, Zα/2 is 100(1− α), the percentile of the standard normal distribution.
Table 1 summarizes the different mean value functions of the proposed new model and several

existing NHPP models. Note that models 9 and 10 consider environmental uncertainty.

Table 1. NHPP software reliability models.

No. Model m(t)

1 GO Model [14] m(t) = a
(

1− e−bt
)

2 Delayed S-shaped Model [15] m(t) = a
(

1− (1 + bt)e−bt
)

3 Inflection S-shaped Model [16] m(t) =
a(1−e−bt)
1+βe−bt

4 Yamada ImperfectDebugging
Model [17] m(t) = a

[
1− e−bt

][
1− α

b
]
+ αat

5 PNZ Model [10] m(t) =
a[1−e−bt][1−α

b ]+αat
1+βe−bt

6 PZ Model [18] m(t) = ((c+a)[1−e−bt]−[ ab
b−α (e−αt−e−bt)])

1+βe−bt

7 Dependent Parameter Model [19] m(t) = m0

(
γt+1
γt0+1

)
e−γ(t−t0) + α(γt + 1)(γt− 1 + (1− γt0)e−γ(t−t0)

8 Testing Coverage Model [4] m(t) = N
[

1−
(

β

β+(at)b

)α]
9 Three parameter Model [7] m(t) = N

[
1−

(
β

β− a
b ln

(
(1+c)e−bt

1+ce−bt

)
)]

10 Proposed New Model m(t) = N
(

1− β
β+at−ln(1+at)

)α
4. Optimal Software Release Policy

In this section, we next discuss the use of the software reliability model under varying situations
to determine the optimal software release time, and to determine the optimal software release time,
T*, which minimizes the expected total software cost. Many studies have been conducted on the
optimal software release time and its related problems [20–24]. The quality of the system will normally
depend on the testing efforts, such as the testing environment, times, tools, and methodologies.
If testing is short, the cost of the system testing is lower, but the consumers may face a higher risk
e.g., buying an unreliable system. This also involves the higher costs of the operating environment
because it is much more expensive to detect and correct a failure during the operational phase than
during the testing phase. In contrast, the longer the testing time, the more faults that can be removed,
which leads to a more reliable system; however, the testing costs for the system will also increase.
Therefore, it is very important to determine when to release the system based on test cost and reliability.
Figure 1 shows the system development lifecycle considered in the following cost model: the testing
phase before release time T, the testing environment period, the warranty period, and the operational
life in the actual field environment, which is usually quite different from the testing environment [24].
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The expected total software cost C(T) [24] can be expressed as

C(T) = C0 + C1T + C2m(T)µy + C3(1− R(x|T)) + C4[m(T + Tw)−m(T)]µw (17)

where, C0 is the set-up cost of testing, C1T is the cost of testing, C2m(T)µy is the expected cost to
remove all errors detected by time T during the testing phase, C3(1− R(x|T)) is the penalty cost owing
to failures that occurs after the system release time T, and C4[m(T + Tw)−m(T)]µw is the expected
cost to remove all of the errors that are detected during the warranty period [T, T + Tw]. The cost
that is required to remove faults during the operating period is higher than during the testing period,
and the time that is needed is much longer.

Finally, we aim to find the optimal software release time, T*, with the expected minimum in the
environment as follows:

Minimize C(T). (18)

5. Numerical Examples

5.1. Data Information

Dataset #1 (DS1), presented in Table 2, was reported by Musa [25] based on software failure
data from a real time command and control system (RTC&CS), and represents the failures that were
observed during system testing (25 hours of CPU time). The number of test object instructions
delivered for this system, which was developed by Bell Laboratories, was 21,700.

Table 2. Dataset #1 (DS1) : real time command and control system (RTC&CS) data set.

Hour Index Failures Cumulative Failures Hour Index Failures Cumulative Failures

1 27 27 14 5 111
2 16 43 15 5 116
3 11 54 16 6 122
4 10 64 17 0 122
5 11 75 18 5 127
6 7 83 19 1 128
7 2 84 20 1 129
8 5 89 21 2 131
9 3 92 22 1 132

10 1 93 23 2 134
11 4 97 24 1 135
12 7 104 25 1 136
13 2 106 - - -

Dataset #2 (DS2), as shown in Table 3, is the second of three releases of software failure data
collected from three different releases of a large medical record system (MRS) [26], consisting of
188 software components. Each component contains several files. Initially, the software consisted of
173 software components. All three releases added new functionality to the product. Between three
and seven new components were added in each of the three releases, for a total of 15 new components.
Many other components were modified during each of the three releases as a side effect of the added
functionality. Detailed information of the dataset can be obtained in the report by Stringfellow and
Andrews [26].

Dataset #3 (DS3), as shown in Table 4, is from one of four major releases of software products at
Tandom Computers (TDC) [27]. There are 100 failures that are observed within testing CPU hours.
Detailed information of the dataset can be obtained tin the report by Wood [27].
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Table 3. DS2: medical record system (MRS) data set.

Week Index Failures Cumulative Failures Week Index Failures Cumulative Failures

1 90 90 10 0 190
2 17 107 11 2 192
3 19 126 12 0 192
4 19 145 13 0 192
5 26 171 14 0 192
6 17 188 15 11 203
7 1 189 16 0 203
8 1 190 17 1 204
9 0 190 - - -

Table 4. DS3: Tandom Computers (TDC) data set.

Time Index
(CPU hours)

Cumulative
Failures

Time Index
(CPU hours)

Cumulative
Failures

Time Index
(CPU hours)

Cumulative
Failures

519 16 4422 58 8205 96
968 24 5218 69 8564 98

1430 27 5823 75 8923 99
1893 33 6539 81 9282 100
2490 41 7083 86 9641 100
3058 49 7487 90 10,000 100
3625 54 7846 93 - -

5.2. Model Analysis

Tables 5–7 summarize the results of the estimated parameters of all 10 models in Table 1 using the
LSE technique and the values of the six common criteria: MSE, AIC, PRR, PP, SAE, and R2. We obtained
the six common criteria at t = 1, 2, · · · , 25 from DS1 (Table 2), at t = 1, 2, · · · , 17 from DS2 (Table 3),
and at cumulative testing CPU hours from DS3 (Table 4). As can be seen in Table 5, when comparing
all of the models, the MSE and AIC values are the lowest for the newly proposed model, and the PRR,
PP, SAE, and R2 values are the second best. The MSE and AIC values of the newly proposed model are
7.361, 114.982, respectively, which are significantly less than the values of the other models. In Table 6,
when comparing all of the models, all criteria values for the newly proposed model are best. The MSE
value of the newly proposed model is 60.623, which is significantly lower than the value of the other
models. The AIC, PRR, PP, and SAE values of the newly proposed model are 151.156, 0.043, 0.041, and
98.705, respectively, which are also significantly lower than the other models. The value of R2 is 0.960
and is the closest to 1 for all of the models. In Table 7, when comparing all of the models, all the criteria
values for the newly proposed model are best. The MSE value of the newly proposed model is 6.336,
which is significantly lower than the value of the other models. The PRR, PP, and SAE values of the
newly proposed model are 0.086, 0.066, and 36.250, respectively, which are also significantly lower
than the other models. The value of R2 is 0.9940 and is the closest to 1 for all of the models.
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Table 5. Model parameter estimation and comparison criteria from RTC&CS data set (DS1).
Least-squares estimate (LSE); mean squared error; Akaike’s information criterion (AIC); predictive
ratio risk (PRR); predictive power (PP), sum absolute error (SAE), correlation index of the regression
curve equation (R2 ).

Model LSE’s MSE AIC PRR PP SAE R2

GOM â = 136.050, b̂ = 0.138 33.822 121.878 0.479 0.262 118.530 0.972
DSM â = 124.665, b̂ = 0.356 134.582 210.287 12.787 1.181 239.335 0.889

ISM â = 136.050, b̂ = 0.138
β̂ = 0.0001

35.363 123.878 0.479 0.262 118.532 0.972

YIDM â = 81.252, b̂ = 0.340
α̂ = 0.0333

9.435 116.403 0.035 0.031 60.842 0.993

PNZM â = 81.562, b̂ = 0.337
α̂ = 0.033, β̂ = 0.00

9.888 118.388 0.037 0.032 60.877 0.993

PZM â = 0.01, b̂ = 0.138
α̂ = 800.0, β̂ = 0.00, ĉ = 136.04

38.895 127.878 0.479 0.262 118.530 0.972

DPM α̂ = 28650, β̂ = 0.003
t0 = 0.00, m0 = 71.8

274.911 382.143 0.857 3.568 304.212 0.792

TCM â = 0.000035, b̂ = 0.734,
α̂ = 0.29, β̂ = 0.002, N̂ = 427

7.640 116.932 0.019 0.019 47.304 0.995

3PFDM
â = 1.696, b̂ = 0.001
ĉ = 6.808, β̂ = 1.574

N̂ = 173.030
17.827 119.523 0.137 0.100 81.313 0.987

New
Model

â = 0.277, α̂ = 0.328
β̂ = 17.839, N̂ = 228.909 7.361 114.982 0.022 0.022 47.869 0.994

Table 6. Model parameter estimation and comparison criteria from MRS data set (DS2).

Model LSE’s MSE AIC PRR PP SAE R2

GOM â = 197.387, b̂ = 0.399 80.678 184.331 0.170 0.101 104.403 0.939
DSM â = 192.528, b̂ = 0.882 232.628 331.857 1.291 0.333 142.544 0.823

ISM â = 197.354, b̂ = 0.399
β̂ = 0.000001

86.440 186.334 0.171 0.101 104.370 0.939

YIDM â = 182.934, b̂ = 0.464
α̂ = 0.0071

78.837 157.825 0.128 0.087 100.617 0.944

PNZM â = 183.124, b̂ = 0.463
α̂ = 0.007, β̂ = 0.00

84.902 159.873 0.128 0.087 100.608 0.944

PZM â = 195.990, b̂ =0.3987
α̂ = 1000.00, β̂ = 0.00, ĉ = 1.390

100.989 190.332 0.172 0.102 104.354 0.939

DPM α̂ = 26124.0, γ̂ = 0.0044
t0 = 0.00, m0 = 147.00 769.282 480.341 0.415 0.712 334.128 0.494

TCM â = 0.053, b̂ = 0.774,
α̂ = 181.0, β̂ = 38.6, N̂ = 204.1

72.283 158.933 0.052 0.048 103.196 0.956

3PFDM
â = 0.028, b̂ = 0.210
ĉ = 9.924, β̂ = 0.005

N̂ = 206.387
81.090 163.797 0.073 0.061 106.341 0.951

New
Model

â = 0.008, α̂ = 0.275,
β̂ = 0.001, N̂ = 207.873 60.623 151.156 0.043 0.041 98.705 0.960

Figures 2–4 show the graphs of the mean value functions for all 10 models for DS1, DS2, and DS3,
respectively. Figures 5–7 show the graphs of the 95% confidence limits of the newly proposed model
for DS1, DS2, and DS3. Tables A1–A3 in Appendix A list the 95% confidence intervals of all 10 NHPP
software reliability models for DS1, DS2, and DS3. In addition, the relative error value of the proposed
software reliability model confirms its ability to provide more accurate predictions as it remains closer
to zero when compared to the other models (Figures 8–10).
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Table 7. Model parameter estimation and comparison criteria from MRS data set (DS3).

Model LSE’s MSE AIC PRR PP SAE R2

GOM â = 133.835, b̂ = 0.000146 8.620 86.136 0.556 0.242 42.166 0.991
DSM â = 101.918, b̂ = 0.000507 45.783 117.316 22.692 1.318 101.659 0.951

ISM â = 133.835, b̂ = 0.000146
β̂ = 0.000001

9.127 88.136 0.556 0.242 42.166 0.991

YIDM â = 130.091, b̂ = 0.00015
α̂ = 0.000003

9.084 88.267 0.561 0.243 42.052 0.991

PNZM â = 121.178, b̂ = 0.000163
α̂ = 0.000009, β̂ = 0.00

9.532 90.326 0.530 0.234 41.538 0.991

PZM
â = 122.259, = 0.0002

α̂ = 9955.597, β̂ = 0.305
ĉ = 0.569

11.491 92.020 0.643 0.268 44.848 0.990

DPM α̂ = 123.193, γ̂ = 0.0001
t0 = 0.0001, m0 = 38.459 156.480 212.867 0.917 2.879 196.360 0.851

TCM
â = 0.000013, b̂ = 0.78,
α̂ = 141.399, β̂ = 54.71,

N̂ = 254.707
7.090 90.758 0.091 0.068 37.880 0.9937

3PFDM
â = 0.016, b̂ = 0.07

ĉ = 0.00001, β̂ = 157.458
N̂ = 205.025

9.410 92.360 0.420 0.200 39.909 0.992

New
Model

â = 0.064, α̂ = 0.731,
β̂ = 2509.898, N̂ = 337.765 6.336 88.885 0.086 0.066 36.250 0.9940
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5.3. Optimal Software Release Time

Factor η captures the effects of the field environmental factors based on the system failure rate as
described in Section 2. System testing is commonly carried out in a controlled environment, where
we can use a constant factor η equal to 1. The newly proposed model becomes a delayed S-shaped
model when η = 1 in (7). Thus, we apply different mean value functions m(t) to the cost model C(T)
of (8) when considering the three conditions described below. We apply the cost model to these three
conditions using DS1 (Table 2). Using the LSE method, the parameters of the delayed S-shaped model
and the newly proposed model are obtained, as described in Section 5.2.

(1) The expected total software cost with controlled environmental factor (η = 1) is

C1(T) = C0 + C1T + C2m(T)µy + C3(1− R(x|T)) + C4[m(T + Tw)−m(T)]µw (19)

where
m(T) = a (1− (1 + bT)e−bT

)
,m(T + Tw) = a

(
1− (1 + b(T + Tw))e−b(T+Tw)) . (20)

(2) The expected total software cost with a random operating environmental factor (η = f(x)) is

C2(T) = C0 + C1T + C2m(T)µy + C3(1− R(x|T)) + C4[m(T + Tw)−m(T)]µw (21)

where
m(T) = N

(
1− β

β+aT−ln(1+aT)

)α
, m(T + Tw) = N

(
1− β

β+a(T+Tw)−ln(1+a(T+Tw))

)α
. (22)

(3) The expected total software cost between the testing environment (η = 1) and field environment
(η = f(x)) is

C3(T) = C0 + C1T + C2m1(T)µy + C3(1− R(x|T)) + C4[m2(T + Tw)−m1(T)]µw (23)

where

m1(T) = a
(

1− (1 + bT)e−bT
)

, m2(T + Tw) = N
(

1− β

β+ a(T + Tw)− ln(1 + a(T + Tw))

)α

. (24)

We consider the following coefficients in the cost model for the baseline case:

C0 = 100, C1 = 20, C2 = 50, C3 = 2000, C4 = 400, Tw = 10, x = 20, µy = 0.1, µw = 0.2 (25)

The results of the baseline case are listed in Table 8, and the expected total cost for the three
conditions above is 1338.70, 2398.24, and 2263.33, respectively. For the second condition, the expected
total cost and the optimal release time are high. The expected total cost is the lowest for the first
condition, and the optimal release time is shortest for the third condition.

Table 8. Optimal release time T* subject to the warranty period.

Warrnaty Period C1(T) T* C2(T) T* C3(T) T*

Tw = 2 1173.41 14.2 1403.78 11.6 599.88 10.5
Tw = 5 1286.95 14.9 1928.63 22.8 1334.72 11.3

Tw = 10(basic) 1338.70 15.1 2398.24 34.7 2263.33 12.3
Tw = 15 1348.88 15.2 2702.33 42.7 2969.88 13.0

To study the impact of different coefficients on the expected total cost and the optimal release time,
we vary some of the coefficients and then compare them with the baseline case. First, we evaluate the
impact of the warranty period on the expected total cost by changing the value of the corresponding
warranty time and comparing the optimal release times for each condition. Here, we change the values
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of Tw from 10 h to 2, 5, and 15 h, and the values of the other parameters remain unchanged. Regardless
of the warranty period, the optimal release time for the third condition is the shortest, and the expected
total cost for the first condition is the lowest overall. Figure 11 shows the graph of the expected total
cost for the baseline case. Figures 12–14 show the graphs of the expected total cost subject to the
warranty period for the three conditions.Appl. Sci. 2017, 7, 304  14 of 23 
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Next, we examine the impact of the cost coefficients, C1, C2, C3, and C4 on the expected total
cost by changing their values and comparing the optimal release times. Without loss of generality,
we change only the values of C2, C3, and C4, and keep the values of the other parameters C0 and C1
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unchanged, because different values of C0 and C1 will certainly increase the expected total cost. When
we change the values of C2 from 50 to 25 and 100, the optimal release time is only changed significantly
for the second condition. As can be seen from Table 9, the optimal release time T* is 37.5 when the
value of C2 is 25, and 29.1 when the value of C2 is 100. When we change the value of C3 from 2000 to
500 and 4000, the optimal release time is only changed significantly for the first condition. As Table 10
shows, the optimal release time T* is 16.5 when the value of C3 is 500, and 14.6 when the value of C3 is
4000. When we change the value of C4 from 400 to 200 and 1000, the optimal release time is changed
for all of the conditions. As can be seen from Table 11, the optimal release time T* is 14.3 for the first
condition when the value of C4 is 200, and 16.3 when the value of C4 is 1000. In addition, the optimal
release time T* is 20.0 for the second condition when the value of C4 is 200, and 61.0 when the value
of C4 is 1000. The optimal release time T* is 11.6 for the third condition when the value of C4 is 200,
and 12.8 when the value of C4 is 1000. Thus, the second condition has a much greater variation in
optimal release time than the other conditions. As a result, we can confirm that the cost model of the
first condition does not reflect the influence of the operating environment, and that the cost model of
the second condition does not reflect the influence of the test environment. Figure 15 shows the graph
of the expected total cost according to the cost coefficient C2 in the 2nd condition. Figures 16–18 show
the graphs of the expected total cost according to cost coefficient C4 in the three conditions.
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Table 9. Optimal release time T* according to cost coefficient C2.

Cost Coefficient C2 C1(T) T* C2(T) T* C3(T) T*

C2 = 25 1036.02 15.2 2013.25 37.5 1972.06 12.5
C2 = 50 (basic) 1338.70 15.1 2398.24 34.7 2263.33 12.3

C2 = 100 1943.64 15.1 3141.20 29.1 2843.35 12.1

Table 10. Optimal release time T* according to cost coefficient C3.

Cost Coefficient C3 C1(T) T* C2(T) T* C3(T) T*

C3 = 500 1270.65 16.5 2398.24 34.7 2262.96 12.4
C3 = 2000 (basic) 1338.70 15.1 2398.24 34.7 2263.33 12.3

C3 = 4000 1376.26 14.6 2398.24 34.7 2263.77 12.3

Table 11. Optimal release time T* according to cost coefficient C4.

Cost Coefficient C4 C1(T) T* C2(T) T* C3(T) T*

C4 = 200 1183.14 14.3 1859.29 20 1590.02 11.6
C4 = 400 (basic) 1338.70 15.1 2398.24 34.7 2263.33 12.3

C4 = 1000 1680.99 16.3 3272.23 61 4253.45 12.8
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6. Conclusions

Existing well-known NHPP software reliability models have been developed in a test environment.
However, a testing environment differs from an actual operating environment, so we considered
random operating environments. In this paper, we discussed a new NHPP software reliability model,
with S-shaped growth curve that accounts for the randomness of an actual operating environment.
Tables 5–7 summarize the results of the estimated parameters of all ten models that are applied using
the LSE technique and six common criteria (MSE, AIC, PRR, PP, SAE, and R2) for the DS1, DS2, and
DS3 datasets. As can be seen from Tables 5–7, the newly proposed model displays a better overall fit
than all of the other models when compared, particularly in the case of DS2. In addition, we provided
optimal release policies for various environments to determine when the total software system cost
is minimized. Using a cost model for a given environment is beneficial as it provides a means for
determining when to stop the software testing process. In this paper, faults are assumed to be removed
immediately when a software failure has been detected, and the correction process is assumed to not
introduce new faults. Obviously, further work in revisiting these assumptions is worth the effort as
our future study. We hope to present some new results on this aspect in the near future.
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Appendix A

Table A1. 95% Confidence interval of all 10 models (DS1).

Model Time
Index 1 2 3 4 5 6 7 8 9

GOM
LCL 9.329 21.586 32.810 42.823 51.671 59.452 66.277 72.253 77.479
m̂(t) 17.537 32.814 46.121 57.713 67.811 76.607 84.269 90.944 96.758
UCL 25.745 44.041 59.431 72.602 83.950 93.761 102.261 109.635 116.037

DSM
LCL 1.352 11.192 24.289 37.792 50.271 61.120 70.191 77.571 83.458
m̂(t) 6.253 19.945 36.058 51.914 66.220 78.484 88.644 96.861 103.387
UCL 11.154 28.698 47.827 66.035 82.170 95.847 107.097 116.150 123.316

ISM
LCL 9.328 21.584 32.808 42.820 51.668 59.449 66.274 72.250 77.476
m̂(t) 17.535 32.811 46.118 57.709 67.807 76.603 84.266 90.941 96.755
UCL 25.743 44.038 59.428 72.599 83.947 93.758 102.258 109.631 116.034

YIDM
LCL 14.263 28.936 40.449 49.466 56.637 62.468 67.333 71.506 75.185
m̂(t) 23.831 41.573 54.982 65.305 73.433 79.998 85.451 90.111 94.209
UCL 33.399 54.211 69.515 81.144 90.228 97.528 103.568 108.717 113.232

PNZM
LCL 14.191 28.840 40.360 49.400 56.598 62.455 67.343 71.534 75.227
m̂(t) 23.741 41.460 54.879 65.230 73.389 79.984 85.462 90.143 94.255
UCL 33.291 54.080 69.399 81.059 90.179 97.513 103.581 108.752 113.283

PZM
LCL 9.329 21.586 32.810 42.823 51.671 59.452 66.277 72.253 77.479
m̂(t) 17.537 32.813 46.121 57.713 67.811 76.607 84.269 90.944 96.758
UCL 25.745 44.041 59.431 72.602 83.950 93.761 102.261 109.635 116.037

DPM
LCL 55.306 55.649 56.223 57.028 58.068 59.344 60.859 62.614 64.611
m̂(t) 71.929 72.316 72.964 73.874 75.047 76.485 78.189 80.162 82.403
UCL 88.551 88.984 89.706 90.720 92.026 93.626 95.520 97.710 100.195

TCM
LCL 17.974 30.408 39.981 47.851 54.561 60.419 65.621 70.302 74.555
m̂(t) 28.423 43.306 54.443 63.465 71.086 77.695 83.535 88.768 93.508
UCL 38.872 56.204 68.905 79.080 87.611 94.971 101.449 107.234 112.461

3PFDM
LCL 12.011 25.458 36.751 46.227 54.252 61.123 67.065 72.251 76.816
m̂(t) 20.991 37.452 50.708 61.611 70.737 78.487 85.151 90.942 96.021
UCL 29.970 49.447 64.665 76.995 87.221 95.851 103.237 109.633 115.227

New
LCL 18.358 30.526 39.950 47.745 54.426 60.283 65.501 70.208 74.492
m̂(t) 28.893 43.444 54.407 63.344 70.933 77.542 83.401 88.663 93.438
UCL 39.428 56.363 68.864 78.944 87.440 94.801 101.300 107.118 112.384
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Table A1. Cont.

Model Time
Index 10 11 12 13 14 15 16 17

GOM
LCL 82.045 86.033 89.514 92.552 95.201 97.512 99.527 101.284
m̂(t) 101.823 106.235 110.078 113.426 116.342 118.882 121.095 123.023
UCL 121.600 126.436 130.641 134.300 137.483 140.253 142.663 144.762

DSM
LCL 88.083 91.672 94.431 96.534 98.127 99.326 100.225 100.895
m̂(t) 108.498 112.457 115.494 117.807 119.557 120.874 121.861 122.596
UCL 128.914 133.241 136.557 139.080 140.988 142.423 143.497 144.298

ISM
LCL 82.043 86.031 89.512 92.550 95.200 97.511 99.526 101.283
m̂(t) 101.820 106.232 110.076 113.424 116.340 118.881 121.094 123.022
UCL 121.597 126.434 130.639 134.298 137.481 140.251 142.662 144.761

YIDM
LCL 78.512 81.588 84.485 87.257 89.939 92.558 95.133 97.678
m̂(t) 97.905 101.316 104.523 107.586 110.546 113.433 116.267 119.064
UCL 117.298 121.044 124.561 127.916 131.153 134.307 137.401 140.451

PNZM
LCL 78.562 81.642 84.540 87.310 89.987 92.600 95.168 97.703
m̂(t) 97.960 101.376 104.584 107.645 110.600 113.479 116.305 119.092
UCL 117.359 121.110 124.628 127.980 131.212 134.358 137.442 140.481

PZM
LCL 82.045 86.033 89.514 92.552 95.201 97.512 99.527 101.284
m̂(t) 101.823 106.235 110.078 113.426 116.342 118.882 121.095 123.023
UCL 121.600 126.436 130.641 134.300 137.483 140.253 142.663 144.762

DPM
LCL 66.855 69.346 72.087 75.081 78.331 81.838 85.606 89.636
m̂(t) 84.916 87.701 90.759 94.093 97.704 101.593 105.762 110.212
UCL 102.977 106.055 109.432 113.105 117.078 121.348 125.918 130.788

TCM
LCL 78.453 82.050 85.387 88.500 91.416 94.157 96.744 99.191
m̂(t) 97.840 101.828 105.521 108.959 112.174 115.193 118.038 120.726
UCL 117.227 121.606 125.654 129.418 132.933 136.229 139.332 142.261

3PFDM
LCL 80.863 84.475 87.718 90.647 93.303 95.724 97.940 99.974
m̂(t) 100.512 104.512 108.096 111.326 114.253 116.917 119.352 121.586
UCL 120.162 124.549 128.473 132.006 135.203 138.110 140.764 143.198

New
LCL 78.423 82.051 85.417 88.555 91.491 94.248 96.844 99.296
m̂(t) 97.806 101.829 105.554 109.019 112.257 115.293 118.148 120.841
UCL 117.189 121.607 125.690 129.484 133.024 136.338 139.452 142.387

Model Time
Index 18 19 20 21 22 23 24 25

GOM
LCL 102.8153 104.15 105.3133 106.3271 107.2106 107.9804 108.6512 109.2357
m̂(t) 124.7022 126.165 127.4392 128.5491 129.516 130.3582 131.0919 131.731
UCL 146.5892 148.1799 149.565 150.7711 151.8214 152.736 153.5326 154.2263

DSM
LCL 101.3931 101.7621 102.0346 102.2353 102.3828 102.4909 102.57 102.6278
m̂(t) 123.1427 123.5475 123.8463 124.0664 124.2281 124.3466 124.4333 124.4967
UCL 144.8924 145.3328 145.658 145.8975 146.0734 146.2023 146.2967 146.3656

ISM
LCL 102.8143 104.1492 105.3126 106.3265 107.21 107.9799 108.6508 109.2353
m̂(t) 124.7012 126.164 127.4383 128.5484 129.5154 130.3577 131.0914 131.7306
UCL 146.588 148.1789 149.5641 150.7703 151.8207 152.7354 153.5321 154.2259

YIDM
LCL 100.2015 102.7107 105.2103 107.7037 110.1934 112.6811 115.1679 117.6547
m̂(t) 121.8354 124.5875 127.3263 130.0555 132.7779 135.4956 138.2097 140.9215
UCL 143.4693 146.4644 149.4423 152.4073 155.3625 158.31 161.2516 164.1883

PNZM
LCL 100.2169 102.7154 105.2037 107.6855 110.1632 112.6385 115.1129 117.587
m̂(t) 121.8523 124.5927 127.3191 130.0356 132.7449 135.4491 138.1497 140.8477
UCL 143.4877 146.47 149.4345 152.3856 155.3266 158.2597 161.1866 164.1084

PZM
LCL 102.8153 104.15 105.3133 106.3271 107.2106 107.9804 108.6512 109.2357
m̂(t) 124.7022 126.165 127.4392 128.5491 129.516 130.3582 131.0919 131.731
UCL 146.5892 148.1799 149.565 150.7711 151.8214 152.736 153.5326 154.2263

DPM
LCL 93.93128 98.49414 103.3268 108.4316 113.8108 119.4664 125.4007 131.6157
m̂(t) 114.9445 119.961 125.2629 130.8518 136.7288 142.8956 149.3535 156.1038
UCL 135.9577 141.4278 147.199 153.2719 159.6469 166.3248 173.3063 180.5919

TCM
LCL 101.5124 103.7205 105.8252 107.8352 109.7585 111.6019 113.3714 115.0726
m̂(t) 123.2736 125.6944 127.9996 130.1994 132.3026 134.3169 136.2493 138.1057
UCL 145.0349 147.6682 150.174 152.5635 154.8467 157.032 159.1271 161.1389

3PFDM
LCL 101.8497 103.5836 105.1914 106.6864 108.0801 109.3824 110.6019 111.7464
m̂(t) 123.6436 125.5443 127.3057 128.9424 130.4673 131.8914 133.2244 134.4748
UCL 145.4374 147.505 149.4199 151.1983 152.8544 154.4004 155.8469 157.2032

New
LCL 101.6161 103.8169 105.9085 107.8999 109.799 111.6129 113.3476 115.009
m̂(t) 123.3873 125.8 128.0908 130.2702 132.3469 134.3289 136.2233 138.0364
UCL 145.1586 147.783 150.2732 152.6404 154.8947 157.045 159.099 161.0638
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Table A2. 95% Confidence interval of all 10 models (DS2).

Model Time
index 1 2 3 4 5 6 7 8 9

GOM
LCL 49.147 88.100 114.753 132.788 144.944 153.123 158.620 162.312 164.791
m̂(t) 64.942 108.518 137.757 157.376 170.540 179.373 185.300 189.276 191.945
UCL 80.737 128.935 160.761 181.963 196.135 205.623 211.980 216.241 219.099

DSM
LCL 29.754 81.610 119.319 141.607 153.581 159.671 162.660 164.090 164.762
m̂(t) 42.537 101.340 142.735 166.930 179.867 186.433 189.651 191.191 191.914
UCL 55.320 121.071 166.151 192.253 206.153 213.194 216.643 218.291 219.066

ISM
LCL 49.138 88.084 114.731 132.764 144.918 153.095 158.591 162.282 164.761
m̂(t) 64.931 108.500 137.733 157.349 170.511 179.343 185.269 189.245 191.913
UCL 80.725 128.915 160.736 181.935 196.104 205.590 211.946 216.207 219.065

YIDM
LCL 51.989 90.820 116.125 132.604 143.452 150.736 155.770 159.386 162.108
m̂(t) 68.171 111.517 139.254 157.176 168.926 176.797 182.228 186.125 189.057
UCL 84.354 132.215 162.383 181.748 194.400 202.858 208.686 212.864 216.007

PNZM
LCL 51.946 90.780 116.107 132.609 143.476 150.772 155.811 159.427 162.145
m̂(t) 68.123 111.474 139.234 157.181 168.952 176.835 182.272 186.169 189.097
UCL 84.300 132.168 162.361 181.753 194.428 202.899 208.733 212.912 216.049

PZM
LCL 49.064 88.017 114.677 132.724 144.892 153.080 158.585 162.284 164.769
m̂(t) 64.848 108.425 137.674 157.306 170.483 179.327 185.263 189.247 191.921
UCL 80.631 128.834 160.672 181.888 196.074 205.573 211.940 216.210 219.074

DPM
LCL 123.469 124.167 125.336 126.981 129.105 131.715 134.816 138.411 142.507
m̂(t) 147.252 148.012 149.283 151.071 153.379 156.212 159.574 163.470 167.904
UCL 171.036 171.857 173.230 175.161 177.652 180.709 184.333 188.529 193.301

TCM
LCL 60.749 93.551 114.901 129.743 140.446 148.355 154.305 158.844 162.346
m̂(t) 78.066 114.526 137.919 154.071 165.673 174.225 180.648 185.542 189.313
UCL 95.384 135.501 160.936 178.399 190.901 200.096 206.991 212.239 216.281

3PFDM
LCL 57.549 93.474 115.850 130.807 141.307 148.941 154.636 158.970 162.319
m̂(t) 74.461 114.441 138.954 155.226 166.605 174.858 181.005 185.677 189.284
UCL 91.374 135.408 162.058 179.645 191.903 200.776 207.374 212.384 216.249

New
LCL 62.346 93.042 114.265 129.443 140.426 148.466 154.433 158.930 162.375
m̂(t) 79.861 113.965 137.225 153.745 165.652 174.345 180.786 185.634 189.345
UCL 97.377 134.889 160.184 178.048 190.878 200.224 207.138 212.338 216.315

Model Time
index 10 11 12 13. 14 15 16 17

GOM
LCL 166.455 167.572 168.321 168.824 169.162 169.389 169.541 169.643
m̂(t) 193.735 194.937 195.743 196.284 196.647 196.890 197.054 197.163
UCL 221.016 222.302 223.164 223.743 224.132 224.392 224.567 224.684

DSM
LCL 165.073 165.216 165.280 165.309 165.322 165.328 165.331 165.332
m̂(t) 192.249 192.402 192.472 192.503 192.517 192.523 192.526 192.527
UCL 219.424 219.588 219.663 219.696 219.711 219.718 219.721 219.722

ISM
LCL 166.425 167.542 168.291 168.794 169.131 169.358 169.510 169.612
m̂(t) 193.703 194.904 195.710 196.251 196.614 196.857 197.021 197.130
UCL 220.981 222.267 223.129 223.708 224.096 224.357 224.532 224.649

YIDM
LCL 164.269 166.076 167.661 169.107 170.464 171.767 173.035 174.281
m̂(t) 191.383 193.328 195.033 196.587 198.047 199.446 200.809 202.147
UCL 218.498 220.580 222.405 224.068 225.629 227.126 228.583 230.014

PNZM
LCL 164.298 166.095 167.669 169.101 170.445 171.733 172.986 174.217
m̂(t) 191.415 193.349 195.041 196.581 198.025 199.410 200.756 202.078
UCL 218.531 220.602 222.413 224.061 225.606 227.087 228.526 229.940

PZM
LCL 166.437 167.557 168.309 168.814 169.152 169.380 169.532 169.635
m̂(t) 193.716 194.921 195.729 196.272 196.636 196.881 197.045 197.155
UCL 220.995 222.285 223.150 223.731 224.120 224.382 224.558 224.675

DPM
LCL 147.109 152.223 157.853 164.006 170.687 177.901 185.654 193.951
m̂(t) 172.880 178.401 184.474 191.101 198.286 206.034 214.349 223.235
UCL 198.650 204.580 211.094 218.195 225.885 234.167 243.045 252.519

TCM
LCL 165.073 167.214 168.906 170.251 171.327 172.192 172.889 173.455
m̂(t) 192.249 194.552 196.371 197.818 198.974 199.903 200.653 201.260
UCL 219.424 221.890 223.837 225.384 226.621 227.614 228.416 229.065

3PFDM
LCL 164.940 167.013 168.668 170.001 171.083 171.968 172.697 173.303
m̂(t) 192.105 194.335 196.115 197.548 198.711 199.662 200.446 201.097
UCL 219.270 221.658 223.563 225.096 226.340 227.357 228.195 228.891

New
LCL 165.057 167.175 168.872 170.249 171.380 172.319 173.107 173.773
m̂(t) 192.231 194.510 196.335 197.815 199.031 200.040 200.886 201.602
UCL 219.405 221.845 223.797 225.381 226.682 227.761 228.666 229.431
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Table A3. 95% Confidence interval of all 10 models (DS3).

Model Time
Index 519 968 1430 1893 2490 3058 3625 4422 5218 5823

GOM
LCL 3.641 9.407 15.376 21.176 28.274 34.589 40.464 48.022 54.803 59.482
m̂(t) 9.767 17.639 25.218 32.318 40.791 48.196 55.000 63.660 71.359 76.641
UCL 15.892 25.870 35.060 43.460 53.309 61.803 69.535 79.298 87.916 93.799

DSM
LCL −0.409 3.059 8.744 15.540 24.802 33.366 41.233 50.791 58.514 63.256
m̂(t) 2.966 8.910 16.770 25.422 36.671 46.770 55.885 66.811 75.550 80.883
UCL 6.342 14.760 24.796 35.305 48.540 60.174 70.537 82.832 92.586 98.510

ISM
LCL 3.641 9.407 15.376 21.176 28.273 34.589 40.464 48.022 54.802 59.482
m̂(t) 9.767 17.639 25.218 32.318 40.791 48.196 55.000 63.660 71.359 76.641
UCL 15.892 25.870 35.060 43.460 53.309 61.803 69.535 79.298 87.916 93.799

YIDM
LCL 3.631 9.384 15.337 21.122 28.202 34.503 40.367 47.916 54.698 59.387
m̂(t) 9.751 17.608 25.171 32.254 40.707 48.096 54.888 63.539 71.241 76.534
UCL 15.871 25.832 35.004 43.385 53.213 61.689 69.409 79.162 87.784 93.680

PNZM
LCL 3.701 9.506 15.493 21.294 28.373 34.657 40.493 47.993 54.724 59.378
m̂(t) 9.853 17.767 25.363 32.460 40.909 48.275 55.033 63.627 71.271 76.523
UCL 16.005 26.028 35.234 43.627 53.445 61.893 69.573 79.261 87.817 93.668

PZM
LCL 3.458 9.130 15.085 20.933 28.150 34.608 40.627 48.354 55.238 59.940
m̂(t) 9.499 17.277 24.856 32.024 40.646 48.218 55.187 64.039 71.852 77.157
UCL 15.539 25.424 34.628 43.116 53.141 61.828 69.747 79.723 88.466 94.373

DPM
LCL 26.407 26.678 27.161 27.873 29.166 30.827 32.943 36.756 41.628 46.096
m̂(t) 38.581 38.903 39.475 40.318 41.845 43.799 46.275 50.713 56.340 61.461
UCL 50.754 51.128 51.789 52.763 54.523 56.770 59.608 64.671 71.051 76.827

TCM
LCL 5.929 11.851 17.436 22.634 28.871 34.406 39.605 46.448 52.816 57.386
m̂(t) 12.993 20.787 27.763 34.075 41.497 47.982 54.009 61.863 69.110 74.278
UCL 20.058 29.723 38.090 45.516 54.122 61.559 68.413 77.279 85.404 91.170

3PFDM
LCL 3.990 9.962 16.016 21.804 28.789 34.941 40.631 47.938 54.522 59.105
m̂(t) 10.271 18.361 26.012 33.076 41.400 48.605 55.191 63.564 71.041 76.216
UCL 16.552 26.759 36.008 44.348 54.011 62.270 69.752 79.190 87.561 93.327

New
LCL 5.981 12.096 17.800 23.076 29.375 34.946 40.168 47.027 53.403 57.974
m̂(t) 13.066 21.099 28.210 34.606 42.091 48.611 54.658 62.525 69.774 74.941
UCL 20.151 30.102 38.621 46.135 54.807 62.276 69.148 78.023 86.146 91.909

Model Time
index 6539 7083 7487 7846 8205 8564 8923 9282 9641 10,000

GOM
LCL 64.535 68.049 70.489 72.543 74.495 76.350 78.112 79.786 81.376 82.886
m̂(t) 82.318 86.251 88.977 91.267 93.441 95.504 97.461 99.319 101.081 102.754
UCL 100.101 104.454 107.465 109.992 112.387 114.658 116.810 118.851 120.786 122.621

DSM
LCL 67.773 70.526 72.248 73.576 74.736 75.748 76.627 77.391 78.053 78.626
m̂(t) 85.943 89.018 90.939 92.418 93.710 94.834 95.812 96.660 97.395 98.031
UCL 104.112 107.510 109.629 111.260 112.683 113.921 114.997 115.930 116.738 117.437

ISM
LCL 64.535 68.049 70.489 72.543 74.495 76.350 78.112 79.786 81.376 82.886
m̂(t) 82.318 86.251 88.977 91.267 93.441 95.504 97.461 99.319 101.081 102.754
UCL 100.100 104.454 107.465 109.992 112.387 114.658 116.810 118.851 120.786 122.621

YIDM
LCL 64.460 67.996 70.457 72.532 74.508 76.389 78.181 79.887 81.511 83.059
m̂(t) 82.234 86.192 88.941 91.255 93.455 95.547 97.537 99.430 101.231 102.945
UCL 100.007 104.388 107.425 109.978 112.403 114.706 116.894 118.974 120.951 122.831

PNZM
LCL 64.417 67.936 70.389 72.462 74.440 76.328 78.131 79.854 81.500 83.074
m̂(t) 82.186 86.125 88.865 91.177 93.380 95.480 97.483 99.394 101.218 102.962
UCL 99.954 104.314 107.342 109.892 112.320 114.631 116.834 118.934 120.937 122.850

PZM
LCL 64.953 68.387 70.742 72.704 74.547 76.279 77.905 79.430 80.860 82.201
m̂(t) 82.786 86.629 89.260 91.447 93.499 95.425 97.231 98.924 100.510 101.995
UCL 100.619 104.872 107.777 110.189 112.451 114.571 116.558 118.418 120.160 121.789

DPM
LCL 52.288 57.681 62.083 66.287 70.771 75.541 80.600 85.954 91.607 97.562
m̂(t) 68.511 74.610 79.566 84.280 89.292 94.604 100.222 106.148 112.385 118.937
UCL 84.734 91.540 97.049 102.274 107.812 113.668 119.843 126.341 133.163 140.312

TCM
LCL 62.528 66.257 68.936 71.255 73.519 75.730 77.891 80.003 82.069 84.090
m̂(t) 80.065 84.247 87.243 89.832 92.355 94.815 97.216 99.560 101.849 104.086
UCL 97.603 102.237 105.550 108.408 111.190 113.900 116.541 119.116 121.629 124.082

3PFDM
LCL 64.115 67.651 70.138 72.257 74.295 76.256 78.144 79.963 81.717 83.410
m̂(t) 81.847 85.806 88.586 90.949 93.218 95.399 97.497 99.515 101.459 103.333
UCL 99.578 103.961 107.033 109.641 112.142 114.543 116.849 119.067 121.202 123.257

New
LCL 63.115 66.844 69.522 71.840 74.104 76.315 78.476 80.590 82.657 84.680
m̂(t) 80.725 84.903 87.897 90.484 93.006 95.465 97.866 100.210 102.500 104.739
UCL 98.334 102.963 106.272 109.128 111.907 114.615 117.255 119.830 122.343 124.797
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