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Abstract: Due to some technical issues that can appear during the manufacturing process of
Functionally Graded Materials (FGMs), it can be extremely difficult to produce perfect materials.
Indeed, one of the biggest problems is the presence of porosities. For this purpose, the vibrational
behavior of doubly-curved shells made of FGM including porosities is investigated in this paper.
With respect to previous research, the porosity has been added to the mechanical model that
characterizes the through-the-thickness distribution of the graded constituents and applied to
doubly-curved shell structures. Few papers have been published on this topic. In fact, it is easier
to find works related to one-dimensional structures and beam models that take account the effect
of porosities. The First-order Shear Deformation Theory (FSDT) is considered as the theoretical
framework. In addition, the mechanical properties of the constituents vary along the thickness direction.
For this purpose, two power-law distributions are employed to characterize their volume fraction.
Strain components are established in an orthogonal curvilinear coordinate system and the governing
equations are derived according to the Hamilton’s principle. Finally, Navier’s solution method is used
and the numerical results concerning three different types of shell structures are presented.

Keywords: functionally graded materials; porosity; doubly-curved shells; vibrations; first-order
shear deformation theory

1. Introduction

Functionally Graded Materials (FGMSs) are well-known composite materials whose properties
change smoothly along one or multiple directions. FGMs were studied for the first time by
Niino et al. [1] in 1984 for aerospace applications, and have been increasingly adopted in the literature
as multi-function materials for different engineering applications. These materials are produced
by blending two materials such as metals and ceramics together, and are able to eliminate stress
discontinuities commonly present in layered composites. Thus far, different studies have focused on
the mechanical behavior of FGMs. Wattanasakulpong and Chaikittiratana [2], for example, proposed
an analytical study for the free vibration of doubly-curved Functionally Graded (FG) shallow shells
with stiffeners, under a thermal environment. Tornabene et al. [3] investigated the free vibration of
free-form doubly-curved FG shells. In two papers, Kiani et al. [4,5] investigated the static and dynamic
behavior of a FGM doubly-curved panel. Sayyadi and Farsangi [6] also presented an analytical solution
for the free vibration and dynamic problem of thick doubly-curved FG smart panels.
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Porosities and micro-voids are common technical issues that may be introduced during the
manufacturing process, with a consecutive reduction of their mechanical properties [7]. This possible
relationship between porosity and mechanical properties of materials has increased the interest of
the scientific community in obtaining more precise results both experimentally and theoretically.
Wang et al. [7] investigated the vibration behavior of FG porous rectangular plates in a thermal
environment. Shafiei and Kazemi [8,9] studied the buckling behavior of FG tapered and simple
beams made by porous materials, and verified that an increasing porosity volume fraction yields to
a decrease in stiffness and buckling load. A general nonlocal approach based on the strain-gradient
elasticity model was developed by Shahverdi and Reza Barati [10] for the vibration analysis of porous
nano plates resting on elastic substrates.

Many applications of single- or doubly-curved shells have increased the scientific attention to the
mechanical behavior of these useful structural components. Several studies on doubly-curved shells are
available in the literature. A brief review is presented here for the sake of completeness. Tornabene [11]
and Tornabene et al. [12,13] investigated the free vibrations of anisotropic doubly-curved shells of
revolution defined by free-form meridians. Viola et al. [14] and Tornabene et al. [15,16] employed
a higher-order formulation, based on an equivalent single layer approach, for the mechanical
analysis of laminated composite shell structures characterized by curved surfaces as reference
domains. A layer-wise formulation was presented instead in the paper by Tornabene et al. [17]
for the same purpose. A Moving Least Squares Differential Quadrature (MLSDQ) method based on
Radial Basis Functions (RBFs) was developed by Tornabene et al. [18] to perform the free vibration
analysis of laminated composite doubly-curved shells. The weak form of the governing equations
of doubly-curved shells was solved by Tornabene et al. [19] to obtain the natural frequencies of shell
structures characterized by distorted domains. For this purpose, an approach based on Non Uniform
Rational Basis-Splines (NURBS) was developed. Tornabene et al. [20] employed a local version of
the Generalized Quadrature Method (GDQ) for the dynamic analysis of FGM sandwich shells with
variable thickness. The topic of shell structures with variable thickness was studied also by Amabili [21],
who proposed a nonlinear higher-order shear deformation theory. A third-order shear deformation
theory was developed by Amabili [22,23] to investigate the nonlinear mechanical behavior of both
isotropic and laminated doubly-curved shells. Amabili [24] and Amabili and Reddy [25] included the
stretching effect and shear strains in their higher-order formulation for the large-amplitude vibrations
of laminated doubly curved shells. Tornabene et al. [3] analyzed the free vibration of free-form
doubly-curved shells made by FGMs, while applying some higher-order theories. Tornabene et al. [26]
investigated the agglomeration effect on the natural frequency of FG carbon nano-tube-reinforced
laminated composite doubly-curved shells. A further study on nonlinear vibrations of doubly-curved
shallow shells can be found in Amabili [27]. Fadaee et al. [28] investigated the free vibrations of FG
spherical shell panel using an innovative exact closed-form solution. A higher-order facet shell element
was developed by Khare et al. [29] for the free vibration analysis of composite and sandwich laminates.

Few studies conducted thus far, however, have focused on the mechanical behavior of
doubly-curved shells made by FGM in the presence of porosities. This problem is tackled here
numerically, while focusing on the free vibration of FG porous doubly-curved shell with simply
supported boundary conditions. This is the main novel aspect introduced in the paper, since previous
works were focused only on beam structures and one-dimensional models. An improved third-order
shear deformation theory was employed by Wattanasakulpong et al. [30] to formulate the governing
equations for the free vibrations of functionally graded beams including porosities. The same analyses
were performed by Wattanasakulpong and Ungbhakorn [31], including the effect of nonlinearities on
the structural response. In their paper, the influence of porosities on the structural response was proven
through a set of experimental analyses. Wattanasakulpong and Chaikittiratana [32] studied the flexural
vibration of functionally graded beams based on Timoshenko theory by means of the Chebyshev
collocation method. The Timoshenko beam theory was employed by Shafiei et al. [33] to investigate
the vibrational behavior of two-dimensional functionally graded nano and microbeams including
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porosities. To this aim, the Eringen’s nonlocal elasticity and the modified couple stress theories were
employed. Ebrahimi and Zia [34] investigated the large-amplitude nonlinear vibration characteristics
of functionally graded Timoshenko beams made of porous constituents. Finally, Fazzolari investigated
the vibration and stability analyses of porous FG sandwich beams resting on elastic foundations [35].
For this purpose, various hierarchical refined exponential, polynomial, and trigonometric higher-order
beam theories were developed in a generalized manner. An empirical approach has been used in all
the aforementioned papers concerning porous and imperfect media to evaluate the overall mechanical
properties of the composites at issue [30-35]. For this purpose, the well-known rule of mixture has
been modified to deal with porosities. Since this approach has been validated by other authors, as
illustrated in [30-35], the same empirical scheme is employed in the present paper to deal with FGM
structures. The methodology in hand is also extended to the case of shell structures, since the previous
studies are mainly focused on beams and plates with porosities. In other words, the authors do not
aim to propose a new micromechanical scheme for porous and imperfect media, but their purpose is
to apply an existing homogenization technique, the rule of mixture, to easily include and investigate
the presence of porosities in a functionally graded material.

The First-order Shear Deformation Theory (FSDT), combined with the Hamilton’s principle, is
applied to obtain the governing equations of the problem [36-39], which is defined by means of five
dynamic parameters. The accuracy of the proposed formulation is thus verified through a comparative
evaluation between our results and some predictions available in the literature.

The remainder of this paper is organized as follows: the geometry problem is first reviewed
and detailed for doubly-curved shells in Section 2. Section 3 is concerned with a further review of
FGMs, which are applied in Section 4 within the proposed mathematical formulation. The numerical
solution of the problem is detailed in Section 5, while discussing about the numerical results and
their comparative evaluation with predictions from the literature in Section 6. Finally, conclusions are
drawn in Section 7.

2. Brief Review of the Curvilinear Coordinate System

Figure 1 illustrates a doubly-curved shell with thickness &, defined in a curvilinear orthogonal
coordinate system (a1, 2, {), where a1 and &, refer to the principal lines of curvature on the neutral
surface ({ = 0), whereas ( is perpendicular to the neutral surface itself. In addition, R; and R; are the
curvature radii along «; and a, directions, respectively.

Neutral Surface

R,

Figure 1. Geometry of doubly-curved shell and its coordinate systems.
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By considering a generic point P on the neutral surface, its location is defined through the position
vector r:
r= fi(ar, a2)er + fo(ar, a2)ez + f3(a1, az)es, @

where eq, ey, e3 are the unit vectors standing for the principal directions in a three-dimensional setting.
Meanwhile, f1, f», f3 are smooth functions that characterize the parametric surface.
The distance between point P and a reference point in orthogonal curvilinear coordinates is
given by:
(ds)? = Ad(day)® + AB(dz)?, @

where ds stands for the infinitesimal curvilinear length that can be measured between P and the
reference point at issue, within the shell middle surface. The symbols A; and A, are the Lamé
parameters defined by

A2 = dr dr

17 daqg doq (3)
A2 dr dr -

2 = dﬁéz lez

The distance dS between two close points within the three-dimensional shell element in orthogonal
curvilinear coordinates can be deducted through the following compact expression

(dS)? = Yo | gii(ar, a2, §) (da;)?, @)
where
g 2
g1 = Af (1 + Rl) (5)
g 2
g0 = A3 (1 + R2) (6)
g33 = 1. (7)

It should be recalled that the Lamé parameters A;, A, and the two curvature radii Ry, R, must
fulfill the Gauss—Codazzi conditions shown below:

94, 9 Ay (8)
O (104 9 (104) __ Ay
dag \ A1 daq dap \ Ap dapy ) RiRyp*

Further details concerning the analytical description of doubly-curved surfaces can be found in
the book by Tornabene and Fantuzzi [38].

3. Functionally Graded Materials

The material considered in this study is a combined metal and ceramic, whose volume fractions
are assumed to be variable along the {-direction. In a context where even or uneven distributions of
porosity are commonly assumed in the literature, the present work considers an even distribution of
porosity, equally distributed within the material.

The Young’s Modulus E, the Poisson’s ratio v, and the density of the shell p, are assumed to vary
through the thickness according to a power law distribution and even porous distribution, as defined
in the following:

E(Z) = [Ec ~ EnlVe + En— b[Ec — Enl ©)
V() = [ve — V] Ve + vm — g[vc — V] (10)
B

p(&) = lpc = pmlVe + pm = Slpc = pml, (11)
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where the subscripts m and c refer to the metal and ceramic, respectively, § (with § < 1) is the porosity
volume fraction, and V; and V, refer to the volume fraction of the ceramic and metal, respectively.
As can be noted from Equations (9)—(11), the overall mechanical properties of the composite are
computed through the well-known rule of mixture, which has been properly modified to take into
account the porosity of the medium [31]. The same empirical approach has been recently employed
and validated by many authors to describe the porous phase of FGMs [30-35]. To the best of the
authors’ knowledge, the rule of mixture represents a simple homogenization technique that allows us
to evaluate in an efficient manner the elastic properties of a graded composite. Nevertheless, it can
be recalled that more refined approaches are available in the literature, as highlighted in the paper
by Tornabene et al. [39]. For instance, the Mori-Tanaka scheme could be used as an alternative to
the theory of mixture, as illustrated in [3], where the classic theory of mixtures is compared to the
more refined scheme. Nevertheless, the numerical analyses shown in the paper by Tornabene et al. [3]
proved that similar results can be obtained by using these two micromechanical approaches. Thus, a
proper set of experimental analyses should be performed to understand which is the best methodology
for evaluating the mechanical properties of porous FGMs. Nevertheless, the Mori-Tanaka scheme
could provide a better physical interpretation of the mechanical behavior of FGMs [3]. As specified
in the introduction, the paper does not aim to discuss the micromechanics of porous media, but is
focused on the effect that porosities could have on the structural response of FGM shells by using
existing approaches.
Based on the rule of mixture, the following relation can be deduced:

Vi + V. =1. (12)

In this study, the volume fraction of ceramic V, is modeled according to the following power-law
distributions, namely

P

FGM —typel: V. = (zgz_]:h) (13)
— p

FGM —type2: V. = (zgzhh) ’ (14)

where p € [0, ) is the FG power-law index. Figure 2 illustrates the variation of the ceramic volume
fraction vs. the dimensionless thickness coordinates for different values of p.
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Figure 2. Different volume fraction of ceramic along the thickness for different values of power-law
index: (a) FGM (Functionally Graded Material)-type 2; (b) FGM-type 1 [38].
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4. Mathematical Modeling

According to the First-order Shear Deformation Theory (FSDT), the three-dimensional
displacements (11, up, u3) are defined as follows [13,38]:

u = M+€,31
up =v+¢p (15)
Uz = w

where 1, v, and w are the displacement components, and ;1 and B, are the rotations of the tangents
to the middle surface about & and «y axes, respectively. These five parameters are the degrees of
freedom of the problem and can be collected in the corresponding vector U.

The equations of motion can be derived through the Hamilton’s variational principle, applied
within a generic time interval bounded by £, 1:

t
/t '(6U + 6W — 6K)dt = 0, (16)

0

where U, 5K, and W are the variations of strain energy and kinetic energy, as well as the work done
by the external forces, respectively. The strain energy of an elastic body occupying a volume V is
defined as follows:

U= % / (cijei7) V. (17)

The three-dimensional strain components are defined as

e11 = e + Gk (18)
€2 = e + (ko (19)
e = %[612 + Ckio] (20)
0
713:'314_8712_1{11 (21)
0
T3 = fa + % - R% (22)
h
where o [au X w] -
e (14+C/Ry) [0a1 Ry
1 Jv w
2= AT /Ry [aaz * Rz] -
1 ou 1 0v

2= {15 ¢/Ry) {a} AR {aj 2

_ 1 9B1
k= (1+/Ry) L’“J (26)

_ 1 9B
ko = (14 ¢/Ry) LMJ @7

_ v JoBu), T 9B

e = (g7 o) TR | o) 28)

under the assumption A; = A; = 1, related to the correspondence between curvilinear abscissae and
principal coordinates.
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The stress—strain relationships at a given point within the FGM porous doubly-curved shell
element take the following form:

o1 Cn Ci2 0 0 0 €11
02 Ci2 Ca 0 0 0 3%
012 = 0 0 Ces 0 0 Y2 s (29)
023 0 0 0 Cy 0 723
013 0 0 0 0 Css Y13

where the three-dimensional stress components are indicated on the left. Here, C;; are the elastic
coefficients included in the corresponding elasticity matrix. They are defined below as

Cn = 15%2 Ciz = v(E)Cn, €2 = Cur, Caa = Cs5 = Coo = 2<1E+(€)<é>> w

The kinetic energy K can be written as follows:

K= % /V o(OU' Uav, 31)

where U is the displacement vector, which collects the three-dimensional displacement components
introduced above. The dot notation used in the expression above stands for the time derivative.
In other words, U collects the velocity components. On the contrary, the variations of the work done

by external forces is given by
SW = / / (G101 + 3200 + gsdw)daday, (32)
ap J g

where g1, 42, and g3 are the external forces along the a1, ap, and ¢ directions, respectively. By combining
all the energy variations, substituting them into Equation (19), and finally gathering the virtual
displacement du, dv, dw, 61, and JB,, the five governing equations are expressed as in the following:
ONG, | ONj | Qf oL
P == 4= =] I
ou 79 + 9 + R +q1 ou+ 118, (33)

ONY, | ON3 | Q3

bo: St 2 R—; +q2 = lpd + 1B, (34)
ow 88%113 aa(i% - I\Igl - 1;;2(;2 +q3 = lpw (35)
1 St 2 - Qf, = it + by 30
o2 agfl L Qf = i+ by, (37)

where Iy, I; and I, being the normal, coupled normal-rotary and rotary inertia coefficients, respectively,
which are defined below:

I :/ghp(g)zj(wré) (1+Ri>dgi:o,1,2. (38)

2



Appl. Sci. 2017, 7, 1252 8 of 20

It should be noted that the stress results must be introduced, too. More specifically, N}, Ny,, N5,,
and Ny, are the in-plane stress resultants, Qf; and Q9 are the transverse shear stress resultants, and
M{,, MY{,, M3, and M3, are the bending and torsional moments defined below:

{N7}, Nip, Qf3}t = /{(711/ 012, k 013}<1 + g)tiC (39)
(% (% a _ £
{N2, N1, O} = /{‘722/ 021, ksf723}<1 + R )dC (40)
/ 1
[MF,, M) = ! (on, ekt 1+ £ ) @)
4
{Mz,, Mz} = /{‘722/ ‘721}§<1 + )d@ (42)

It should be recalled that the definitions of the shear stress results require the introduction of the
shear correction factor, which is usually taken as ks = 5/6. The same assumption is herein introduced
for our analyses.

5. Solution Procedure

The Navier’s approach is used to get the solution. The expressions below of the generalized
displacements are considered for simply supported boundary conditions [36,37]:

U= Ucos(%le)cos(%txz)eiw 43)
0= Vsin(%al)sm( ; )ewf (44)
w = Wsin (" ay ) cos (" a ) ¢ (45)
Bi = Blcos(@al)cos(”b az ) el (46)
By = stm(m—al)sm(—n(xz)el“’t 47)

where w represents a specific circular frequency of vibration. Moreover, n and m are the half-axial
wave numbers along the a; and a; directions, respectively, whereas U, V, W, By, and B, are the
vibrational amplitudes, collected in the corresponding vector U = [U V W By By]”. By substituting
Equations (44)-(48) into Equations (34)—(38), we get to the following differential eigenvalue problem:

[K T wZM} u=o, (48)

where M and K are mass and stiffness matrices, respectively. Achieving non-zero responses, the
following condition should be satisfied:

det [K + sz} —0. (49)

The solution of Equation (50) yields the natural frequencies.
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6. Numerical Results and Discussion

In this work we analyze the free vibration problem of FG spherical, hyperbolic paraboloidal,
and circular cylindrical shells with porosities. For the sake of completeness, these geometries are
schematically depicted in Figure 3.

(@) (b) (c)
Figure 3. Geometries of shell structures considered in the applications: (a) Spherical shell; (b) hyperbolic
paraboloidal shell; (c) circular cylindrical shell.

The FGM is considered to be the composition of metal (SUS304) and ceramic (Al,O3), whose
properties are provided in Table 1.

Table 1. Material properties of metal (SUS304) and ceramic (Al,O3).

Material E (Gpa) v p (kg/m3) Reference
SUS304 201.04 0.3262 8166 [27,36,38]
Al,O3 349.55 0.24 3800 [27,36,38]

In order to verify the accuracy of the proposed formulation, a comparative investigation is
carried out against the existing results in the literature. For this reason, a simply supported isotropic
spherical shell has been considered. In this case, we consider a = b = 1.0118 m, & = 0.0191 m,
R=R1 =Ry =191m,E=1Pa,p = 1kg/m3, and v = 0.3 [30]. Table 2 shows the main results in
terms of natural frequencies for different modal shapes and wave numbers. As shown in Table 2, there
is a very close agreement between results based on our proposed formulation and the predictions by
Fadaee et al. [28] and Khare et al. [29].

Table 2. Comparison of the circular frequencies (rad/s) for an isotropic simply-supported (SSSS)

spherical shell.
Frequency
Mode (m, n)
Present Study Fadaee et al. [28]  Khare et al. [29]
(1,1) 0.52692 0.52864 0.50211
(21) 0.58120 0.58954 0.56247
(1,2) 0.58120 0.58954 0.56248
(2,2) 0.66757 0.68370 0.65706
(31) 0.73173 0.75974 0.73915
(1,3) 0.73173 0.75974 0.74035
(3,2) 0.87284 0.88680 0.86359
(2,3) 0.87284 0.88680 0.86360

Hereafter, we define the frequencies in the dimensionless form as

2
5 a [Pe

@ =w E (50)

Tables 3-5 illustrate the dimensionless frequencies of FG porous spherical, hyperbolic
paraboloidal, and circular cylindrical shells by using different values of the power-law index p
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and porosity volume fraction § for the FGM-types 1 and 2 power-law distributions. In particular,
Table 3 shows the dimensionless frequency for a simply supported spherical shell witha =b = 1m,
Ri = R, = 1 m and thickness h = 0.01 m. Four different wave numbers (m,n) are considered,
together with various p and B for two different ceramic volume fraction distributions. Table 4 shows
similar results for the simply supported FG porous hyperbolic paraboloidal shell witha = b = 1 m,
thickness & = 0.01m, and curvatures R; = —R, = 1 m.

In Table 5 we report the dimensionless frequencies of FG porous as functions of p and § for
the circular cylindrical shell with simply supported boundary condition and square planform of
a = b = 1m, thickness & = 0.01 m, and curvatures R{ = 1, R, = oo. Based on the results in Tables 3-5,
the dimensionless frequency of FG porous shell structures can be easily modified by varying the
power-law index p and porosity volume fraction B. In more detail, the dimensionless frequencies for a
FGM-type 1 are always higher than those related to an FGM-type 2. Similar behavior can be observed
for hyperbolic paraboloidal and circular cylindrical shells (see Tables 4 and 5). For each structure
analyzed here (i.e., spherical, hyperbolic paraboloidal, and circular cylindrical shell), we define the
dimensionless frequencies as a function of § for different wave numbers along the a1 and a; directions,
as well as for FGM-types 1 and 2, as depicted in Figures 4—6.

Table 3. Dimensionless frequency of simply-supported (SSSS) functionally graded porous spherical shell
as functions of the power-law index and porosity volume fraction. FGM: Functionally Graded Material.

FGM-Type 1 Power-Law Distribution

Porosity = Mode (1, n) p=0 p=03 p =06 p=1 p=>5
(1,1) 96.2515 91.4707 73.5029 67.7563 54.9591
B =0 2,2 100.8020  84.7121 76.6455 70.5771 57.4624
N 3,3) 108.5000  90.6464 81.7889 75.2368 61.6982
(4,4) 126.0190  104.7290  94.2881 86.7258 71.8939

(11) 100.8150  92.4828 74.2942 67.8636 53.7906
(B =0.1) (2,2) 105.4450  86.5088 77.3459 70.5635 56.1427
e (3,3) 113.4500  92.4888 82.4393 75.1182 60.2263
(4,4 131.7140  106.7500  94.9017 86.4443 70.1336

(1,1) 107.0910  102.8620  75.2655 67.9668 52.3336

B =02 (2,2) 111.8720  88.8384 78.2284 70.5396 54.5219
- 3,3) 120.3260  94.8992 83.2761 74.9779 58.4334
(4,4) 139.6680  109.4300  95.7237 86.1258 68.0135

FGM-type 2 Power-law distribution

Porosity Mode (m,n) p=0 p=03 p =06 p=1 p=>5
(1,1) 96.2515 90.7627 73.8184 68.1096 55.2069

B =0 (2,2) 100.8020  85.5775 77.8421 71.9234 58.4065
- (3,3) 108.5000  92.4549 84.2883 78.0465 63.6580
4,4) 126.0190  109.6880  98.1258 91.0358 74.8731

(1,1) 100.8150  91.2313 74.6290 68.2372 54.0529
(B =0.1) (2,2) 105.4450  87.4252 78.6036 71.9729 57.1317
e (3.3) 113.4500  94.4013 85.0632 78.0563 62.2761
4,4) 131.7140  109.6880  98.9337 90.9554 73.2497
(1,1) 107.0910 1024517  75.6247 68.3659 52.6147

(B =02) (2,2) 111.8720  89.8218 78.2284 70.5396 54.5219
- (3,3) 120.3260  96.9495 86.0617 78.0819 60.6011

(4,4) 139.6680 112.580 100.0080 90.8967 71.3080
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According to Figures 4-6, it is worth noting that the dimensionless frequencies increase in value
for shells made of pure ceramic (i.e., p = 0). This is due to the fact that ceramic (Al,O3) features a
higher Young’s modulus than metal (SUS304). The most important result that can be inferred from
Figures 4-6 is that an increased porosity volume fraction leads to an increased dimensionless frequency
for a rich ceramic limit. The variation of the dimensionless frequency parameters for mode (1,1) with
respect to the power-law index p for three various values of porosity volume fraction (i.e., § = 0,
B = 0.1, and B = 0.3) in FGM-types 1 and 2, are plotted in Figures 7-9 for a spherical, hyperbolic
paraboloidal, and circular cylindrical shell, respectively.

As shown in Figures 7-9, the dimensionless frequency increases monotonically with the porosity
volume fraction 8, but decreases for an increasing power-law index. For instance, between p = 0 and
p =~ 1, the dimensionless frequencies increase with an increasing porosity volume fraction 3, whereas
after p = 1 they decrease with the increase in . This behavior can be observed for all the modes (m,n).
As seen in Figures 7-9, for each structure there is a rapid decrease of frequencies between p = 0 (limit
case of pure ceramic) and approximately p = 1. For p higher than 1, the declining trend goes much
more slowly. Similar behavior is observed for all the structures studied here and for all modes (1m,n).

Table 4. Dimensionless frequency of simply-supported (SSSS) functionally graded porous hyperbolic
paraboloidal shell as functions of the power-law index and porosity volume fraction.

FGM-1 Power-Law Distribution

Porosity = Mode (1, n) p=0 p=03 p=0.6 p=1 p=>5
(1,1) 3.9944 3.3438 3.0276 2.8052 2.3793

(6 =0) 2,2) 18.5237 15.5060 14.0398 13.0083 11.0330
N 3,3) 42.7974 35.8247 32.4370 30.0536 25.4874
4,4) 76.6832 64.1885 58.1186 53.8474 45.6605

11 4.1700 3.4012 3.0393 2.7886 2.3225

(B =0.1) 2,2) 19.3382 15.7725 14.0941 12.9312 10.7696
o 3,3) 44.6804 36.4414 32.5633 29.8764 24.8799
(4,4) 80.0601 65.2962 58.3473 53.5324 44.5732

(1,1) 4.41884 3.4809 3.05829 27712 2.2566

(B =0.2) 2,2) 20.4929 16.1423 14.1826 12.8511 10.4639
o (3,3) 47.3497 37.2966 32.769 29.6925 24.1744
(44) 84.8460 66.8307 58.7183 53.2052 43.3115

FGM-2 Power-law distribution

Porosity Mode (m,n) p=20 p=03 p=0.6 p=1 p=>5
11 3.9944 3.3452 3.0297 2.8076 2.3810

(=0 22) 18.5237 15.5136 14.0507 13.0208 11.0420
N (3,3) 42.7974 35.8428 32.4627 30.0831 25.5091
44) 76.6832 64.2209 58.1647 53.9003 45.6995

1,1) 4.1700 3.40289 3.04161 2.79127 2.32458

(6 = 0.1) 2,2) 19.3382 15.7814 14.1061 12.9450 10.7798
o (3,3) 44.6804 36.4616 32.5917 29.9089 24.9039
(4,4) 80.0601 65.3321 58.3983 53.5908 44.6171

11 4.41884 3.4828 3.0610 2.7743 2.2590
(B =02) 2,2) 20.4929 16.1518 14.1962 12.8666 10.4754
- (3,3) 47.3497 37.3192 32.8007 29.7287 24.2014

44) 84.8460 66.8714 58.7752 53.2703 43.3601
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Table 5. Dimensionless frequency of simply-supported (SSSS) functionally graded porous circular
cylindrical shell as functions of the power-law index and porosity volume fraction.

FGM-1 Power-Law Distribution

Porosity = Mode (1, n) p=0 p=03 p=0.6 p=1 p=>5
(1,1) 48.4942 40.8660 37.0253 34.1183 27.7268
B =0) (2,2) 53.0808 44.3991 40.0824 36.8778 30.1956
(3,3) 65.9875 54.7970 49.3207 45.3731 37.7164
(4,4) 91.8995 76.1928 68.5752 63.1903 53.1539
(1,1) 50.7297 41.7402 37.3740 34.1238 27.0979
B =0.1) (2,2) 55.500 45.3040 40.4061 36.8257 29.4760
' (3,3) 68.9586 55.8377 49.6220 45.2055 36.7869
(4,4 95.9954 77.5601 68.8955 62.8567 51.8369
(1,1) 53.8218 42.8723 37.8124 34.1267 26.3250
(B =02 (2,2) 58.8601 46.4870 40.8218 36.7640 28.5992
' (3,3) 73.1141 57.2240 50.0319 45.0178 35.6715
(4,4) 101.7600  79.4159 69.3675 62.4923 50.2788
FGM-2 Power-law distribution

Porosity Mode (m, n) p=0 p=03 p=0.6 p=1 p=5
(1,1) 48.4942 41.0805 37.3222 34.4526 27.9614

(B =0) (2,2) 53.0808 45.2115 41.2050 38.1398 31.0770
(3,3) 65.9875 56.2839 51.3764 47.6810 39.3077

4,4) 91.8995 78.1084 71.2254 66.1625 55.1808

(1,1) 50.7297 41.9677 37.6866 34.4744 27.3442

B =0.1) (2,2) 55.500 46.1629 41.5841 38.1448 30.3976
' (3,3) 68.9586 57.4109 51.7815 47.6209 38.4507

(4,4 95.9954 79.5895 71.6842 65.9730 53.9575

(1,1) 53.8218 43.1169 38.1453 34.4984 26.5867

(B =02) (2,2) 58.8601 47.4074 42.0719 38.1571 29.5735
' (3,3) 73.1141 58.9107 52.3262 47.5720 37.4298

(44) 101.760 81.5943 72.3353 65.7942 52.5205
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Figure 4. Dimensionless frequency of FG porous spherical shell against different power-law indices
and porosity volume fractions distributions: (a) FGM-type 1; (b) FGM-type 2.
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Figure 6. Dimensionless frequency of FG porous hyperbolic circular cylindrical shell against different
power-law indices and porosity volume fractions distributions: (a) FGM-type 1; (b) FGM-type 2.
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Figure 7. Dimensionless frequency of FG porous spherical shell versus different power-law indices for
various porosity volume fractions: (a) FGM-type 1, (b) FGM-type 2.
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Figure 9. Dimensionless frequency of FG porous circular cylindrical shell versus different power-law
indices for various porosity volume fractions: (a) FGM-type 1; (b) FGM-type 2.

7. Conclusions

The dynamic equilibrium equations of FG porous doubly-curved shells have been derived by
means of the Hamilton’s principle. FSDT is used to study the shell theory. FG shells with two various
ceramic volume fraction distributions are considered, in the presence of an even distribution of porosities.
Navier’s solution method is employed here to solve the equations of motion and a comparative study is
performed to verify the accuracy of our results. We analyze the free vibration behavior of three special
cases of FG doubly-curved shells (spherical shell, hyperbolic paraboloidal shell, and circular cylindrical
shell). All the results reveal that the porosity and a combined distribution of ceramic and metal during
manufacturing can significantly affect the mechanical behavior of FGM-based structures. In particular,
between p = 0 and p =~ 1, the dimensionless frequencies for all the structures increase by increasing the
porosity volume fraction, while changing their trend after p ~ 1. The natural frequencies are revealed to
reach the maximum value for a pure ceramic material (p = 0) while declining for increasing p or within
metallic materials. Finally, it should be mentioned that different tendencies and mechanical behaviors
can be obtained if different geometries are considered. In fact, the curvature effect could cause the
coupling of membrane and bending behaviors. Thus, a different dynamic response could be obtained if
various structures characterized by different values of curvature radii (such as spherical, hyperbolic
paraboloidal, and cylindrical shells) are analyzed. This coupling could be even more accentuated for
peculiar mechanical configurations, as in the case of FGMs.
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