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Abstract: A lab-scale downdraft fixed bed reactor was used for the study of sewage sludge,
a non-lignocellulosic biomass, torrefaction to enhance the thermochemical properties of sewage
sludge. The torrefaction was carried out for a temperature range of 200–350 ◦C and a residence time
of 0–50 min. Degree of torrefaction, torrefaction index, chemical exergy, gas analysis, and molar ratios
were taken into account to analyze the torrefied product with respect to torrefaction temperature.
The effect of torrefaction temperature was very pronounced and the temperature range of 250–300 ◦C
was considered to be the optimum torrefaction temperature range for sewage sludge. Chemical
exergy, calorific value and torrefaction index were significantly influenced by the change in the
relative carbon content resulting in decrease of the O/C and H/C molar ratios.

Keywords: downdraft fixed bed; sewage sludge; degree of torrefaction; chemical exergy; higher
heating value; O/C and H/C ratios; torrefaction index

1. Introduction

Biomass as a renewable energy source is recognized globally and is available in a generous amount
on the earth, which can be transformed into biofuels or energy, utilizing various thermal, physical,
or biological processes. Not only the curbing depletion of fossil fuel but negative environmental
impacts associated with it, such as greenhouse gases, acid rain, and deterioration in climate has caught
the interest of exploiting the renewable energy like biomass as fuel [1]. A study by Daniel et al. [2]
has revealed integrating biomass into combined cooling and heating power (CCHP) for providing
energy for buildings. Utilizing biomass or waste can lessen the environmental issues due to high
carbon dioxide emissions, which are chiefly produced by fossil fuels. Hence, clean and renewable
energy sources are in high demand [3] and sewage sludge is acknowledged as a low-cost material
for biomass combustion [4] yet, these wastes are disposed into landfills or the ocean due to economic
reasons. As the sewage sludge constitutes high amount of organic content, sewage sludge surely
can be a promising biomass resource for energy recovery. Utilizing sewage sludge to generate heat
through incineration and combustion can be a good alternative but the emission of heavy metals has
led to various disagreements [5]. Due to low hemicellulose and cellulose, and a high ash content of
sewage sludge, the combustion behavior is entirely different from that of lignocellulosic biomass [6].
For these reasons, the quality of raw sludge needs improvement to utilize it to obtain useful forms of
energy. Energy recovery therefore plays a vital role whilst considering the management of sewage
sludge. Various comparative studies have been carried out for the analysis of sewage sludge for energy
recovery using various alternatives, such as Life-cycle assessment (LCA) [7] and SWOT (strengths,
weaknesses, opportunities, and threats) [8].

For decades, thermochemical technologies, such as combustion, gasification, pyrolysis, and others,
have been employed for biomass conversion [9]. A promising alternative is provided by torrefaction,
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which alters sludge into coal-like solid fuel particles. During torrefaction, the biomass is heated to
a temperature range of 200–350 ◦C in the absence of oxygen. During the process, loss of moisture
occurs with a partial loss of the volatile (approximately 20%) as a result of which there is alteration
in the characteristics of original raw biomass [10]. With the removal of the light fraction volatiles,
the heating value of the torrefied biomass gradually increases [10]. This thermal treatment converts
oxygen to carbon monoxide and carbon dioxide, which in turn reduces the O/C ratio but elevates
the energy density and hydrophobicity of sludge [11]. Torrefaction lessens the moisture content of
the biomass, which is an imperative benefit that inhibits biological degradation [12], increases the
energy density [13], and enhances the combustion efficiency [14]. Despite these advantages study
of non-lignocellulosic biomass is still limited. Various reactors have been used to carry torrefaction,
such as muffle furnace [15], fixed bed reactors [16], auger reactor [17], and fluidized bed reactors [18].
To the best of our knowledge, downdraft fixed bed has not yet been used for the torrefaction of biomass
although the downdraft fixed bed reactors have been utilized for gasification of biomass [19]. A study
by Kou et al. [19] reveals the benefit of using downdraft fixed bed over updraft and cross-draft bed
reactor for gasification. This study, therefore, explores the benefits of using downdraft fixed bed reactor
for torrefaction under different operating parameters. Higher heating value (HHV) or calorific value,
different molar ratios, chemical exergy, torrefaction index, and severity factor were used to evaluate
the optimum temperature range for torrefaction of sewage sludge using fixed bed downdraft reactor.

2. Materials and Methods

2.1. Experimental Apparatus

A laboratory scale downdraft fixed bed made of stainless steel was used for the torrefaction of
sewage sludge. The bed height was 600 mm with an internal diameter of 30.7 mm. The schematic
diagram of the bed is provided in Figure 1. Thermocouples were used to measure temperatures of
the inlet gas, the bed, and the reactor wall. Calorific value was measured using bomb calorimeter
(Parr Instrument Co., Model 1672, Moline, IL, USA), whereas for elemental analysis Thermo Fisher
Scientific INC., Thermo FLASH 200 (Hudson, NH, USA) was used. In addition MK9000 (Eurotron
Instruments, Chelmsford, UK,) gas analyzer was used to analyze the emitted gas during torrefaction.
200, 250, 300, and 350 ◦C temperature range along with 0–50 min of residence time was used for this
study. American Society for Testing and Materials (ASTM) D3172 method was used for calculating
proximate analysis of raw and torrefied sludge.
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2.2. Materials

Sewage sludge was obtained from wastewater treatment plant in Pocheon, South Korea.
The sample was homogeneously mixed and dried at 105 ◦C for 24 h. The samples were then ground
into powders and sieved into separate sizes before torrefaction. 250–355 µm size was selected for
this study. Table 1 illustrates properties of the sample where ‘others’ indicates inorganic components
present in sewage sludge.

Table 1. Properties of raw sewage sludge.

Elemental Analysis (wt. %) *

C 37.82
H 5.82
N 4.14
O 25.12
S 1.44

Others 25.66

Proximate Analysis (wt. %) **

Moisture (%) 80.12
Volatile Content (%) 12.87

Ash (%) 5.50
Fixed Carbon (%) 1.51

HHV (MJ/Kg) * 15.81

* Dry Basis; ** Wet Basis.

2.3. Methods

Sample load of 15 g (dry weight) and a volumetric flow of 300 Nm3/min of nitrogen was used
for this study. Nitrogen helps in maintaining the inert atmosphere along with controlling the rapid
temperature rise within the downdraft fixed bed. The bed was heated to the desired temperature using
a heating jacket. After the desired temperature was reached, the weighed sample was fed from the
hopper situated at the top of the reactor. The sample was torrefied at desired torrefaction temperature
(200–350 ◦C) and residence time (0–50 min) in presence of predetermined volumetric flow rate of
nitrogen as an inert material and heat carrier. After the completion of the test, the sample was taken
out immediately.

2.4. Torrefied Product Analysis

All of the results obtained in this study are obtained prior to densification. The degree of
torrefaction plays an important role in determining the quality and composition of the torrefied
products. The degree of torrefaction is the ratio between the calorific value of the torrefied biomass to
that of the raw biomass, which was calculated using the following equation:

Degree of torrefaction =
Calorific value of torrefied biomass (MJ/kg)

Calorific value of raw biomass (MJ/kg)
(1)

The HHV or the calorific value was measured in Mega Joule per kilogram of biomass. The energy
density enhancement was calculated using torrefaction index (non-dimensional form), which
demonstrated the enhancement in the energy density through the torrefaction of sewage sludge
using Equation (2):

Torrefaction Index (TI) =
Energy density enhancement for design condition

(
tp
)

Energy density enhancement for reference condition (ref)
(2)

In this study chemical exergy has also been introduced where the chemical exergy of sewage
sludge and the torrefied product was calculated with the help of Equations (3) and (4) [20]:
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ech (MJ/kg) =
(HHVobtainedλbiomass + 9417S)

1000
(3)

λbiomass =
1.0438 + 0.1882 H

C − 0.2509
(

1 + 0.7256 H
C

)
+ 0.0383 N

C

1 − 0.3035 O
C

(4)

where, HHV is the experimental calorific value that was obtained and λbiomass is a dimensionless
coefficient relating chemical exergy and heating value of the biomass and C, H, N, are O are the
elemental composition in wt. %. H/C is the ratio of hydrogen mass to carbon mass and N/C and O/C
correspondingly for nitrogen and oxygen. Using Equations (3) and (4), chemical exergy was calculated
for all of the torrefied sewage sludge at various temperatures and residence time.

3. Results and Discussion

3.1. Degree of Torrefaction

The HHV or the calorific value describes the potential energy content of a biomass. One of the
major advantages of torrefaction is the elevated energy content per unit of mass of the torrefied yield.
The degree of torrefaction can be used as an indicator to identify the relative energy gain in the torrefied
product [21]. Nitthitron and Suthum [21] further illustrates that the value of degree of torrefaction
exceeding unity shows a greater energy gain per unit mass.

Figure 2 illustrates the degree of torrefaction with respect to torrefaction residence time at various
torrefaction temperatures. From the graph, it is clear that with an increase in torrefaction residence
time and temperature the degree of torrefaction increases. From Figure 2, it can be seen that increasing
the torrefaction residence time and temperature significantly increased the HHV, which in turn
increased the degree of torrefaction of the sewage sludge except for 350 ◦C. At 200–300 ◦C, there is
an increase in the degree of torrefaction with an increase in torrefaction residence time. This increase
might be as a result of the gain of the calorific value due to the removal of oxygen. In contrast,
pyrolysis reaction may have occurred at a higher torrefaction temperature, resulting in the decrease
in the degree of torrefaction at 350 ◦C with an increase in torrefaction residence time. A study by
Martin et al. [22] suggested that the effect of torrefaction temperature was greater than the effect
of torrefaction residence time. Similarly, Barta et al. [23] found that the torrefaction temperature
was dominant over residence time until 275 ◦C, but at 300 ◦C, the torrefaction residence time had a
significant effect on the torrefied yield. This increase might be as a result of the gain of the calorific
value due to the removal of oxygen. However, at 350 ◦C, the rate of degree of torrefaction decreases
on further increasing the torrefaction residence time. This may be attributed to the fact that sewage
sludge is a non-lignocellulosic biomass and constitutes thermally degradable organic components,
which degrades easily on elevated temperatures as a result of which there is deterioration in the
degree of torrefaction. In addition, the increase was best gained between 200 and 300 ◦C, although
the overall net gain of the degree of torrefaction was more pronounced for 250 ◦C. An increase in
the calorific value with torrefaction temperatures were obtained by Zanzi et al. [24], Iroba et al. [25],
and Nimlos et al. [26].

Other important parameters that contribute for the characterization of solid fuel are volatile
matter and fixed carbon, which are also partly responsible for the alteration of calorific value [27].
As demonstrated in Figure 3a,b torrefaction has an opposite effect on these two operating parameters.
With an increase in torrefaction temperature and residence time, it can be observed that the fixed
carbon and ash increases whilst the volatile fraction decreases. The torrefied product is desired to have
less volatile fraction and more fixed carbon as it amplifies the calorific value of the torrefied product.
For 300 ◦C, there was a decrease of 13.77% in the volatile content, whereas an increase of 68.95% was
observed for fixed carbon. Least changes were observed for 200 ◦C for both volatile fraction and fixed
carbon. Although the highest value for fixed carbon is for 350 ◦C, the net gain in the value is minimal
when compared to 250 and 300 ◦C. With an increase in torrefaction residence time and temperature,
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the ash content increased and the highest was for 350 ◦C. The increase in the ash content was primarily
due to the mass loss during the torrefaction process. Similar results were obtained by Park et al. [28].
Improved fixed carbon value of torrefied biomass can be an advantage as it aids the heat of combustion
improving the efficiency of the overall combustion applications [29]. In contrast, an increase in the
ash content can have a negative impact on the usage of the torrefied product as a higher ash content
is associated with fouling, slagging, and agglomeration of the bed [30]. A study by Deng et al. [31]
demonstrated a decrease of 38.88% in the volatile content, whereas Mani [32] achieved only 7.8%
decrease in the volatile content, the differences in the value was due to the types of the biomass that
were used for the pretreatment process. The former was high due to the high volatile content that was
present in the agricultural residue when compared to the latter, which considered woody biomass [33].Appl. Sci. 2017, 7, 1189 5 of 11 
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The molar ratios of hydrogen and oxygen with respect to the relative carbon content i.e., O/C
and H/C ratios are substantial parameters for the characterization of fuel composition. From Figure 4,
for both molar ratios, torrefaction at 200 ◦C did not have much of a significant effect, but with an
increase in torrefaction temperatures from 250 to 300 ◦C presented a significant decrease. At 350 ◦C,
for both H/C and O/C molar ratios, a steep decrease was observed. Whereas, a gradual decrease in
the H/C molar ratio at 250 and 300 ◦C was achieved. For O/C at 300 ◦C, a slight increase was observed
until 20 min residence time, after which the fall in the O/C value was noticeable. These alterations in the
molar ratios are primarily due to the release of bound water and are also due to the fractional removal
of oxygen by decarboxylation, and dehydration reactions [34]. This decrease consequently increased
the gross calorific value, which in turn decreases the volatile content. In addition, with an increase in
torrefaction temperature and residence time, the hydrogen and oxygen content of the torrefied product
decreased, resulting in reduction of the H/C and O/C ratios. Therefore, it can be seen from the graph
that the increase in torrefaction temperature and residence time provoked a reduction in the O/C and
H/C molar ratios due to the loss of carbon in the form of carbon dioxide, light hydrocarbons, and
water. Moreover, a similar reduction trend of O/C was observed by Sandeep et al. [35] in their study
for lignocellulosic biomass. Reduction in the oxygen and hydrogen content strengthens the fact that
the hydroxyl groups deteriorate during torrefaction. Moreover, from an energy density perspective,
C–C bond projects higher energy compared to C–O or C–H bonds as the relative increase in carbon
content results in better calorific value. Increase in the relative carbon content and decrease of other
elements, such as O, N, H, and S may also result in a decrease in the volatile fraction.

Increase in torrefaction temperature also favors the generation of gases, such as carbon monoxide
(CO), carbon-dioxide (CO2), thermal hydrocarbon (THC), and methane (CH4), which is demonstrated
in Figure 5. The gas analysis was carried out independently in order to study the gases that are
emitted during the torrefaction of sewage sludge. The gas emission was not studied for different
residence time. Rather, a continuous emission test from 50 to 350 ◦C was conducted to study the
emission properties during torrefaction. CO2 and CO were released after 250 ◦C, whereas CH4

was released approximately after 270 ◦C and only subtle traces of THC is generated until 240 ◦C.
This increase in the CO2 is associated with the decarboxylation of the acid group, as explained by
White and Dietenberger [36], whereas methane is produced due to the cracking and de-polymerization
reactions [31]. As aforementioned, the decarboxylation reaction occurs at an elevated temperature,
which is also supported by the production of CO2 and CO [37]. Various researchers have proposed
300 ◦C as the optimal torrefaction temperature [38,39]. From the results obtained in this study, it can
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be concluded that 250–300 ◦C can be considered as the optimum temperature for the torrefaction
of sewage sludge. The difference in the optimum temperature range obtained in other research to
this research may be due to the different types of biomass that were used i.e., lignocellulosic and
non-lignocellulosic biomass.
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3.2. Torrefaction Index (TI)

A study by Pabir Basu et al. [40] suggests that the degree of torrefaction or energy densification
alone cannot determine the quality of the torrefied product and proposes the use of the torrefaction
index. Lee and Lee [41] also supports this statement that energy yield alone cannot be used to define
the optimum operating condition for torrefaction. As a matter of fact, as the severity of the process
escalates, there is a reduction in the energy yield, which in turn reduces the net usable energy of raw
material. Therefore providing the optimized condition for torrefaction would aid the reduction of
weight loss but would boost the calorific value.

Table 2 depicts the comparison of the experimental torrefaction index obtained in this study,
with the torrefaction index for different torrefaction regimes according to Pabir Basu et al. [40].
It demonstrates that the values obtained in this study aligns well with the values provided by Pabir
Basu et al. [40]. At 350 ◦C, not much improvement in the torrefaction index is demonstrated. Therefore,
torrefaction of sewage sludge above 350 ◦C will not be required. If the polymeric composition of the
biomass is known for specific torrefaction temperatures, than TI can be used as a potential tool for
preliminary design or the selection of biomass ahead of operating absolute test [40].
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Table 2. Torrefaction Index in different Regimes.

Torrefaction
Regimes

Temperature
(◦C)

Torrefaction
Index (TI) [40]

TI (Obtained in
this Study)

Light 200 to 235 0.93 to 0.95 0.89–0.96
Medium 235 to 275 0.95 to 0.97 0.94–0.99
Severe 275 to 300 0.97 to 1.0 0.96–1.0

- 350 - 0.94–0.92

3.3. Chemical Exergy (ech)

One of the effective ways to calculate energy quality is by analyzing the exergy of the biomass.
Pavelka [42] defines exergy as the maximal theoretical useful work acquired if the system is in
thermodynamic equilibrium with the surroundings via reversible process. In context of biomass,
exergy plays a vital role in evaluating the energy potentiality that is stored in the form of chemical
bonds of the compounds.

From Figure 6 it can be seen that the overall increase in chemical exergy increases with increase
in torrefaction residence time and temperature. At 200 ◦C, there is a gradual increase in the exergy
but a significant increase is observed at 300 ◦C followed by 250 ◦C and the least value is projected by
350 ◦C. The graph obtained for chemical exergy can be correlated with O/C molar ratio and degree of
torrefaction. The decrease in the O/C molar ratio is due to the increase in the relative carbon content
which in turn increases the chemical exergy. This may be due to the fact that elemental oxygen present
in the biomass operates as an oxidizing agent instead of combustible matter in contrast to the elemental
carbon of the biomass, which undergoes oxidation during the chemical reaction releasing heat, which
can be converted to work. In addition, the trend followed by degree of torrefaction and chemical
exergy is comparable. For 200–300 ◦C, the degree of torrefaction and chemical exergy increases with
an increase in torrefaction residence time. At 350 ◦C, the degree of torrefaction decreases with an
increase in residence time; whereas, there is a negligible increase in the chemical exergy. This again
can be associated with the increase in calorific value of the biomass due to the increase in the relative
carbon content with the increase in torrefaction residence time. The highest value of exergy obtained
in this study was 17.05 MJ/kg for 300 ◦C at 50 min residence time. The greater the value of exergy
the greater is the useful work of the torrefied biomass, which in turn can enhance the thermochemical
processes, such as pyrolysis, combustion, and gasification. For better-torrefied yield product on the
basis of chemical exergy it can be concluded that 250–300 ◦C can be used as the optimal torrefaction
temperature for sewage sludge.
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4. Conclusions

The torrefaction properties of sewage sludge were investigated using a downdraft fixed bed
reactor with respect to torrefaction temperature and residence time. An increase in the degree of
torrefaction was seen at higher torrefaction temperature and residence time. The total net gain in
the degree of torrefaction was highest for 250 ◦C, whilst an adverse effect was seen for 350 ◦C with
an increase in torrefaction residence time and temperature. Reduction in the O/C and H/C molar
ratios, volatile content with increase in the fixed carbon, and ash content with escalated torrefaction
temperature was observed. The increase in degree of torrefaction and decrease in the O/C can be
associated with the increase in carbon content, resulting in an increment in the chemical exergy of
the torrefied biomass. This increase in exergy might improve the thermodynamic properties of the
biomass; however, economic analysis must be considered and further investigation must be made in
order to gain a clear understanding. From all of the results obtained in this study, it can be concluded
that torrefaction above 300 ◦C would not be desirable. Also, to obtain maximum yield, a temperature
range of 250–300 ◦C should be considered for the torrefaction of sewage sludge.

This torrefaction temperature range of 250–300 ◦C for sewage sludge may vary depending on
the origin of sewage sludge, chemical composition, reactor type, and other experimental parameters.
Furthermore, an in depth study of energy consumption and losses during torrefaction must also
be considered as further research in order to provide a better understanding of the torrefaction
characteristics of sewage sludge.
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