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Featured Application: The method presented in this study can be applied in many fields, such as
mental health care, entertainment consumption behavior, society safety, and so on. For example,
in the mental health care field, an automatic emotion analysis system can be constructed with our
method to monitor the emotional variation of the subjects. With accurate and objective emotion
analysis results from EEG signals, our method can provide useful treatment effect information to
the medical staff.

Abstract: The aim of this study is to recognize human emotions by electroencephalographic (EEG)
signals. The innovation of our research methods involves two aspects: First, we integrate the spatial
characteristics, frequency domain, and temporal characteristics of the EEG signals, and map them to a
two-dimensional image. With these images, we build a series of EEG Multidimensional Feature Image
(EEG MFI) sequences to represent the emotion variation with EEG signals. Second, we construct a
hybrid deep neural network to deal with the EEG MFI sequences to recognize human emotional states
where the hybrid deep neural network combined the Convolution Neural Networks (CNN) and
Long Short-Term-Memory (LSTM) Recurrent Neural Networks (RNN). Empirical research is carried
out with the open-source dataset DEAP (a Dataset for Emotion Analysis using EEG, Physiological,
and video signals) using our method, and the results demonstrate the significant improvements over
current state-of-the-art approaches in this field. The average emotion classification accuracy of each
subject with CLRNN (the hybrid neural networks that we proposed in this study) is 75.21%.

Keywords: emotion recognition; EEG signal; multidimensional features; hybrid neural networks;
CNN; LSTM RNN

1. Introduction

Emotion is an important symbol of human intelligence; as such, an important intelligence symbol
of artificial intelligence is that the machine can understand human emotions. As early as the 1980s,
Minsky, one of the founders of artificial intelligence, proposed that a machine without emotions is
not intelligent. Recently, research on human emotion recognition has been applied in many fields
such as entertainment [1], safe driving [2,3], health care [4], social security [5], etc. Picard et al. [6]
believed that the emotional changes of the human were embodied in speech [7], facial expressions [8],
body posture [9], the central nervous system, autonomic nerve physiological activities [10], etc. Thus,
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the study of human emotions through behavioral, facial, or physiological features has gradually become
a focus of much attention. However, voice and facial expressions can be deliberately hidden by people
on some social occasions. For this reason, researchers have tended to study human emotion through
physiological signals such as electroencephalograms (EEG), electrooculography (EOG), temperature
(TEM), blood volume pressure (BVP), electromyograms (EMG), and many other methods. Of all
of these physiological signals, the EEG signal is of more interest to researchers as it comes directly
from the human brain. Therefore, changes in EEG signals can directly reflect changes in human
emotional states.

In this study, we recognize human emotional states with EEG signals. Two important aspects must
be ensured during the emotion recognition process: (1) EEG feature extraction and expression and
(2) emotion classifiers construction. For the first aspect, most of the previously used methods have only
focused on the time and frequency dimension, and rarely combine the spatial dimension. Therefore,
how to integrate and present the spatial features of the EEG signal with the time and frequency features
is one key problem. For the second aspect, the key problem lies in how to construct a classifier to
automatically learn the changes from the EEG multidimensional features over time and classify the
changes into different emotion states. Corresponding to these two aspects, we mainly undertook the
following work in this study:

• A new method is proposed to integrate the different EEG domain features. With the integration
of multidimensional features, a sequence of two-dimensional images is constructed to express the
variation in emotion.

• A hybrid deep learning neural network named CLRNN (Convolution al Networks (CNN)
and Long-Short-Term-Memory Recurrent Neural Networks (RNN)) is built to undertake the
recognitioNeurn of human emotion from the EEG multidimensional feature image sequences.

• Empirical research is conducted with the open-source database DEAP [11] using our method,
and the results demonstrate significant improvements over current state-of-the-art approaches in
this field.

The rest of the paper is organized as follows: Related work is presented in Section 2. As data
preparation, the methods of building EEG MFI and emotion labels are presented in Section 3. Next,
we introduce the construction of CLRNN in Section 4. Section 5 describes the procedure of the
experiment and reports the results. Finally, the conclusions and their discussion are detailed in
Section 6.

2. Related Work

In this section, we review the related work on EEG features extraction and emotion
classifying, respectively.

2.1. EEG Feature Extraction

We extend the study in [12] and review a wide range of EEG feature extraction methods proposed
in the past 10 years. As seen in Table 1, most previous EEG feature extraction methods only focused on
the time and frequency dimensions, and rarely combined them with spatial dimension information.

The time domain features study EEG signal through the variation of signal time series.
The features include Hjorth features (Activity, Mobility, and Complexity [13,14]), statistics features
(Power, Mean, Standard Deviation, etc. [15]), High Order Crossing features (HOC [16,17]), and so on.
Time-domain features are not predominant. However, there are still many studies that have researched
human emotion through time domain characteristics.

The frequency domain features study EEG signal by transforming the raw time domain EEG
signal into frequency domain EEG signal with Fourier Transform method usually. The most popular
features in the frequency domain are power features of different sub-frequency bands known as
alpha, beta, theta, and delta. The most widely used algorithm is the Fast Fourier Transform (FFT),
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which is applied in [18–24], and alternatives include Short-Time Fourier Transform (STFT) [25–28].
Another frequency feature is Power Spectra Density (PSD), which is usually estimated by Welch’s
method [29].

Table 1. A summary of feature extraction for emotion recognition from EEG 1.

Author and Study Year EEG Features Extraction Method Dimension

Ansari et al. [13] 2007 Activity, Mobility, and
Complexity Sevcik’s method Time

Chanel et al. [25] 2007 9 sub-bands of the EEG
(4–20 Hz) STFT Frequency

Horlings [14] 2008 Activity, Mobility, and
Complexity Welch’s Method Time

Khalili and Moradi [18] 2008 Sub-band: θ, α, β, γ FFT Frequency

Li and Lu [19] 2009 EEG γ band (30–100 Hz) FFT Frequency

Petrantonakis and
Hadjileontiadis [16,17] 2010 Higher Order Crossing DWT Time

Murugappan et al. [15,30] 2010 Power DWT Time

Nie et al. [26] 2011 Sub-band: δ, θ, α (8–13 Hz),
β (1–30 Hz), γ (36–40 Hz) STFT Frequency

Kroupi et al. [31] 2011 Sub-band: θ, α, β, γ, NLD,
NSI Welch’s Method Frequency

Liu and Sourina [20] 2012 β/α, Sub-band: β FFT Frequency

Hadjidimitriou et al. [32] 2012 HHS-based Feature Vectors HHS Time and Frequency

Reuderink et al. [33] 2013 The change and asymmetry
in Sub-band of α Welch’s Method Frequency and

Spatial

Rozgic et al. [21] 2013 Spectral Power and Spectral
Power Differences FFT Frequency and

Spatial

Lee and Hsieh [22] 2014 Correlation, Coherence, and
Phase Synchronization FFT Frequency

Zheng et al. [27] 2014 PSD, DE, DASM and RASM STFT Frequency

Lahane and Sangaiah [34] 2015 Density Estimate Kernel Density
Estimation Frequency

Paul et al. [35] 2015 Sub-band: α, β, θ MFDFA Frequency

Bashivan et al. [23] 2015
Sum of squared absolute

values of the Sub-band: α,
β, θ

FFT Frequency Spatial

Thammasan et al. [29] 2016
Fractal Dimension (FD) and

Power Spectral Density
(PSD)

Welch’s Method Frequency

Zheng et al. [28] 2016 PSD, DE, DASM, RASM,
ASM, and DCAU STFT Frequency

Li et al. [36] 2017 Multi-scale entropy HHT Time and Frequency

Yin et al. [24] 2017 Frequency Features and
Time-Frequency Features FFT Time and Frequency

1 EEG, electroencephalographic; DE, density estimate; DWT, discrete wavelet transform; FFT, Fast Fourier transform;
STFT, Short-time Fourier transform; HHS, Hilbert-Huang spectrum; PSD, power spectra density; ASM, asymmetry;
DASM, differential asymmetry; RASM, rational asymmetry; DCAU, differential caudality. MFDFA, multifractral
detrended fluctuation analysis; NLD, normalized length density; NSI, non-stationarity index.

Since EEG signals are non-stationary, people proposed new methods combining time and
frequency domain features to access additional information. The Hilbert–Huang Transform (HHT) is
one method of studying EEG signals from both time and frequency domain. It decomposes the signal
into Intrinsic Mode Functions (IMF) along with a trend, and obtains instantaneous frequency data.
Hadjidimitriou et al. extracted HHS-based energy as the EEG features to study the music liking of the
subjects [32]. They found that time–frequency features were more resistant to noise than the STFT-based
features, which only extracted frequency features. Li et al. used HHT to improve the extraction of
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multi-scale entropy as the EEG emotional features [36], and their results demonstrated that the
time–frequency combined feature obtained better results than the traditional single-domain features.

EEG signals are obtained by measuring the electrical voltage signals of the multiple electrodes
affixed to different positions on the scalp. From the obtaining method of the EEG signal, we can see
that the information is highly correlated with the spatial, time, and frequency dimensions. However,
seldom have previous studies paid attention to the spatial domain. The spatial information studies
were limited to the asymmetry between the electrode pairs. The methods mostly calculate the
differences in the power bands of the corresponding electrodes pairs on the left/right hemisphere
of the scalp [21,37]. Recently, Bashivan et al. transformed EEG activities into a sequence of
topology-preserving multi-spectral images to study human cognitive function [23], but few studies
have analyzed human emotions with the spatial information of the EEG signals.

The method to integrate EEG multidimensional features is based on the spatial distribution of
EEG electrodes (according to the 10–20 system [38]), and map the frequency domain characteristics to
a two-dimensional image. With this method, we obtain a sequence of images from consecutive time
windows from the EEG signal. The details of the construction method are presented in Section 3.

2.2. Emotion Classification Methods

In order to provide a comparison to our method, we chose studies that classified human emotions
with scales of Valence and Arousal in Table 2. It also lists the classification accuracy and the number
of subjects. As seen in Table 2, the most commonly used emotional classification methods include
k-Nearest Neighbor (k-NN, used in [15,39]), Support Vector Machine (SVM, used in [14,40–42]),
Random Decision Forest (RDF), Bayes Neural Networks (used in [43]) and Neural Networks
(used in [44,45]). These methods are all used as baseline methods for comparison with our method,
with details given in Section 5.2.

Table 2. Survey of the studies on emotion classification methods with EEG signal 1.

Author and Study Emotion
Classification Basis Subjects Accuracy Classification Method

Horlings [14] Valence and Arousal
(2 classes) 10 81% SVM

Schaaff [41] Valence and Arousal
(3 classes) 30 66.7% SVM

Frantzidis [40]
Valence and Arousal

(2 classes,
respectively)

28 81.3% SVM

Murugappan [15] Valence(2 classes) 12 71.3% k-NN

Brown [39] Valence (2 classes) 9 82% SVM, k-NN

Hosseini [42] Valence and Arousal
(2 classes) 15 82% SVM

Chung [43]
Valence and Arousal

(2/3 classes
respectively)

32 66.6%, 66.4% (2)
53.4%, 51.0% (3) Bayes neural network

Li [44]
Valence and Arousal

(2 classes,
respectively)

32 74.12% C-RNN

Our Method Valence and Arousal
(4 classes) 32 75.21% CLRNN

1 SVM, Support Vector Machine; CNN, Convolution Neural Networks; RNN, Recurrent Neural Networks; C-RNN,
CNN+RNN; LSTM, Long Short-Term-Memory; CLRNN, CNN + LSTM RNN.
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It is noteworthy that most of the methods listed in Table 2 classify emotions statically, except for the
method used in [44] where the LSTM RNN was adopted to learn from the EEG features incrementally
and dynamically. Another point worth noting is that only CNN is suitable for automatically extracting
features from the image out of these methods. These two points are the reason for selecting CNN and
LSTM RNN as parts of our classification method. The second column of Table 2 shows the classification
basis and the number of the difference classes in the previous studies. As we can see, previous studies
have basically divided emotions into categories two to three. In this study, we divided the emotion
state into four classes. All the studies in Table 2 classify the emotion by Valence and Arousal. The third
column of Table 2 shows the number of subjects included in the evaluated dataset.

3. Materials and Methods

The data preparation phase mainly included two aspects: the construction of EEG MFI sequences
and the building of the emotion classification labels.

3.1. The Construction of EEG MFI Sequences

The International 10–20 System is an internationally recognized method of describing and
applying the location of scalp electrodes in the context of an EEG test. The system is based on
the relationship between the location of an electrode and the underlying area of the cerebral cortex.
The “10” and “20” refer to the fact that the actual distances between the adjacent electrodes are either
10% or 20% of the total front–back or right–left distance of the skull [46].

Figure 1 shows a plan view of the International 10–20 System and a generalized square matrix from
it. We can see that the left of Figure 1 is the International 10–20 System, where the EEG electrodes circled
in red are the test points used in the DEAP dataset. In this study, we generalized the International
10–20 System with test electrodes used in the DEAP dataset to form a square matrix (N × N), where N
is the maximum point number between the horizontal or vertical test points. With the DEAP dataset,
N equals 9. The square matrix without filling the EEG frequency features is represented at the right of
Figure 1. The gray triangle above the center of the square matrix represents the nasion, while the red
points are the electrodes corresponding to the red circles in the International 10–20 System. The gray
points are added to form a fully matrix. The value of the red point corresponded to the frequency
feature (PSD) of the EEG electrode. The value of the gray point is the interpolation of the red points
surrounding it.
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Figure 1 presents the method of mapping the International 10-20 System to a generalized EEG
feature matrix. With this method, a single frame EEG MFI can be built from the EEG signal within a
time window. With the time window moving forward, an EEG MFI sequence is constructed from the
EEG signal. The process is presented in Figure 2. The definition of the red points and gray points is as
same as it is defined in Figure 1. The different colors in EEG images represent the value of the EEG
feature. The higher the feature is, the closer it is to the dark red. The lower the feature is, the closer it is
to the dark blue. And the range of the EEG feature value is from 0 to 1.
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Feature Image (MFI) sequence.

The EEG MFI sequence construction process consists of three steps. First, the raw EEG signals
are extracted from DEAP, which included the multi-channel EEG signal of 32 subjects. Each subject
has 40 trials where each trial includes the EEG signals of 32 channels, each signal lasting for 60 s.
In the leftmost image of Figure 2, we schematically show the raw EEG signal of the first 10 channels.
After that, the power spectrum density (PSD, [14,31,33,39,40]) is extracted as a EEG frequency domain
feature from the raw signals. The PSD is estimated with Welch’s method in MATLAB (R2016a) using a
Hamming window and different time window sizes (1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 30 and 60 s) with no
overlap as parameters. A number of (32 channels × 60 s/Tl) features are obtained per trial, where Tl is
the size of the time window. Using a one-second time window as an example, 1920 (32 × 60) features
are obtained from a raw EEG signal. After that, the features of each subject are normalized to reduce
inter-participant variability by scaling between 0 and 1, as is shown in Equation (1):

F′i =
Fmaxi − Fi

Fmaxi − Fmini

, (1)

where F′i is the normalized value of the feature; Fmaxi , Fmini are the maximum and minimum value
of the internal subject features; and Fi is the ith value in the feature sequence. The red points in the
feature matrix are directly filled with the normalized feature values. The values of the gray points are
calculated with the surrounding point values, and can be expressed as Equation (2):

V(m,n) =
V′(m+1,n) + V′(m−1,n) + V′(m,n+1) + V′(m,n−1)

K
, (0 ≤ m, n ≤ 8, m, n ∈ N), (2)

where V is the value of the gray point (corresponding to P(m,n)); and V′ is the value of the point
surrounding P(m,n). If the index of the surrounding point exceeds the range of 0 and 8, then the value
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is 0. K is the number of non-zero elements in the numerator, and the default value of K is 1. After the
feature matrix is filled, it is used as a base table to generate EEG MFI through the interpolation method.
We generate the EEG MFI in MATLAB (R2016a, MathWorks, Boston, MA, USA, 2016). The code of
the interpolation function and MFI generation method is presented in Appendix A. Using this code,
the EEG MFI is constructed and saved as .png images with a size of 200 × 200 pixels. An enlarged
EEG MFI is shown in Figure 3. As seen in Figure 3, the frequency domain characteristics are mapped
to a two-dimensional plane according to the spatial distribution of the EEG electrodes. This MFI
corresponds to a five-second time window. It displays Subject 1’s spatial PSD feature of the first-time
window. The color legend explains the range of the normalized PSD and the variation. We can see
from it that the higher the PSD value is, the closer it is to the dark red end. The lower the PSD value
is, the closer it is to the dark blue end. The higher PSD value indicates that the EEG signal contains
more energy and the corresponding brain area is more active. With this point, we can find in Figure 3
that the FP1 electrode is with the highest PSD value, and the lowest value appears at the FC6 (FC6 is a
tested point in 10-20 system, you can find it in left image of Figure 1) electrode.

In this study, in order to find out which time window size is more appropriate for emotion
recognition, we build EEG MFI sequence with different length time windows. To illustrate the process
of forming a MFI based on different time windows, we formalize the raw feature matrix into a
four-dimensional matrix:

P(electrode,sequence,trial,subject), (3)

where the size of the matrix is (32 × 60 × 40 × 32). With the different time windows, it is possible to
produce a different number of EEG MFIs. Assuming the number of EEG MFIs is N and the length of
the time window is t, N equals sequence/t. The pseudo-code of producing the specific feature matrix
is expressed in Appendix B.
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Figure 3. An enlarged EEG MFI with the names of the electrodes and contour lines.

Figure 4 displays the first five MFIs of Subject 1 with different time windows. Each row represents
the MFIs with the same time window, and each line represents the MFIs with the same sequence order.
Taking the first and the second row in Figure 4 as example, we can see that the first row represents
the EEG variation over five seconds with five frames; however, the second row represents the same
time variation with two frames. MFI(1,5) and MFI(2,3) are very similar. Accordingly, we can infer that
the MFI sequence with a short time window provides more details about the variation than the MFI
sequence with a long-time window. The meaning of the color in Figure 4 is the same as it in Figure 3.
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3.2. The Construction of the Emotion Classification Labels

The classification method adopted in this paper is a supervisory machine learning method.
Therefore, the corresponding classification labels of the EEG signal also need to be prepared in advance.
The DEAP dataset contains the emotional evaluation values (including Valence, Arousal, Dominance,
Like, and Familiarity) for the trials. In this paper, Valence and Arousal are extracted as emotional
evaluation criteria to generate emotional labels. According to the different levels of Valence and
Arousal, we divided the emotional two-dimensional plane into four quadrants. They are High Valence
High Arousal (HVHA), High Valence Low Arousal (HVLA), Low Valence Low Arousal (LVLA), and
Low Valence High Arousal (LVHA). Each quadrant corresponds to an emotion classification, as shown
in Figure 5. According to the positive or negative deviation of the Valence and Arousal, we mapped
each trial into the four quadrants to form an emotional classification label.
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Table 3 shows the number of the different emotional samples mapped into the four quadrants.
The number of samples contained in different emotional types is basically balanced, which ensured
the balance of the neural network classification training.

Table 3. The number of samples in different emotion classifications 1.

Emotion Labels Number of the Samples

HVHA 348
HVLA 298
LVLA 282
LVHA 352
Total 1280

1 HVHA, High Valence High Arousal; HVLA, High Valence Low Arousal; LVLA, Low Valence Low Arousal; LVHA,
Low Valence High Arousal.

4. The Construction of the Hybrid Deep Neural Networks

We propose a hybrid deep learning model called Convolutional and LSTM Recurrent Neural
Networks (CLRNN) to conduct emotion recognition tasks. This model is a composite of two kinds of
deep learning structures: CNN and the LSTM recurrent neural network (LSTM RNN). The structure of
the model is presented in Figure 6. The CNN is used to extract features from EEG MFI, and the LSTM
RNN is used for modeling the context information of the long-term EEG MFI sequences. The features
automatically extracted by the CNN reflect the spatial distribution of the EEG signals. In this work,
two stacked convolutional layers are adopted as the basic structure of the CNN, which included
two convolution layers, two max pooling layers, and a full connection layer. Given the dynamic
nature of the EEG data, the LSTM RNN is a reasonable choice for modeling the emotion classification.
Before connecting to the LSTM unit, a flattening operation is adopted to transform the final feature
maps into a one-dimensional vector.
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4.1. The Construction of Convolutional Neural Networks

The inputting MFI size of the networks is 200 × 200 pixels, and it contains three color channels.
We set the number of convolutional filters as 30 in the first convolutional layer to extract 30 different
kinds of correlation information, namely 30 different features. At the same time, to extract the multiple
scale spatial characteristics of MFI, we use different size receptive fields in the first convolutional layer.
The field sizes are 2 × 2 pixels, 5 × 5 pixels and 10 × 10 pixels, respectively. Corresponding to the
different sizes of the field, the strides are 2, 5 and 10 pixels, respectively, without overlap between the
strides. The activation function is ReLU. Following the first convolutional layer is a max pooling layer
with pooling size of 2 × 2, and the strides are 2. The second convolutional layer is set as 10 different
filters with a size of 2 × 2 without overlap between strides. This setting helps to further fuse the
information of a specific scale range from the prior features. Like the first convolutional layer, we add
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a max pooling stage after this convolutional layer for information aggregation. Before connecting to
the LSTM unit, a flatten operation is adopted to transform the final features into a one-dimensional
feature vector. The configuration of the CNN described above is presented in Table 4. The dense layer
in Table 4 is the layer that transforms the final features into a one-dimensional feature vector. In this
layer, we set the output at 1/10 of the input to further compress the features and simplify the network.
The LSTM RNN layer achieves a full connection to the dense layer. Next, the RNN output layer took
‘softmax’ as its activation function, and the output size is set to 4, corresponding to the four types of
emotion states.

Table 4. The configurations of CNN. The parameters are denoted as <input size/receptive field
size/pooling size> × <number of kernels/channels/out size>.

Input Data Convolutional
Layer 1

Max Pooling
Layer 1

Convolutional
Layer 2

Max Pooling
Layer 2 Dense Layer LSTM RNN RNN Output

<200 × 200> × 3
<2 × 2> × 30 <2 × 2> <2 × 2> × 10 <2 × 2> 6250:625 625:625

4<5 × 5> × 30 <2 × 2> <2 × 2> × 10 <2 × 2> 4000:400 400:400
<10 × 10> × 30 <2 × 2> <2 × 2> × 10 <2 × 2> 1000:100 100:100

4.2. The Construction of LSTM Recurrent Neural Networks

In the DEAP experiment, the stimulus intensity changes over 60 s. The emotion scores by the
Subjects are often based on the most exciting part of the entire video. Therefore, we needed to model
the context information for long-term sequences. As mentioned before, RNN is good at sequential
modeling. However, a simple RNN must face the challenge of ‘gradient vanish or explode’ in back
propagation when its dependencies are too long [47]. LSTM units have been adopted to replace the
simple units of a traditional RNN. LSTM units combine gate mechanisms in their structures so that
the key features of the timing data are effectively maintained and transmitted during the long-period
calculation. The gate is able to forget the used information and the self-loop structure allows the
gradient to flow for long durations [48].

A typical structure of a LSTM unit is illustrated in Figure 7. For comparison, Figure 7 shows
the structure of two neural network units. The upper left corner of the figure is a simple recurrent
neural network unit, and the LSTM unit is below the graph. As seen in Figure 7, the simple RNN unit
only contains the feedback from the output to the input. However, the LSTM unit contains three gate
structures, i.e., input gate, forget gate, and output gate, which determine what information from the
prior step should be forgotten and what information in the current time step should be added into
the main data flow. fi, fo and fg are the activation function of the input data, output data, and gate,
respectively. In this study, they are all sigmoid functions.
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Different gates generate decision vectors to decide what candidate information will be selected.
Using ‘Input Gate’ as an example, this generates vector it with the hidden state ht−1 from the prior LSTM
cell and the current step’s input xt. The process of generating it can be formalized as in Equation (4):

it = fg(wixt + wiht−1 + bi), (4)

where wi is the weighted matrix of the input function; and bi is the bias. The input candidate
information C̃t is also generated with ht−1 and xt. C̃t can be formalized as Equation (5):

C̃t = fi(wcxt+wcht−1+bc). (5)

The final updating information is the multiplication of the candidate information by the decision
vector C̃t × it. Another gate is the forget gate, which generates vector ft to determine if the prior unit’s
state Ct−1 should be reserved by multiplication Ct−1 × ft. The ft can be formalized as Equation (6):

ft = fg(wxfxt+whf
ht−1+bf), (6)

where ft is scaled between 0 and 1 with the sigmoidal operation. The ‘0’ element causes the
corresponding information in Ct−1 to be wiped out, while the ‘1’ means the corresponding information
is allowed to pass.

The current unit state Ct is a combination of Ct−1 and C̃t, and can be formalized as Equation (7):

Ct=Ct−1 × ft+C̃t × it. (7)

The output state of the LSTM unit is determined by the output gate. The output gate also generates
a decision vector ot to decide the hidden state ht, and they can be formalized as Equations (8) and (9),
as follows:

ot = fg(woxt+woht−1+bo) (8)

ht = fo(Ct)× ot. (9)

In this study, the LSTM RNN is adopted to learn contextual information from the spatial features
sequence extracted from the MFI.

4.3. The Construction of CLRNN with DL4J

DeepLearning4J is a java based toolkit for building, training and deploying Neural Networks [49].
In this study, DL4J is adopted as the framework to construct the CLRNN. We present the network’s
configuration in Appendix C. The code in Appendix C is used to construct the network structure of
the CLRNN. The size of the kernel in each layer is set according to the configuration given in Table 4.
The setting of the learning rate for each layer changed in the tuning process of network training.

5. Results and Discussion

In this section, we present the process of the experiment and compare our method with the
baselines to show the effectiveness of our methods.

5.1. Experiment Dataset and Settings

As mentioned earlier, we used the open dataset DEAP to verify the effectiveness of our method,
which include EEG signals from 32 channels collected from 32 subjects. Each subject took 40 trials,
and each trial lasted 60 s. The sampling frequency of the EEG signal was 512 Hz. With different time
windows, we obtained EEG MFI sequences with a different number of EEG MFIs. For example, with a
one-second time window, we obtained 2400 MFIs for one EEG MFI sequence. With a two-second time
window, we obtained 1200 MFIs for one EEG MFI sequence. However, even with the shortest time
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window, EEG MFIs are not enough for training a stable emotion recognition model with our method.
For this reason, we adoptee data augmentation strategies before training. We added “salt & pepper”
noise to the MFIs in MATLAB with the command ‘imnoise()’. Image flipping or zooming is not used
when augmenting the data. With this method, the original MFI set is expanded 20 times to ensure that
we had at least 20,000 MFIs per subject for training. Sufficient training data helps a model with a large
number of parameters to converge and generalize well. A five-fold cross-validation method is used
to evaluate the performance of our approach, and the average performance of the 5-fold validation
processes is taken as the experiment’s final results. We trained the model with different time windows
to find out if the division of the EEG signal had an impact on the classification’s accuracy. The models
are trained and tested in the Windows server environment, which included an Intel Xeon® V3 CPU
(12 × 2.4 GHz) and 64 Gb RAM. No GPU acceleration is used in the experiment.

5.2. Baseline Methods

To illustrate its effectiveness, we compare our approach with the baseline methods and
peer-reviewed studies. The selected baseline classifiers are commonly used in this field, including
k-nearest neighbor (k-NN), Random Decision Forest, and Support Vector Machines (SVM). All baseline
methods used a 5-fold cross-validation method for comparison with our method. The features trained in
the baseline methods included the PSD, the C0 complexity, the power spectrum entropy, the Lyapunov
index, and the correlation dimension. We trained the baseline classifiers in two ways: training in
segments, and training in trials. The dimensions of each subject’s features matrix are (five kinds of
features × 32 channels) or (five kinds of features × 60/length of the time window × 32 channels).
Principal component analysis is adopted to reduce the features’ dimensions. All training processes
are tested in the MATLAB (R2016a) environment. Here, we briefly describe the details and parameter
settings used in those methods.

k-NN: k-nearest neighbor algorithm (k-NN) is a non-parametric method used for classification.
An object is classified by a majority vote of its neighbors. It is useful to assign weight to the
contributions of the neighbors, so that nearer neighbors contribute more to the average than more
distant ones. Therefore, the main parameters of the k-NN algorithm are the number of neighbors
and the weighting scheme of giving each neighbor a weight. In this study, k is selected from the set
(k = {5, 10, 15, 20, 25, 30}). Furthermore, the Chebyshev distance is adopted to calculate the distance
between the object and the neighbors. The inverse of the distance gives the neighbor a weight, and the
weight is used in the vote procedure.

Random Decision Forest: Random Decision Forest (RDF) is an ensemble learning method for
classification, which constructs a multitude of decision trees at training time. The training algorithm
applies bootstrap aggregating, or bagging, to the tree learners. It selects a random subset of the features
during the learning process. The main parameter setting of RDF is the number of the learners. Here,
the number of learners is selected from the set (N = {5, 10, 20, 30, 40, 50}).

SVM: SVM hyperparameters consisting of a regularization penalty parameter (C) and inverse of
RBF kernel’s standard deviation (γ = 1/σ) were selected by grid search through cross-validation on
the training set (C = {0.01, 0.1, 1, 10, 100}, γ = {0.1, 0.2, ..., 1, 2, ..., 10}). For the reason of multiple classes,
the One-vs.-One strategy is employed during the SVM training.

CNN + RNN (without LSTM units): To show the memory effect of LSTM units in long-period
data analysis, we designed a hybrid neural network structure including CNN and RNN without
LSTM units. In this network structure, in addition to the RNN network layer not using the LSTM unit,
the other network structure is the same as the CLRNN.

For peer-reviewed studies, we chose the studies listed in Table 2 for purposes of comparison.

5.3. Results and Discussion

In this section, we present the results of our experiments. Due to a variation of the parameters
in the classification methods, we only present the best results obtained by each method. First,
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a comparison of the classification accuracies between CLRNN and the baseline methods is presented
in Figure 8. We present a boxplot of the mean emotion recognition accuracies with the different
time windows for each subject in Figure 8. The comparison shows the effectiveness of our method.
The average emotion classification accuracy of each subject with CLRNN is 75.21%, whereas the
average accuracies of other classification methods are 69.58% with CNN + RNN, 67.45% with SVM,
45.47% with Random Decision Forest, and 62.84% with k-NN, respectively. The highest accuracy is
obtained from Subject 4 with CLRNN, which is 90.54%.
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After a comparison with the baseline methods, we chose relevant studies listed in Table 2 to
compare with our method. The selection of the previous studies is based on two aspects: (1) the
emotion analysis is based on EEG signals; and (2) the emotion label is produced by the scales of
Valence and Arousal. We found that most studies in Table 2 classified emotions into two classes:
Pleasant/Unpleasant or Positive/Negative. Some studies [7,43,44] classified emotion into three
categories: Pleasant, Neutral, and Unpleasant. In our study, we classify emotion into four types
(HVHA, HVLA, LVLA, and LVHA). Two emotion classification problems are relatively simple, and the
highest accuracy reached 82%. Multiple (more than two) emotion classification problems are complex,
and the accuracy of our method reaches 75.21%, which is higher than the results presented in [43,44].
The studies in [43,44] also employ DEAP as a dataset to recognize human emotions. This shows the
effectiveness of our method. In addition, [41,43,44] and this study all employed DEAP as the dataset
to undertake the emotion analysis. The performance of our method is better than the others. A similar
research method is used in [41], which also built Neural Networks by CNNs and LSTM RNNs, with the
difference being that the two-dimensional EEG feature images constructed in [41] ignored the spatial
characteristics of EEG signals. In this paper, the spatial features of EEG signals are considered very
important for emotion recognition. Through the experiments in this study, we proved the correctness
of this point.

To further validate the effectiveness of our method, we investigated the effect of the time window
size on the classification analysis. The MFIs with different time windows are trained and tested in
CLRNN and CNN + RNN, respectively. For comparison, the features trained in the baseline method
are also extracted from the raw EEG signals with the same time window size and are presented in
Table 5, which shows the average of the emotional classification accuracy obtained by 32 subjects under
different time windows. As seen from the results in Table 5, CLRNN showed sensitivity to the time
window size. With an increase in the time window, the classification accuracy showed a decreasing
trend. The accuracies of the classification from other methods did not change significantly with the
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increase of the time window. This further confirmed that the LSTM unit played a role in capturing
long-term critical features during the classification process.

Table 5. The classification results with different time window size and methods.

Classification Methods 1 s 2 s 3 s 4 s 5 s 6 s 8 s 10 s 12 s 15 s 20 s 30 s 60 s

k-NN 46.09 52.49 57.29 59.49 61.69 61.39 61.49 61.89 61.79 62.19 62.59 62.19 62.39
Random Decision Forest 39.03 38.17 39.38 40.19 38.53 36.43 44.53 45.38 45.88 46.58 46.68 46.78 46.98

SVM 65.11 65.11 66.11 64.21 63.01 64.31 61.01 63.01 62.61 62.41 63.01 63.41 63.21
CNN + RNN 61.76 59.02 58.07 60.34 61.43 62.13 61.13 59.1 60.1 60.9 61.1 61.5 62.1

CLRNN 74.73 75.21 75.13 74.32 73.25 70.37 67.23 65.01 57.3 60.2 62.1 60.6 61.8

The study in [45] analyzed the emotion classification with DEAP EEG signals from the perspective
of time window size and wavelet features and obtained the highest accuracy using the wavelet entropy
of three-second signal segments, which is similar to the results we obtained.

Further intuitive investigation is conducted with a graphical representation of the results from
CLRNN and ‘CNN + RNN’, as illustrated in Figure 9. It can be seen from Figure 9 that with the
same small time window (before 12 s) CLRNN had higher classification accuracies than CNN + RNN
without LSTM units. After 12 s, the difference between the accuracies of the two methods is very small.
For this phenomenon, our inference is that the change in the EEG signal presented with the MFIs is
overshadowed as the time window becomes larger. Therefore, the MFI sequence corresponding to the
large-sized time window does not reflect the change of emotion. To confirm this inference, we select
MFI sequences from 32 subjects to seek corresponding evidence. After comparison, Subject 4 is chosen
to present the variation, which is shown in Figure 10.

As seen in Figure 10, there are 12 MFI sequences, and each line corresponds to a time widow
size. From the first to the fifth line, each line contained the first 10 images of the MFI sequences.
Starting from the sixth line, it contains the whole images of the sequence. Studies presented in [50,51]
suggested that emotion is related to a group of structures in the center of the brain called the limbic
system and other structures such as the prefrontal cortex [52], orbitofrontal cortex, and so on. Out of
these areas, the correspondence between the prefrontal cortex and the EEG electrodes FP1-FP2 are
more direct than others. Therefore, we focused on the area corresponding to FP1-FP2. We can see from
Figure 10 that the MFI sequences corresponding to time windows 1 s to 3 s reveal more details about
the activation in this area. However, starting from the MFI sequence corresponding to the 4 s time
window, the activation information for this area is gradually reduced. This also corresponded to the
case where emotion recognition accuracy decreased after a 4 s time window by CLRNN in Figure 9.
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6. Conclusions

In this study, we try to improve the accuracy of classifying human emotion by EEG signals.
The innovation of our methods involves two aspects. First, we propose a new method for the EEG
feature extraction and representation. EEG frequency features (PSD) are extracted from different EEG
channels and mapped to a two-dimensional plane to construct the EEG MFI. EEG MFI sequences are
built from the raw EEG signal. The EEG MFI sequences fuse together the spatial, frequency domain,
and time characteristics of the raw EEG signal. Another aspect is our proposal of a hybrid deep neural
network that deals with the EEG MFI sequences and recognizes the emotions. The hybrid deep neural
networks combined Convolution Neural Networks and Long-Short-Term-Memory Recurrent Neural
Networks. In the hybrid structure, CNN is used to learn temporary image patterns from EEG MFI
sequences, and LSTM RNN is used to classify human emotions.

With our method, empirical research is carried out with the DEAP dataset. We compare our
results with those from the baseline methods and find that the emotion classification accuracy of our
method reached 75.21%, which is higher than the accuracies from the baseline methods. In the baseline
methods, we chose a ‘CNN + RNN’ Neural Network without LSTM unit to compare with our method.
We find that the LSTM unit showed the time sensitivity. Furthermore, we reviewed the state of the art
of human emotion recognition by EEG signals. Compared with similar studies, our study improves
the classification accuracy.
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Additionally, we analyzed the effects of different time windows on classification accuracy and
found that time windows corresponding to two to three seconds achieved good classification accuracy,
and the corresponding classification accuracy decreased from the time window division after four
seconds. Given these results, we inferred that MFI sequences from a smaller time window represent
more details of the variation of the EEG signal. We select Subject 4 to seek corresponding evidence
in the MFI sequence and find that, with smaller size time windows, MFI reveals more details about
activation in the FP1 and FP2 area.
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Appendix A

The code of the interpolation function and MFI generation method (used in MATLAB (R2016a)).

function build_EEG_MFI()
% the feature matrix has been generated and stored in variable basic_matrix (81,3);

x = basic_matrix (:,1); %Horizontal axis coordinates
y = basic_matrix (:,2); % Vertical axis coordinates
z = basic_matrix (:,3); % Feature values of the corresponding electrodes
nx = linspace(min(x), max(x),1000);
ny = linspace(min(y), max(y),1000);
[xx,yy] = meshgrid(nx,ny);
zz = griddata(x,y,z,xx,yy,'v4');
contourf(yy,xx,zz,'linestyle','-','LineWidth',0.5);
colormap('HSV');
axis off;
set(gcf,'PaperUnits','inches','PaperPosition',[0 0 2 2]);
print(1,'-dpng',picWritePath,'-r100');

end

Appendix B

The pseudo-code of producing the specific feature matrix (used in MATLAB (R2016a)).

function buildFeatureMatrix(integer theLengthofTheTimeWindow)
% P is a feature Matrix of four-dimensional: P(electrodeNum,sequenceNum,trialNum,subjectNum)
%theLengthofTheTimeWindow is set to 1,2,3,4,5, . . . , 10;
the_Num_of_MFIs=sequenceNum/theLengthofTheTimeWindow;
for subjectNum=1:32

for trialNum=1:40
specific_P =P(:,:,subjectNum,trialNum);

for r1=1:electrodeNum
for r2=1:the_Num_of_MFIs

meanRawData(r1,r2)=mean(specific_P(r1,(r2-1)*theLengthofTheTimeWindow+
1:(r2-1)*theLengthofTheTimeWindow+theLengthofTheTimeWindow));

end
end

generate_MFIs(meanRawData);
end

end
end
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Appendix C

The code to construct the network structure of the CLRNN (built with dl4j).

Updater updater = Updater.ADAGRAD; // ADAGRAD function is taken as the updater
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()

.seed(12345)

.regularization(true).l2(0.001) //l2 regularization on all layers

.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)

.iterations(1)

.learningRate(0.04)

.list()

.layer(0, new ConvolutionLayer.Builder(2, 2)
.nIn(3) //3 channels: RGB
.nOut(30)
.stride(2, 2)
.activation("relu")
.weightInit(WeightInit.RELU)
.updater(updater)
.build()) //Output: (200-2+0)/2+1 = 100 -> 100*100*30

.layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
.kernelSize(2, 2)
.stride(2, 2).build()) //Output:(100-2+0)/2+1 = 50

.layer(2, new ConvolutionLayer.Builder(2, 2)
.nIn(30)
.nOut(10)
.stride(2, 2)
.activation("relu")
.weightInit(WeightInit.RELU)
.updater(updater)
.build()) //Output: (50-2+0)/2+1 = 25 -> 25*25*10 = 6250

.layer(3, new DenseLayer.Builder()
.activation("relu")
.nIn(6250)
.nOut(100)
.weightInit(WeightInit.RELU)
.updater(updater)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.gradientNormalizationThreshold(10)
.learningRate(0.01)
.build())

.layer(4, new GravesLSTM.Builder()
.activation("softsign")
.nIn(100)
.nOut(100)
.weightInit(WeightInit.XAVIER)
.updater(updater)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.gradientNormalizationThreshold(10)
.learningRate(0.001)
.build())

.layer(5, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax")
.nIn(100)
.nOut(4) //4 possible emotion states
.updater(updater)
.weightInit(WeightInit.XAVIER)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.gradientNormalizationThreshold(10)
.build())
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.inputPreProcessor(0, new RnnToCnnPreProcessor(200, 200, 2))

.inputPreProcessor(3, new CnnToFeedForwardPreProcessor(50, 50, 10))

.inputPreProcessor(4, new FeedForwardToRnnPreProcessor())

.pretrain(false).backprop(true)

.backpropType(BackpropType.TruncatedBPTT)

.tBPTTForwardLength(60/5)

.tBPTTBackwardLength(60/5)

.build();
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