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Abstract: The hybrid flow shop is a typical discrete manufacturing system. A novel method is
proposed to solve the shop scheduling problem featured with uncertain processing times. The rolling
horizon strategy is adopted to evaluate the difference between a predictive plan and the actual
production process in terms of job delivery time. The genetic regulatory network-based rescheduling
algorithm revises the remaining plan if the difference is beyond a specific tolerance. In this algorithm,
decision variables within the rolling horizon are represented by genes in the network. The constraints
and certain rescheduling rules are described by regulation equations between genes. The rescheduling
solutions are generated from expression procedures of gene states, in which the regulation equations
convert some genes to the expressed state and determine decision variable values according to
gene states. Based on above representations, the objective of minimizing makespan is realized by
optimizing regulatory parameters in regulation equations. The effectiveness of this network-based
method over other ones is demonstrated through a series of benchmark tests and an application case
collected from a printed circuit board assembly shop.

Keywords: hybrid flow shop; uncertain processing time; genetic regulatory network; event-driven
rescheduling strategy

1. Introduction

The Hybrid Flow Shop (HES) is a typical discrete manufacturing system in which a set of jobs
passes through a series of production stages to complete required operations. The stages are composed
of parallel machines to protect the job flow from being blocked by a single machine [1-3]. The operation
processing time varies with different machines because capacities of parallel machines are normally
unrelated at each stage [4,5]. This type of workshop exists in various industries, which include Printed
Circuit Board (PCB) assembly, textile production and automobile assembly [6-9].

Since the first HFS problem was described by Salvador [10], vast amounts of academic work have
been carried out on HFS scheduling due to its complexity and practical relevance [11-15]. Different
kinds of methods (e.g., exact methods, heuristics and metaheuristics) were proposed to minimize
a variety of objectives, which include the maximum completion time, the maximum flow time, the
number of late jobs [16-19]. In terms of minimizing the maximum completion time, i.e., makespan,
Mirsanei et al. [20] proposed a simulated annealing algorithm to solve the HFS scheduling problem
featured with sequence-dependent setup times. Wang et al. [21] developed an efficient dispatching rule
together with several local search heuristics in a semiconductor manufacturing system. Wang et al. [22]
proposed a branch-and-bound algorithm to investigate the two-stage HFS scheduling problem in a
no-wait environment. Komaki et al. [23] developed several algorithms featured with a new lower
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bound to minimize the makespan in a specific HFS consisting of two machining stages and one
assembly stage.

In most of these approaches, the processing times were assumed to be deterministic in HFS
scheduling. However, in a real workshop, the differences between machines, worker skill levels and
material qualities make the processing times constantly changing [24]. These variations might lead to
increased objective values during the execution of predetermined plans, which occurs frequently in
practical production [25,26]. To deal with this situation, dynamic scheduling used for HFS scheduling
problems consists of three major ways: proactive, reactive and predictive-reactive [27,28].

The proactive scheduling strategy focuses on generating a robust solution that satisfies
performance requirements predictably [29]. This strategy normally uses fuzzy theory or statistical
analysis to construct the probability distribution of processing times and applies these distributions
to HFS scheduling [30,31]. Nevertheless, it is difficult to ensure the predicted performance in
practical situations. In a reactive scheduling strategy, all the decisions are made in real time
to react rapidly to dynamic events of processing time uncertainty, e.g., by using dispatching
rules and game theory approaches [32-34]. However, this strategy can hardly ensure the global
performance of HFS scheduling because of the limits placed on computational burden in real-time
scheduling. Predictive-reactive scheduling generates a predictive plan based on an expected production
environment and revises the plan if dynamic events cause the actual situation differs from
expectation [35,36]. This strategy has been widely used because it can achieve a good balance between
global performance of solutions and in-time reaction to unexpected situations.

In a predictive-reactive scheduling, predetermined plans are revised by rescheduling in a rolling
horizon, rather than in the whole horizon, in order to avoid too much computational efforts [37].
Three types of rolling horizon rescheduling mechanisms, including cycle-driven rescheduling,
event-driven rescheduling and mixed driven rescheduling, are developed as an alternative. Of these
mechanisms, the event-driven one is most widely used because it can respond to event-related
disturbances in a real time. In this mechanism, the reactive scheduling is normally motivated by
disturbances beyond a specific level in order to reduce the rescheduling for frequently occurring events.

However, it is currently challenging to find out a method that can achieve a good balance between
solution quality as well as computational time when it is necessary to consider rescheduling in HFSs.
Heuristic methods obtain a feasible solution quickly, but can hardly ensure the solution quality
because they fail to take all the aspects of HFS scheduling into account. Alternatively, metaheuristic
methods are capable of finding out optimal solutions owing to their general procedures. Nevertheless,
these procedures require too much computational effort and will make the rescheduling plan not
a real-time one. Consequently, it is necessary to develop an efficient rescheduling method for the
dynamic scheduling of HFS.

The Genetic Regulatory Network (GRN) is a structured network that describes the regulation
of gene expression in cells [38]. It has been attracting increased attention because of its excellent
description capacity, and various methods, including directed graphs, Boolean networks, rule-based
formalisms, qualitative differential equations, Bayesian networks and partial differential equations
are currently alternative to construct such a network [39]. A GRN has at least the following three
elements in common: genes, gene regulations and gene expression procedures [40]. Each gene has
two alternative states (i.e., the expressed state and the unexpressed state). If a gene is in the expressed
state, it has inhibitory effects on the states of other ones, which is the primary form of gene regulations.
Based upon these regulations, the gene expression procedure converts iteratively certain genes in the
unexpressed state into ones in the expressed state if there are few inhibitory effects on these genes.
According to genes in the expressed state, the GRN finally determines a specific morphology for the
related cell. For instance, Figure 1 illustrates a GRN composed of three genes and constructed by
differential equations. In this network, p, (z = 1-3) represents the state of gene z; o, (z = 1-3) is the
inhibition coefficient that describes quantitatively the inhibitory effects on gene z; ¢, €, and €3 are
regulatory parameters in gene regulation equations. At the beginning, all genes are in the unexpressed
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state. Based on the inhibition coefficients determined by regulatory parameters, the gene expression
procedure converts certain genes to the expressed state at discrete moments, and finally ends with the
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Figure 1. An example of GRN (Genetic Regulatory Network) composed of three genes.

In a HFS scheduling problem, the binary decision variable is similar to the state of a gene.
The decision variable interaction in constraints and objectives has an analogous form with gene
regulations. Therefore, genes in a GRN are used to express decision variables, and gene regulations are
adopted to describe constraints and objectives. In this way, a gene expression procedure depending
on the regulations appropriately can obtain a feasible solution, in which the state of a gene indicates
the assigned value of a related decision variable. In general, the differential equation method is
most suitable for such a GRN because it provides the detailed description of gene regulations in
a quantitative way [41]. In such an equation, undetermined regulatory parameters can be further
optimized to obtain a near-optimal solution within the reasonable computational time because the
number of these parameters is limited. Based on the mapping relationship illustrated in Figure 2, a

GRN-based method is thus proposed for HFS rescheduling.
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Figure 2. Mapping between the HFS (Hybrid Flow Shop) scheduling problem and a GRN.
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In general, the predictive-reactive scheduling strategy based on an event-driven rescheduling
mechanism is applicable for HFS scheduling with uncertain processing times. However, it is difficult
to obtain a high-quality solution in real time when reactive scheduling is required. This paper thus
proposes a GRN-based method to solve this dynamic scheduling problem and uses computational
experiments to validate this method. The rest of this paper is organized as follows. Section 2 presents
the HFS scheduling problem with uncertain processing times. Section 3 introduces the event-driven
rescheduling strategy. In Section 4, the GRN-based rescheduling method is presented. Section 5 gives
computational experiments and discussions. The conclusion is outlined in Section 6.

2. Hybrid Flow Shop Dynamic Scheduling Problem

The HFS scheduling problem is to determine the sequence of jobs entering the first stage and
assign jobs to alternative machines at every stage. Its objective is to minimize the makespan of jobs in
order to increase machine utilization and guarantee on-time job delivery simultaneously. The following
assumptions are taken into consideration in this problem:

Each job and each machine are available at the initial time.
Each job passes through multiple production stages to complete operations.
One or more parallel machines are available at each stage.
Parallel machines require different processing times for the same operation.

AR A

Each machine is not able to process more than one job at the same time, and cannot be interrupted
until the operation on this job has been completed.

A job can enter the next stage if its operation at current stage has been accomplished.
Processing times are uncertain, and their actual values may be different from the expected ones.
A machine requires changeover time if it needs to process two jobs of different types consecutively.

L N

Operations of a job have no effect on those of other jobs.

Table 1 lists the notations used in this problem. In this table, t,;; represents the operation
processing time, which is uncertain in an actual environment. Erlang distribution is a common way to
construct the distribution of processing times based on the queuing theory. Based on this distribution,
the possibility density function of a processing time t,; is as follows:

v—1
i) = NP e, 0 e N "

where t represents the actual processing time, f,,;(t) represents the v-order Erlang distribution of
tukir E(F) = 1/A. ymy and x,y; are decision variables representing the sequence of jobs entering the
first stage and the processing equipment of each job at every stage. The dynamic scheduling should
find appropriate decision variable values to minimize the makespan when the processing times are
constantly changing throughout the HFS production.

Table 1. Problem’s notations.

Notations Definitions

Sets

{1,---,m,--- ,M} Set of job types

{1,---,i,---,I} Set of production stages

{1,--+,k - K} Set of parallel machines at stage i

{,---,r,---,R} Set of waiting processing jobs

Parameters

Eki Operation processing time of job type m on the kth machine at stage i

Crum'ki Changeover time required by the kth machine at stage i to operate on job type m after job type m’

dm Production volume of job type m, R = Z%:l dm
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Table 1. Cont.

Notations Definitions
Variables
Yrm Binary variable: 1, if the rth job entering the first production stage belongs to job type m; 0, otherwise

Binary variable: 1, if the rth job entering the first production stage is processed on the kth machine

Xrki at stage i; 0, otherwise
Apiei The time instant the kth machine of production stage 7 to be available for the rth job
byki The job type processed by the kth machine of production stage i before a,y;

3. Event-Driven Rescheduling Strategy

The predictive-reactive strategy is adopted to realize the dynamic scheduling process in a HFS.
According to this strategy, a predictive plan is first developed based on the expected value of processing
times. However, there will be a difference between the actual situation and the predictive plan in terms
of operation processing times. The event-driven rescheduling mechanism evaluates the disturbance
caused by these events and judges the necessity of a reactive scheduling. As shown in Figure 3,
taking the objective of minimizing makespan into consideration, the judgment is based on whether
delivery time deviation of jobs exceeds a specific tolerance. Delivery time deviation of jobs is calculated
as follows:

dum = |7’Cnml - Cnm[|/cnm11 ()

where C,,,,; and rC,,y,;1 represent expected and actual delivery time of the nth batch of job type m,
respectively. If the deviation satisfies 8,1 > dmax, a rescheduling is required, otherwise, the predictive
plan is kept. A large dmax causes the reactive scheduling insensitive to dynamic events, whereas a small
dmax leads to frequent rescheduling. Thereupon, delivery deviation tolerance dmax is an important
parameter in the rescheduling strategy.
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Figure 3. Event-driven rescheduling strategy.

Moreover, the reactive scheduling is performed within an operation-based rolling window because
the processing times are related to operations. As illustrated in Figure 4, the window keeps removing
the completed operations and adding the waiting processing ones based on real-time shop information.
5(I) represents the set of p operations within the /th window. CS(I) represents the set of completed
operations. ES(]) is the set of waiting processing operations. The rolling window forms the rescheduling
problem based on 5(I) once the reactive scheduling is regarded as necessary. The rescheduling algorithm
solves this problem without interrupting the ongoing operations and then generates a new predictive
plan based on CS(I) and ES(!), as shown in Figure 3. For each window, a larger p makes the rescheduling
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problem more complex, but enables better global optimization. On the contrary, a smaller p decreases
the computational effort by compromising solution quality. Consequently, the number of operations
within each window is also a key parameter in the rescheduling strategy.

« = {50
s@) ES())

— s0) —>le ES()

\ 4

Figure 4. Operation-based rolling window.

4. Genetic Regulatory Network-Based Rescheduling Method

Based on the event-driven mechanism, a rescheduling problem is to be addressed if the delivery
time deviation of jobs is larger than the deviation tolerance. A GRN-based method is proposed to solve
this problem:

Step (1)

Step (2)

Step (3)

Step (4)

Genes are generated to represent the decision variables. In terms of decision variables
Yrm and x,; in Table 1, two kinds of genes (i.e., {mm|r =1,2,--- ,R; m=1,2,--- ,M} and
{myilr=1,2,--- ,R; k=1,2,--- ,K;;i=1,2,---,1}) are generated. The gene 7,,, denotes
that the rth job entering the HFS belongs to job type m, whereas the gene 71,4; denotes that
the rth job entering the HFS is processed on the kth machine at the ith production stage.
Regulation equations are developed to describe the constraints and objectives:

o: = f2(m(n),ma(n), -+, uz(n), 01,8, ,9), 3)

where Z represents the number of genes in a GRN, p,(n) is a binary variable that is equal
to 1 if gene 7, is in the expressed state at the nth iteration, otherwise, p,(n) is equal to 0,
0, is the inhibition coefficient that describes the inhibitory effects on gene 7, quantitatively;
01,0, -, O are regulatory parameters; and f, : R(Z+E) _s R is a nonlinear function related
to workshop conditions.

Gene expression procedures are designed to determine solutions. At the beginning of such a
procedure, the set of related genes is first confirmed based on operations within the rolling
window. If a reactive scheduling is necessary, all these genes are initialized to the unexpressed
state. At each iteration (ie.,n = 1,2, 3, ---, N), some of these genes are converted to the
expressed state based on the regulation equations. When n > N, genes in the expressed
state are confirmed, and their corresponding decision variable values are equal to 1 in the
rescheduling solution.

Regulatory parameters are optimized to minimize the makespan. A near-optimal solution
is obtained by gene states {y;m|r =1,2,--- ,Rm=1,2,--- , M} and {x,;5|r =1,2, --- , R;
k=1,2,---,K;i=1,2,---, I} that are decided by the optimized regulation equations.

As shown in Figure 5, the regulation equation and expression procedure of genes
{mtmlr=1,2,--- ,R;m=1,2,--- ,M} and those of genes {my;|r=1,2,--- ,R; k=1,2,--- ,K;
i=1,2,---,I} are presented in Sections 4.1 and 4.2, respectively. The regulatory parameter
optimization procedure is given in Section 4.3.
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Figure 5. Outline of the GRN-based method.

4.1. Regulation Equation and Expression Procedure of Gene T

In HFS scheduling, each machine prefers to operate on the same job type in order to reduce the
setup time. For instance, the jobs of type m; are operated on the 1st machine (i.e., the jobs on this
machine are thus “my-mi-my-mq- ... ”), and those of my and mj3 are assigned to the 2nd machine
and the 3rd machine, respectively. In this case, the job sequence entering this production stage will
be “mq-my-msz-my-my-m3- ... ” because the parallel machines perform their tasks simultaneously.
Thereupon, each job type would appear in the job sequence cyclically, and the related cycle time
should be accorded with the number of parallel machines at each stage. However, the greedy nature
of rule-based sequencing methods will probably keep the HFS scheduling choosing the “easy” jobs,
which means jobs of a “hard” type will be left to the last positions of the job sequence. For instance,
four jobs of type m4 might be left for the last four positions of a job sequence, which is not preferred
because there is no scheduling flexibility when assigning these jobs to parallel machines. On the
contrary, it is much better to leave four jobs mjy, my, m3 and my for remaining positions because the job
assigning procedure can choose machines with shorter processing time, less changeovers or earlier
availability for each job to minimize the makespan further. For this reason, it is necessary to keep the
stable production rate of each job type in the job sequence in order to avoid the near sightedness of
rule-based sequencing methods. In terms of these facts, following rules should be obeyed:

1.  Ajob type cannot be selected if its cycle of entering the HFS is not accord with the number of
parallel machines at each stage;
2. Ajob type cannot be selected if its production ratio differs from its demand ratio.

No model sequence could satisfy all these rules completely, and each unsatisfied case might
increase the makespan. The regulation equation of gene 7, is thus developed as follows:

1 r—1
_ +1 1
Urm = €1 Z |7sz71 Jom -

i=1

Zr:l 41 d r—1 M
e EELI T T (S o — dy) + HOY Y, @)
r 1 r ! ‘U=Wl m=1

where u,,, represents the inhibition coefficient to gene 7, d;;, represents the number of job type m
entering the HFS within the /th window, D; = E%:l di, W) represents the number of jobs having
entered the HFS before the Ith window, € and ¢, are regulatory parameters, and H(x) is a step
function that satisfies H(x) = 0(x < 0) and H(x) = 400 (x > 0). The first two terms of the right
side of Equation (4) represent the inhibition strength to gene 7, owing to Rules 1 and 2, respectively.
The last two terms ensure the job sequence to satisfy the predetermined quantity of each job type.

In the expression procedure of gene 7, all the operations are arranged in an ascending sequence

in terms of their starting time in the predictive plan. p operations with their starting time later than
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the rescheduling instant are selected consecutively in the operation sequence. Assuming that d,,
represents the number of operations processed on the first production stage for job type m, there
are D; = Z%:l dim jobs to be arranged for the job sequence within the /th window (from the W;th
position to the (W; 4+ D;)th position). The genes {7t,,,|r = W, W; +1,--- , W, +D;; m=1,2,--- ,M}
are thus initialized to the unexpressed state in the rescheduling problem, whereas the
gene states {ymm|r=1,2,--- , Wy m=1,2,--- ,M} and {ysm|r =W, +D;+1,W,+D;+2,--- ,R;

m=1,2,---, M} are given values based on the predictive plan. The gene expression procedure deals
with the gene states {ypm|r = W), W;+1,--- , W, +D;; m=1,2,---,M}. At each iteration n = «
(x€{1,2,---,D;}), the inhibition coefficient u,, is calculated for genes {W(W[+“)m|m =1,2,--- ,M}
and the gene with minimum u,, is converted to the expressed state. When n > D), the job sequence
within the Ith window is rescheduled based on {y,m|r = W;,, W, +1,--- , W, +D;; m=1,2,--- ,M}.
Appendix A presents this gene expression procedure within the /th window.

4.2. Regulation Equation and Expression Procedure of Gene Ty,

The major objective of assigning jobs to alternative machines is to avoid machine idle time because
the makespan is decreased mainly by increasing the utilization of machines. For this reason, the rule of
assigning each waiting processing job to the earliest available machine is widely adopted. In addition,
each machine prefers to operate on the same job type in order to reduce changeover activities while
setup times are taken into consideration. Therefore, assigning a job to parallel machines at each stage
should comply with following rules:

1. A machine cannot be selected if the waiting time of a job on this machine is longer than that on
another machine.
2. A machine cannot be selected if it requires setup time for a job.

It is almost impossible to satisfy these rules completely, and each unsatisfied case might increase
the objective function value. In addition, the 5th assumption should also be obeyed. The regulation
equation of gene 7, is thereby developed as follows:

K,' Ki
Wyki = h1 Y (e — i) + By moki + H(Y Xroi), 5)
v=1 v=1

where w,; represents the inhibition coefficient to gene 7t,4;, a,4; and b,y; represent the end time and the
job type of last operation on the kth parallel machine when the rth job enters the ith production stage,
mg represents the type of the rth job (i.e., mg = YL my,), by and h, are regulatory parameters, and
H(x) is a step function that satisfies H(x) = 0 (x < 0) and H(x) = +o0 (x > 0). The first two terms
of the right side of Equation (5) represent the inhibition strength to gene 7t,; owing to Rules 1 and 2,
respectively. The last term describes the constraint originated from the 5th assumption. The variable
b,y; satisfies:

b ; if x =0
by = (r—1)ki ) (r—1)ki , (6)
‘ { S MYy i Xy =1

and the variable a,;; satisfies:

A1)k if X1k =0
Api = (r—1)ki  Cby_yygmoki T Emoki if xp_q=1landay > Y0 agionyXuioy . (7)
K;_ . Ki_
Loy Ark(i—1)Xrk(i—1) + Coyamoki + tmgki 1 X1 = Land apg < 0 a1y X1

Assuming ¢;; jobs (from the oy;th position to the (oy; + ¢;;)th position in the job sequence) enter
the ith production stage based on the p = Y"I_; ¢;; operations selected for the /th window, the genes
{n(c'li‘f‘ﬁi)ki‘ﬁi =12 ,¢5;k=12, --- ,K;i=1,2,---,1} are initialized to the unexpressed
state, whereas other gene states are in accordance with the predictive plan. In the expression procedure
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of gene T, at each iteration n = ; + Z;;ll o E=12---,1I, B; € {1,2,---, ¢;;}), the inhibition
coefficient w,y; is calculated for genes {n((,“ pkilk=1,2,--- ,K,-} and the gene with minimum
w,; is converted to the expressed state. When n > p, the production plan within the /th window
is rescheduled based on gene states {x(‘,h,+ Bi)ki|ﬁi =12 ,¢;k=12, --- K;i=12,---,I}.
The pseudo codes of this procedure are presented in Appendix B.

4.3. Regulatory Parameter Optimization

Based on values of regulatory parameters €1 and €5, the gene expression procedure governed by
Equation (4) determines the gene states {y,m|r =1,2,--- ,R; m =1,2,--- , M} within the /th window,
each of which represents whether the rth job entering the HFS belongs to job type m. Moreover, the
regulatory parameters /1; and h; specify the gene regulation in Equation (5) and further determine the
gene states {x,;|r =1,2,--- ,R; k=1,2,--- ,K;;i=1,2,---,1} within the /th window. Each gene
state x,4; represents whether the rth job is manufactured on the kth machine at the ith production stage.
In this way, a solution to the rescheduling problem is obtained based on regulatory parameter values
(i.e., €1, €2, by and hy). Figure 6 illustrates this procedure in the rescheduling of a specific HFS.

[E Jobtype1 [] Jobtype2 ! p=8
Stage k=2 e g r—e \ r—9 =0 =12 =14 ] =16 |
=2 k=1 r=2 r-#'?) r=5 r=11 | =13 |} r=15
Makespan
stage k=2| r=2 | =3 || r= = = ) [0 |—12] -14] ~16
o= =1 | =2 ] 6 =8 | =11 [ =13 | =15 | Time
% Ille}ihjg@wﬂ@k« ‘ ‘
Job sequencing(w,=7,D,=4) Job assigning (o, =6,0, =4,0,=4,0,=4)
£ genes genes
1 nﬁl nGZ n71 n72 n&l HSZ n‘)l n‘?Z r[&]l 7-(512 7-91] ’-[7]2 rgﬂl r§§12 r()ll r()ll n421 n422 ns_lZ nszz nﬁZl r[hZZ TBA n712
5 L - Ll : GRN-based
2, gene regualtion gene regualtion
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! JL JL
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hz Y01 y,:050 y,:0-0 y,:0->1 N 0-1 1,050 x,:0-50 x,:0-51 x,:050 x,:0>1 x,050 x,:0>1
Y020  y,:051 y,:0>1 y,:0-50 — X020 1,051 x,:051 x,:050 x,:051 x,:0>0 x,0->1 x,:0-0
[ Job type 1 Dltﬁer 777777 s ﬁ% ‘ ‘
Stage k=2 i 6] r—9 =0 =12 =14 ] =16 |
=2 k=1 = =3~ r=11 || =13 || =15 |
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— — — — — ;
stage k=2| r=2 | =3 | =5 | =7 | =8 W =10} =12 =14] ~16
o el a6 ] 29 =11 ]| =13 =15 ] Time

LThe 4th rolling window }

Figure 6. An example of GRN-based rescheduling solution (M =2,1=2,k; =2,k; =2,R=16,d; =8,
d, = 8).

A parameter optimization procedure is further implemented to minimize the makespan.
According to the regulation equations, a gene receives inhibition if its expression breaks scheduling
rules, and the inhibition strength is weighted by related regulatory parameters. These parameters
have different values because each rule plays its distinctive role in determining an optimal solution.
For example, decreasing setup times is important if machines require comparatively longer durations
for job type changeovers, and the parameter /i, should have a large value. The sensitivity analysis on
makespan can evaluate the importance weights and thus realize regulatory parameter optimization [42].
Alternatively, machining learning methods can also optimize these parameters if there is enough
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historical data. For instance, a neural network with workshop conditions can be trained to recommend
appropriate parameters.

Apart from these analytical and machine learning methods, random searching algorithms
(e.g., genetic algorithms and immune learning algorithms) are also alternative to optimize
parameters [43]. For instance, each individual in the genetic algorithm can represent a specific value
set of regulatory parameters, and the fitness value of this individual can be evaluated based on
related makespan. Through a series of genetic operations (i.e., evaluation, crossover and mutation),
the best individual in this algorithm determines the minimum makespan. Moreover, a real-coded
algorithm should be used in the parameter optimization procedure because the regulatory parameters
are real variables.

5. Numerical Results

5.1. Strategy Parameter Analysis

As discussed in Section 3, delivery deviation tolerance and operation-based window size are
important parameters in the event-driven rescheduling strategy. To determine appropriate parameter
values, the numeric tests listed in Table 2 are presented.

Table 2. Strategy parameter analysis experiment.

Problem Parameter Numerical Range
Number of production stages (I) 4
Number of parallel machines at each stage (K;) Ul2, 4]
Number of job types (M) 4
Production volume of each job type (d;;) 8
Processing time (t,x;) (s) U[20, 30]
Changeover time between same job types (¢ki) (S) Ul1, 3]
Changeover time between different job types (c,,;,,/xi) (5) U5, 7.5]

For these numeric tests, a static scheduling result is first obtained by taking the whole planning
horizon as a special rescheduling window and using the GRN-based method. A real-coded genetic
algorithm is specifically used in this method to optimize regulatory parameters, in which the
population size is 200, the maximum generation is 50, the crossover possibility is 0.8, and the mutation
possibility is 0.1. Figure 7 illustrates the Gantt chart of static scheduling results (makespan = 392 s).
In this diagram, white rectangles represent processing times and black ones denote changeover times.
Moreover, the numbers within each rectangle represents the batch of a job type. For instance, “1, 3”
represents the third batch of the first job type.

12
11

[a—y
>

Equipment
WA NAAQJR\O

0 20 40 60 80 100120140 160 180200220240 260 280 300 320 340 360 380 400
Time

Figure 7. Gantt chart of a static scheduling.
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Assuming that the processing times follow a 4-order Erlang distribution, the rescheduling
strategies with different deviation tolerances and window sizes are then used. Table 3 lists the
makespan, rescheduling times and computational time of strategies with different deviation tolerances
while the window size is 20 operations. In this table, the strategy with the delivery time deviation
tolerance of 0.125 minimizes the makespan. Table 4 thus lists dynamic scheduling results with different
window sizes while the delivery time deviation tolerance is 0.125. Based on these results, the delivery
deviation tolerance of 0.125 and the window size of 77 operations are adopted to generate dynamic
scheduling results, as shown in Figure 8.

Table 3. Results of delivery time deviation tolerance experiments.

Delivery Time Makespan  Rescheduling Computational Time
Deviation Tolerance (s) Times (ms)
0.025 408.08 39 65,708
0.05 400.55 15 23,842
0.075 401.03 7 11,346
0.1 407.20 5 7245
0.125 394.34 2 3243
0.15 394.93 2 3193
0.2 395.22 1 1602
0.25 395.22 1 1602
0.3 439.46 0 16
0.35 439.46 0 19
0.4 439.46 0 18
0.45 439.46 0 21
0.5 439.46 0 19

Table 4. Results of rolling window size experiments.

Rolling Window Size =~ Makespan Rescheduling Computational Time

(Operation) (s) Times (ms)
13 394.54 2 3216
26 397.55 3 4997
39 400.78 4 7914
51 394.56 4 9305
64 398.19 3 7219
77 386.78 4 13,006
90 390.33 2 6363
102 393.33 2 7519
115 389.03 4 18,545
128 390.54 2 10,400
12 (20 [T22]023J24 0125126027128 13161117
11 (3101327 [331341]35] 36 137 L1121 1,5]11.8
10 4,1 21431144145 ]46]147148] 38 N 14 ]
i T IE
g7
26
25
= 4
3 [ 15 ]
%

0 20 40 60 80 100120140 160 180200220240 260 280 300 320 340 360 380 400
Time

Figure 8. Gantt chart of a dynamic scheduling.
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5.2. Comparative Experiments

Nine benchmarks from Qin et al. [44] are further used to validate the effectiveness of the
GRN-based method, as shown in Table 5. Assuming that actual processing times follow the Erlang
distribution, these benchmarks are solved by the GRN-based method and the Improved Ant Colony
Algorithm (IACO) introduced in [44], respectively. An Intel® Core™ i7-2720QM CPU @ 2.20 GHz and
8.00 GB RAM based notebook computer (Dell Inc., Xiamen, China) is adopted to test these experiments.
Table 6 lists the experimental results. Because both the IACO and the GRN-based method are based on
random search procedures, all these results are averaged values over 20 replications.

Table 5. Nine benchmarks for dynamic HFS (Hybrid Flow Shop) scheduling.

Benchmark Number of Number of Number of Machines Processing Setup Times (s) Setup Times (s)

Jobs Stages at Each Stage Times (s) (Same Jobs) (Different Jobs)
6x2 6 2 U[1, 5] U[50, 70] U[3, 5] U[12, 24]
30 x 2 30 2 U[1, 5] U[50, 70] U[3, 5] U[12, 24]
100 x 2 100 2 U[1, 5] U[50, 70] U[3, 5] U[12, 24]
6 x4 6 4 U[1, 5] U[50, 70] U[3, 5] U[12, 24]
30 x 4 30 4 U[1, 5] U[50, 70] U[3, 5] U[12, 24]
100 x 4 100 4 U[1, 5] U[50, 70] U[3, 5] U[12, 24]
6x8 6 8 U[1, 5] U[50, 70] U[3, 5] U[12, 24]
30 x 8 30 8 U[1, 5] U[50, 70] UJ3, 5] U[12, 24]
100 x 8 100 8 U[1, 5] U[50, 70] U[3, 5] U[12, 24]

Table 6. Results of the GRN (Genetic Regulatory Network)-based method and IACO (Improved Ant
Colony Algorithm) method.

B GRN-Based Method IACO Method
enchmark
Name Makespan  Rescheduling = CPU Time Makespan  Rescheduling =~ CPU Time
(s) Times (ms) (s) Times (ms)
6 x 2 256.27 2.3 13.3 252.79 1.15 164.5
30 x 2 573.58 425 48.6 568.45 1.6 580.3
100 x 2 886.23 1.35 354.5 855.01 1.9 8130.5
6 x4 1071.56 1.2 26.0 1098.29 1.85 365.2
30 x 4 2249.04 2.35 67.5 2314.21 1.2 3906.2
100 x 4 2532.37 3.15 498.4 2761.85 1.35 33,538.3
6 x8 3471.06 1.3 51.7 3536.51 1.55 9214
30 x 8 6859.97 1.9 97.6 6978.14 1.9 13,641.4
100 x 8 7396.41 5.1 3055.2 7646.71 1.85 21,9613.3

As shown in Table 6, the IACO method achieves better results than the GRN-based methods
for the benchmarks “6 x 2”7, “30 x 2” and “100 x 2”. Because these benchmarks are featured with a
small-scale solution space, the JACO method is possibly to search out the optimal solutions via its
global searching procedure, whereas the GRN-based method might fail to find an optimal one owing
to the predetermined rules embedded in its regulation equations. When the problem scale increases in
the benchmarks “6 x 4” to “100 x 8”, the GRN-based method obtains smaller makespans than the
IACO method. The IACO can hardly search out optimal solutions, or even near-optimal ones, when
the solution space is increased, whereas the GRN-based method ensures a good solution owing to its
embedded rules and can further find a better one by optimizing regulatory parameters. Moreover,
the GRN-based method optimizes four parameters, rather than all the decision variables in the IACO
method. This proposed method can thus save the CPU time and demonstrate better response capability
to processing time variations in HFS.

Thereupon, the GRN-based method is validated as an effective and efficient method for dynamic
scheduling in HFS.
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5.3. Case Study

A specific PCB assembly shop composed of four production stages (SMT chip processing stage,
plug processing stage, welding processing stage, and test stage) are also investigated. At each
production stage, several production lines are alternative for PCB assembly (S1, S2 and S3 at the 1st
stage; M1 and M2 at the 2nd stage; Al and A2 at the 3rd stage; and T1 and T2 at the 4th stage). Ten types
of PCBs are assembled in these lines. The requirement for each PCB type is 1000. The processing times
and setup times are listed in Tables 7 and 8, respectively.

Table 7. Processing times (s) of different PCB (Printed Circuit Board) types in each production line.

PCB Type S1 S2 S3 M1 M2 A1 A2 T1 T2
3ET0321AF 4615 1 1.2 0.3 0.24 0.6 0.75 0.6 0.6
3ET0322AF 4615 1 0293 04 0.3 0.6 0.75 0.6 0.55

3ET0100CET 1 1 0.6 0.06 15 075 075 0.4 0.55
3ET0141CET 1 1.428 1 0.4 0.24 0.6 03 0.55 05
3ET0349CET 1 1 0.6 0.4 0.3 075 075 0.6 0.6
3ET0630CET 1 1 1 006 024 075 0.6 0.55 0.5
3ET0631CET 1 1 0.6 0.06 0.3 0.6 075 055 0.4
3ET0741CET 1 4615 0293 06 0.3 0.75 0.6 0.4 0.4
3ET0374TEK 1428 0923 12 0.4 03 0.6 03 0.6 0.55
3ET0435TEK 0923 0923 0882 06 15 0.6 0.4 0.6 0.4

Table 8. Setup times (s) between PCBs.

PCB Type 3ETO 3ETO 3ETO 3ETO 3ETO 3ETO 3ETO 3ETO 3ETO 3ETO
321AF 322AF 100CET  141CET  349CET  630CET  631CET  741CET  374TEK  435TEK

3ET0321AF 1.56 12.58 8.37 13.12 10.83 7.28 8.37 7.1 9.51 9.2

3ET0322AF 5.73 1.32 9.64 7.3 9.53 10.57 5.77 10.67 12.13 9.82
3ET0100CET 9.81 7.23 1.23 6.34 11.22 14.63 122 11.09 12.98 6.54
3ET0141CET 8.93 8.27 11.62 1.28 12.96 5.97 8.6 5.69 9.95 8.02
3ET0349CET 14.12 10.73 10.05 7.79 1.32 14.26 9.83 14.6 7.07 9.29
3ET0630CET 8.93 10.83 10.36 10.79 14.15 1.56 14.95 11.8 10.88 10.12
3ET0631CET 9.14 12.32 14.64 9.99 9.37 7.51 1.75 10.37 13.43 5.48
3ET0741CET 12.19 9.81 14.22 8.99 9.52 14.33 14.43 1.22 14.09 11.83
3ET0374TEK 13.17 7.75 14.34 10.12 7.54 5.85 8.44 6.82 1.38 5.03
3ET0435TEK 6.44 7.89 12.52 13.34 10.28 13.01 10.72 6.14 7.85 1.52

Figure 9 illustrates the Gantt chart of static scheduling results obtained by using the GRN-based
method. As shown in this figure, all PCB products are divided into 100 batches, and the makespan is
3308 s. Because the starting time of operations is directly determined by the end time of the former
operation on the same machine or that of the same job, the processing time variations have cumulative
impacts on the completion time of jobs. Based on static scheduling results, the IACO method is used
to deal with processing time variations. Figure 10 is the Gantt chart obtained by the IACO method, in
which the makespan is 3415.77 s. The GRN-based method is also used to solve the dynamic scheduling
problem and achieves a makespan of 3261.98 s, as shown in Figure 11. By integrating job sequencing
rules and job assigning rules in a reasonable manner, the GRN-based method ensures waiting jobs
to be in-time assigned to an idle machine with comparatively shorter setup time. The regulatory
optimization procedure realizes the tradeoff between shorter job waiting time and less changeover
activities to minimize the makespan. However, the IACO method fails to realize these targets for
some rolling windows because its global search procedure can hardly search out optimal solutions for
a real-time scheduling. Taking the first production stage for example, the Garnet chart in Figure 10
realizes higher utilization of Machine 1 and shorter job waiting time on Machine 3 than that in Figure 11.
Consequently, the GRN-based method is a more effective scheduling method than the IACO method.



Appl. Sci. 2017, 7,23 14 0f 18

10
o £ el elsle s ¢ I— O OEE
8 -0 |2E8 FEEICE EE R N N . ]
R e g e IR ISR RS ]
§ 6 H I iS5 AT BiENEEREEEERE N WYYV : ]
HEES U (REREERRE T | | G ]
é.. 4 L0 b R R R
3
2
1
0
0 190 380 570 760 950 1140 1330 1520 1710 1900 2090 2280 2470 2660 2850 3040 3230 3420 3610
Time
Figure 9. Static scheduling Gantt chart.
10

[ R EEEEREH B EEIEE

-

=

7]

g sluslceselsls . N N B N N N N N O N N O PTTATII

=3 A mTIEH O — W W NN S S S S W2 B 4 SR I 23 4156075 510

= 1010104

5 4 Hf ........ ag&g“i"lluu S _r:o;mso'so'-!l LTI TE TR PP PR PR PREES :
3

2
6 f R Y ETEER Y (SRR TR ERERRCEE N %
f

1 < ¢ 2 I S j

0 i i H TICTETEraT,
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600
Time
Figure 10. IACO (Improved Ant Colony Algorithm) dynamic scheduling Gantt chart.
10

9 %— ------- HEERREE B B o B b EFEEEEE R

. s‘fu T T T —————————
A T T
IR TR PRPEEEREEEE Re EEREPREE — —
£ 5 % |
s
X i?-ll?l%l‘a-ml'I"l'I'I--I'l%'l“"""-'""'-I"1am U

HERREREHERTEE L S e et

P
o

AR IE IRREREREE | | || [0 e B i

0 190 380 570 760 950 1140 1330 1520 1710 1900 2090 2280 2470 2660 2850 3040 3230 3420
Time

Figure 11. GRN-based dynamic scheduling Gantt chart.



Appl. Sci. 2017, 7,23 150f 18

6. Conclusions

This paper solves the HFS scheduling problem with uncertain processing times based on the
predictive-reactive strategy. For the rescheduling problems in response to processing time variation
events, a novel GRN-based method is developed to minimize the makespan. The critical factor is the
employment of GRN to describe the HFS scheduling problem and some scheduling rules. This enables
the regulatory parameter optimization procedure to generate near-optimal rescheduling solutions
within the reasonable computational time. The effectiveness of this method over the IACO method
was demonstrated by a series of benchmark tests and the case study in a PCB assembly shop.

This paper investigates the dynamic event of processing time variations in HFS scheduling,
however, the machine breakdowns are also common in real environments. These events will cause the
machines to be unavailable for a certain duration known as Mean Time To Repair (MTTR). To deal
with these situations, the dynamic scheduling should first generate a predictive plan with minimum
makespan based on the assumptions that all the machines are reliable and that the processing times
take their expectation values. The job delivery deviation caused by dynamic events of machine
breakdowns as well as processing time variations is then monitored during the execution of this plan.
If the deviation is beyond a tolerance, the GRN-based method reschedules the production plan within
a rolling window to respond to these events. This method will have very complex regulation equations
because the unavailability of failed machines needs to be involved in the calculation of job waiting time
and machine idle time. Thereupon, the HFS scheduling will be more challenging when the dynamic
events of machine breakdowns are taken into account and it will also have better practical values at
the same time. Therefore, in our further work, we will develop an enhanced rescheduling method that
deals with the dynamic events of machine breakdowns as well as processing time variations by using
the GRN. In addition, we will extend this method to multi-objective scheduling that minimizes the
due date of jobs, the idle time of machines, the scheduling adjustment cost, etc.
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Appendix A

Pseudo codes of expression procedure of gene 7,
/ /initialization of genes related to the (14 1) th window
for x < 1 to D; do

for m <~ 1 to M do

r=W +a
Yrm <0 //all genes are in the unexpressed state
next;

next;

/ /expression circulation
for x < 1 to D; do
my < 1, Ug ¢ +o0

r=W+« / /current iteration
for m < 1 to M do
calculate u,,, in Equation (4) / /inhibition coefficient of current gene
if Uy < ug then
my < m / /update index of the gene with minimum 1,
Uy < Uy / /update the minimum u,,
end if;
next;
Yrmg <1 / /convert the gene with minimum u,,, to the expressed state

next.
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Appendix B

Pseudo codes of expression procedure of gene 7t,;:
/ /initialization of genes related to the (I + 1)th window
fori«+ 1to!ldo
for r < oy; to o}, + ¢); do
for k <+ 1 toK;do

Xk <0 //all genes are in the unexpressed state
next;
next;
next;

/ /real-time shop information
fori < 1toldo
for k < 1 to K; do
r =0y
get a,; and by,
next;
next;

/ /expression circulation
fori<1toldo

16 of 18

for r < oy; to 0y; + ¢;; do
ko <1, wy < +o0
for k <+ 1 to K; do / /current iteration
calculate w,; in Equation (4) / /inhibition coefficient of current gene
if w,; < wp then
ko < k //index of the gene with minimum w,;
W — Wk //the minimum w,;
end if;
next;
Xrgi < 1 / /convert the gene with minimum w,y; to the expressed state
r=r+1
for k <+ 1 to K; do
calculate a,y; in Equation (5) / /update shop information
calculate byy; in Equation (6) / /update shop information
next;
next;

next.
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