
applied
sciences

Article

Improving Multi-Instance Multi-Label Learning by
Extreme Learning Machine

Ying Yin 1, Yuhai Zhao 1,2,*, Chengguang Li 1 and Bin Zhang 1

1 College of Computer Science and Engineer, Northeastern University, Shenyang 110819, China;
yinying@mail.neu.edu.cn (Y.Y.); yy_00000000@163.com (C.L.); zhangbin@mail.neu.edu.cn (B.Z.)

2 Key Laboratory of Computer Network and Information Integration, Southeast University,
Ministry of Education, Nanjing 211189, China

* Correspondence: zhaoyuhai@mail.neu.edu.cn; Tel.: +86-186-2401-2958

Academic Editor: Christian Dawson
Received: 15 December 2015; Accepted: 10 May 2016; Published: 24 May 2016

Abstract: Multi-instance multi-label learning is a learning framework, where every object
is represented by a bag of instances and associated with multiple labels simultaneously.
The existing degeneration strategy-based methods often suffer from some common drawbacks:
(1) the user-specific parameter for the number of clusters may incur the effective problem; (2) SVM
may bring a high computational cost when utilized as the classifier builder. In this paper, we
propose an algorithm, namely multi-instance multi-label (MIML)-extreme learning machine (ELM),
to address the problems. To our best knowledge, we are the first to utilize ELM in the MIML
problem and to conduct the comparison of ELM and SVM on MIML. Extensive experiments have
been conducted on real datasets and synthetic datasets. The results show that MIMLELM tends to
achieve better generalization performance at a higher learning speed.

Keywords: multi-instance multi-label; extreme learning machine; genetic algorithm

1. Introduction

When utilizing machine learning to solve practical problems, we often consider an object as
a feature vector. Then, we get an instance of the object. Further, associating the instance with a specific
class label of the object, we obtain an example. Given a large collection of examples, the task is to get
a function mapping from the instance space to the label space. We expect that the learned function
can predict the labels of unseen instances correctly. However, in some applications, a real-world
object is often ambiguous, which consists of multiple instances and corresponds to multiple different
labels simultaneously.

For example, an image usually contains multiple patches each represented by an instance,
while in image classification, such an image can belong to several classes simultaneously, e.g., an
image can belong to mountains, as well as Africa [1]; another example is text categorization [1],
where a document usually contains multiple sections each of which can be represented as an
instance, and the document can be regarded as belonging to different categories if it were viewed
from different aspects, e.g., a document can be categorized as a scientific novel, Jules Verne’s
writing or even books on traveling. The MIML (Multi-instance Multi-label) problem also arises in
the protein function prediction task [2]. A domain is a distinct functional and structural unit of
a protein. A multi-functional protein often consists of several domains, each fulfilling its own function
independently. Taking a protein as an object, a domain as an instance and each biological function as
a label, the protein function prediction problem exactly matches the MIML learning task.

In this context, multi-instance multi-label learning was proposed [1]. Similar to the other two
multi-learning frameworks, i.e., multi-instance learning (MIL) [3] and multi-label learning (MLL) [4],

Appl. Sci. 2016, 6, 160; doi:10.3390/app6060160 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci

Appl. Sci. 2016, 6, 160 2 of 23

the MIML learning framework also results from the ambiguity in representing the real-world objects.
Differently, more difficult than two other multi-learning frameworks, MIML studies the ambiguity
in terms of both the input space (i.e., instance space) and the output space (i.e., label space), while
MIL just studies the ambiguity in the input space and MLL just the ambiguity in the output space,
respectively. In [1], Zhou et al. proposed a degeneration strategy-based framework for MIML, which
consists of two phases. First, the MIML problem is degenerated into the single-instance multi-label
(SIML) problem through a specific clustering process; second, the SIML problem is decomposed into
a multiple independent binary classification (i.e., single-instance single-label) problem using Support
Vector Machine (SVM) as the classifiers builder. This two-phase framework has been successfully
applied to many real-world applications and has been shown to be effective [5]. However, it could
be further improved if the following drawbacks are tackled. On one hand, the clustering process
in the first phase requires a user-specific parameter for the number of clusters. Unfortunately,
it is often difficult to determine the correct number of clusters in advance. The incorrect number
of clusters may affect the accuracy of the learning algorithm; on the other hand, SIML is degenerated
into single-instance single-label learning (SISL) (i.e., single instance, single label) in the second phase,
as this will increase the volume of data to be handled and thus burden the classifier building. Utilizing
SVM as the classifier builder in this phase may suffer from a high computational cost and require
a number of parameters to be optimized.

In this paper, we propose to enhance the two-phase framework by tackling the two above issues
and make the following contributions: (1) We utilize extreme learning machine (ELM) [6] instead of
SVM to improve the efficiency of the two-phase framework. To our best knowledge, we are the first
to utilize ELM in the MIML problem and to conduct the comparison of ELM and SVM on MIML.
(2) We design a method of theoretical guarantee to determine the number of clusters automatically
while incorporating it into the improved two-phase framework for effectiveness.

The remainder of this paper is organized as follows. In Section 2, we give a brief introduction
to MIML and ELM. Section 3 details the improvements of the two-phase framework. Experimental
analysis is given in Section 4. Finally, Section 5 concludes this paper.

2. The Preliminaries

This research is related to some previous work on MIML learning and ELM. In what follows, we
briefly review some preliminaries of the two related works in Sections 2.1 and 2.2, respectively.

2.1. Multi-Instance Multi-Label Learning

In traditional supervised learning, the relationships between an object and its description and its
label are always a one-to-one correspondence. That is, an object is represented by a single instance and
associated with a single class label. In this sense, we refer to it as single-instance single-label learning
(SISL). Formally, let X be the instance space (or say, feature space) and Y the set of class labels. The
goal of SISL is to learn a function fSISL: X→Y from a given dataset {(x1, y1), (x2, y2), . . . , (xm, ym)},
where xi∈X is an instance and yi∈Y is the label of xi. This formalization is prevailing and successful.
However, as mentioned in Section 1, many real-world objects are complicated and ambiguous in their
semantics. Representing these ambiguous objects with SISL may lose some important information
and make the learning task problematic [1]. Thus, many real-world complicated objects do not fit in
this framework well.

In order to deal with this problem, several multi-learning frameworks have been proposed,
e.g., multi-instance learning (MIL), multi-label learning (MLL) and multi-instance multi-label
Learning (MIML). MIL studies the problem where a real-world object described by a number
of instances is associated with a single class label. The training set for MIL is composed of
many bags each containing multiple instances. In particular, a bag is labeled positively if it
contains at least one positive instance and negatively otherwise. The goal is to label unseen
bags correctly. Note that although the training bags are labeled, the labels of their instances

Appl. Sci. 2016, 6, 160 3 of 23

are unknown. This learning framework was formalized by Dietterich et al. [3] when they were
investigating drug activity prediction. Formally, let X be the instance space (or say, feature space)
and Y the set of class labels. The task of MIL is to learn a function fMIL: 2X→{−1,+1} from
a given dataset {(X1, y1), (X2, y2), . . . , (Xm, ym)}, where Xi⊆X is a set of instances {x(i)1 , x(i)2 , . . . , x(i)ni },
x(i)j ∈X(j = 1, 2, . . . , ni), and yi∈{−1,+1} is the label of Xi. Multi-instance learning techniques
have been successfully applied to diverse applications, including image categorization [7,8], image
retrieval [9,10], text categorization [11,12], web mining [13], spam detection [14], face detection [15],
computer-aided medical diagnosis [16], etc. Differently, MLL studies the problem where a real-world
object is described by one instance, but associated with a number of class labels. The goal is to
learn a function fMLL: X→2Y from a given dataset {(x1, Y1), (x2, Y2), . . . , (xm, Ym)}, where xi∈X is
an instance and Yi⊆Y a set of labels {y(i)1 , y(i)2 , . . . , y(i)li

}, y(i)k ∈Y(k = 1, 2, . . . , li). The existing work
of MLL falls into two major categories. One attempts to divide multi-label learning to a number of
two class classification problems [17,18] or to transform it into a label ranking problem [19,20]; the
other tries to exploit the correlation between the labels [21,22]. MLL has been found useful in many
tasks, such as text categorization [23], scene classification [24], image and video annotation [25,26],
bioinformatics [27,28] and even association rule mining [29,30].

MIML is a generalization of traditional supervised learning, multi-instance learning and
multi-label learning, where a real-world object may be associated with a number of instances and
a number of labels simultaneously. In some cases, transforming single-instance multi-label objects
to MIML objects for learning may be beneficial. Before the explanation, we first introduce how
to perform such a transformation. Let S = {(x1, Y1), (x2, Y2), . . . , (xm, Ym)} be the dataset, where
xi∈X is an instance and Yi⊆Y a set of labels {y(i)1 , y(i)2 , . . . , y(i)li

}, y(i)k ∈Y(k = 1, 2, . . . , li). We can first
obtain a vector vl for each class label l∈Y by averaging all of the training instances of label l, i.e.,
vl =

1
|Sl | ∑

xi∈Sl

xi, where Sl is the set of all of the training instances xi of label l. Then, each instance

can be transformed into a bag, Bi, of |Y| instances by computing Bi = {xi−vl |l∈Y}. As such, the
single-instance multi-label dataset S is transformed into an MIML dataset S′ = {(B1, Y1), (B2, Y2),
. . . , (Bm, Ym)}. The benefits of such a transformation are intuitive. First, for an object associated with
multiple class labels, if it is described by only a single instance, the information corresponding to these
labels is mixed and thus difficult to learn. However, by breaking the single-instance into a number of
instances, each corresponding to one label, the structure information collapsed in the single-instance
representation may become easier to exploit. Second, for each label, the number of training instances
can be significantly increased. Moreover, when representing the multi-label object using a set of
instances, the relation between the input patterns and the semantic meanings may become more
easily discoverable. In some cases, understanding why a particular object has a certain class label
is even more important than simply making an accurate prediction while MIML offers a possibility
for this purpose. For example, using MIML, we may discover that one object has label l1 because it
contains instancen; it has label lk because it contains instancei; while the occurrence of both instance1

and instancei triggers label lj. Formally, the task of MIML is to learn a function fMIML: 2X → 2Y from

a given dataset {(X1, Y1), (X2, Y2), . . . , (Xm, Ym)}, where Xi⊆X is a set of instances {x(i)1 , x(i)2 , . . . , x(i)ni },
x(i)j ∈X(j = 1, 2, . . . , ni) and Yi⊆Y is a set of labels {y(i)1 , y(i)2 , . . . , y(i)li

}, y(i)k ∈X(k = 1, 2, . . . , li). Figure 1
illustrates the relationship among the four learning frameworks mentioned above.

Appl. Sci. 2016, 6, 160 4 of 23

MIML

MIL

MLL

SISL

ambiguous Unambiguous

Input ambiguous

output ambiguous

degenerate

Figure 1. The relationship among these four learning frameworks.

2.2. A Brief Introduction to ELM

Extreme learning machine (ELM) is a generalized single hidden-layer feedforward network.
In ELM, the hidden-layer node parameter is mathematically calculated instead of being iteratively
tuned; thus, it provides good generalization performance at thousands of times faster speed than
traditional popular learning algorithms for feedforward neural networks [31].

As a powerful classification model, ELM has been widely applied in many fields. For
example, in [32], ELM was applied for plain text classification by using the one-against-one
(OAO) and one-against-all (OAA) decomposition scheme. In [31], an ELM-based XML document
classification framework was proposed to improve classification accuracy by exploiting two different
voting strategies. A protein secondary prediction framework based on ELM was proposed
in [33] to provide good performance at extremely high speed. The work in [34] implemented
the protein-protein interaction prediction on multi-chain sets and on single-chain sets using ELM
and SVM for a comparable study. In both cases, ELM tends to obtain higher recall values than
SVM and shows a remarkable advantage in computational speed. The work in [35] evaluated
the multi-category classification performance of ELM on three microarray datasets. The results
indicate that ELM produces comparable or better classification accuracies with reduced training time
and implementation complexity compared to artificial neural network methods and support vector
machine methods. In [36], the use of ELM for multiresolution access of terrain height information
was proposed. The optimization method-based ELM for classification was studied in [37].

ELM not only tends to reach the smallest training error, but also the smallest norm of weights [6].
Given a training set D = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N}, activation function g(x) and hidden
node number L, the pseudocode of ELM is given in Algorithm 1. More detailed introductions to
ELM can be found in a series of published literature [6,37,38].

Algorithm 1: ELM
Input: DB: dataset; HN: number of hidden layer nodes; AF: activation function
Output: Results

1 for i = 1 to L do
2 randomly assign input weight wi;
3 randomly assign bias bi;

4 calculate H;
5 calculate β = H†T

3. The Proposed Approach MIMLELM

MIMLSVM is a representative two-phase MIML algorithm successfully applied in many
real-world tasks [2]. It was first proposed by Zhou et al. in [1] and recently improved by Li et al.,

Appl. Sci. 2016, 6, 160 5 of 23

in [5]. MIMLSVM solves the MIML problem by first degenerating it into single-instance multi-label
problems through a specific clustering process and then decomposing the learning of multiple labels
into a series of binary classification tasks using SVM. However, as mentioned, MIMLSVM may suffer
from some drawbacks in either of the two phases. For example, in the first phase, the user-specific
parameter for the number of clusters may incur the effective problem; in the second phase, utilizing
SVM as the classifiers builder may bring high computational cost and require a great number of
parameters to be optimized.

Algorithm 2: The MIMLELM algorithm.

Input: DB: dataset; HN: number of hidden layer nodes; AF: activation function
Output: Results

1 DB = {(X1, Y1), (X2, Y2), . . . , (Xm, Ym)}, Γ = X1, X2, . . . , Xm;
2 determine the number of clusters, k, using AIC;
3 randomly select k elements from Γ to initialize the k medoids {M1, M2, . . . , Mk};
4 repeat
5 Γt = {Mt}(t = 1, 2, . . . , k);
6 foreach Xu∈(Γ−{Mt}) do
7 index = arg mint∈{1,2,...,k} dH(Xu, Mt);
8 Γindex = Γindex∪{Xu}
9 Mt = arg min

A∈Γt
∑

B∈Γt

dH(A, B)(t = 1, 2, . . . , k);

10 Transform (Xu, Yu) into into an SIML example (zu, Yu), where zu =

(dH(Xu, M1), dH(Xu, M2), . . . , dH(Xu, Mk));
11 until Mt (t = 1, 2, . . . , k) don’t change;
12 foreach zu (u ∈ {1, 2, . . . , m}) do
13 foreach y∈Yu do
14 decompose (zu, Yu) into |Yu| SISL examples

15 Train ELMy for every class y;
16 Integrate all ELMy’s based on GA

In this paper, we present another algorithm, namely MIMLELM, to make MIMLSVM more
efficient and effective. In this proposed method: (1) We utilize ELM instead of SVM to improve
the efficiency of the two-phase framework. To our best knowledge, we are the first to utilize
ELM in the MIML problem and to conduct the comparison of ELM and SVM on MIML. (2) We
develop a method of theoretical guarantee to determine the number of clusters automatically, so that
the transformation from MIML to SIML is more effective. (3) We exploit a genetic algorithm-based
ELM ensemble to further improve the prediction performance.

The MIMLELM algorithm is outlined in Algorithm 2. It consists of four major elements:
(1) determination the number of clusters (Line 2); (2) transformation from MIML to SIML (Lines 3–12);
(3) transformation from SIML to SISL (Lines 13–17); (4) multi-label learning based on ELM
(Lines 18–19). In what follows, we will detail the four elements in Section 3.1–3.4, respectively.

3.1. Determination of the Number of Clusters

The primary important task for MIMLELM is to transform MIML into SIML. Unlike MIMLSVM,
which performs the transformation through a clustering process with a user-specified parameter for
the number of clusters, we utilize AIC [39], a model selection criterion, to automatically determine
the number of clusters.

AIC is founded on information theory. It offers a relative estimation of the information lost when
a given model is used to represent the process that generates the data. For any statistical model,

Appl. Sci. 2016, 6, 160 6 of 23

the general form of AIC is AIC = −2ln(L)+2K, where L is the maximized value of the likelihood
function for the model and K is the number of parameters in the model. Given a set of candidate
models, the one of the minimum AIC value is preferred [39].

Let Mk be the model of the clustering result with k clusters C1, C2, . . ., Ck, where the number
of samples in Ci is mi. Xi denotes a random variable indicating the PD value between any pair of
micro-clusters in Ci. Then, under a general assumption commonly used in the clustering community,
Xi follows a Gaussian distribution with (µi, σ2

i), where µi is the expected PD value between any pair
of micro-clusters in Ci, and σ2

i is the corresponding variance. That is, the probability density of Xi is:

p(Xi) =
mi
m
· 1√

2πσi
exp(− 1

2σ2
i
(Xi − µi)

2) (1)

Let xij (1≤j≤C2
mi

) be an observation of Xi; the corresponding log-likelihood w.r.t the data in
Ci is:

ln L(Ci|µi, σi) = ln
C2

mi

∏
j=1

p(Xi = xij) =

C2
mi

∑
j=1

(ln
1√

2πσi
− 1

2σ2
i
(xij − µi)

2 + ln
mi
m

) (2)

Since the fact that the log-likelihood for all clusters is the sum of the log-likelihood of the
individual clusters, the log-likelihood of the data w.r.t Mk is:

ln L(Mk|µ1, µ2, . . . , µk, σ1, σ2, . . . , σk) =
k

∑
i=1

ln L(Ci|µi, σi) =
k

∑
i=1

C2
mi

∑
j=1

(ln
1√

2πσi
− 1

2σ2
i
(xij − µi)

2 + ln
mi
m

) (3)

Further, take the MLE (maximum likelihood estimate) of σ2
i , i.e.: σ̂2

i =
1

C2
mi

C2
mi

∑
j=1

(xij − µi)
2, into

Equation (3); we obtain that:

ln L(Mk|µ1, µ2, . . . , µk, σ1, σ2, . . . , σk) = −

k
∑

i=1
C2

mi

2
ln(2π)

−

k
∑

i=1
C2

mi
ln(σ̂2

i)

2
−

k
∑

i=1
C2

mi

2
+

k

∑
i=1

C2
mi

ln mi − ln m
k

∑
i=1

C2
mi

(4)

Finally, in our case, the number of independent parameters K is 2k. Thus, AIC of the model
Mk is:

AICMk = ln(2πm2e)
k

∑
i=1

C2
mi

+
k

∑
i=1

C2
mi

ln(σ̂2
i)− 2

k

∑
i=1

C2
mi

ln mi + 4k (5)

3.2. Transformation from MIML to SIML

With the number of clusters computed, we start to transform the MIML learning task,
i.e., learning a function fMIML: 2X→2Y, to a multi-label learning task, i.e., learning a function
fMLL: Z→2Y.

Given an MIML training example, the goal of this step is to get a mapping function zi = φ(Xi),
where φ: 2x→Z, such that for any zi∈Z, fMLL(zi) = fMIML(Xi) if zi = φ(Xi). As such, the proper
labels of a new example Xk can be determined according to Yk = fMLL(φ(Xk)). Since the proper
number of clusters has been automatically determined in Section 3.1, we implement the mapping
function φ() by performing the following k-medoids clustering process.

Appl. Sci. 2016, 6, 160 7 of 23

Initially, each MIML example (Xu, Yu) (u = 1, 2, . . . , m) is collected and put into
a dataset Γ (Line 1). Then, a k-medoids clustering method is performed. In this process,
we first randomly select k elements from Γ to initialize the k medoids Mt (t = 1, 2, . . . , k).
Note: instead of a user-specified parameter, k is an automatically-determined value by
Equation (6) in Section 3.1. Since each data item in Γ, i.e., Xu, is an unlabeled multi-instance
bag instead of a single instance, we employ the Hausdorff distance [40] to measure the
distance between two different multi-instance bags. The Hausdorff distance is a famous
metric for measuring the distance between two bags of points, which has often been
used in computer vision tasks. In detail, given two bags A = {a1, a2, . . . , anA} and
B = {b1, b2, . . . , bnB}, the Hausdorff distance dH between A and B is defined as:

dH(A, B) = max{max
a∈A

min
b∈B
||a− b||, max

b∈B
min
a∈A
||b− a||} (6)

where ||a− b|| is used to measure the distance between the instances a and b, which takes the form
of the Euclidean distance; max

a∈A
min
b∈B
||a − b|| and max

b∈B
min
a∈A
||b − a|| denote the maximized minimum

distance of every instance in A and all instances in B and the maximized minimum distance of
every instance in B and all instances in A, respectively. The Hausdorff distance-based k-medoids
clustering method divides the dataset Γ into k partitions, the medoids of which are M1, M2, . . ., Mk,
respectively. With the help of these medoids, every original multi-instance example Xu can be
transformed into a k-dimensional numerical vector zu, where the i-th (i = 1, 2, . . . , k) component
of zu is the Hausdorff distance between Xu and Mi, i.e., dH(Xu, Mi). In this way, every MIML
example (Xu, Yu) (u = 1, 2, . . . , m) is transformed into an SIML example (zu, Yu) (u = 1, 2, . . . , m) by
replacing itself with its structure information, i.e., the relationship of Xu and the k medoids. Figure 2 is
an illustration of this transformation, where the dataset Γ is divided into three clusters, and thus, any
MIML example Xu is represented as a three-dimensional numerical vector zu = (d1, d2, d3).

label1

Xu Yu

label2

label3

instance1

instance2

.

.

feature1

feature2

d1 d2

d3

medoid1

medoid2

.

.
.

.

d1 d2 d3
medoid3

Figure 2. The process of transforming multi-instance examples into single-instance examples.

After this process, we obtain the mapping function zi = φ(Xi) such that for any zi∈Z,
fMLL(zi) = fMIML(Xi) if zi = φ(Xi).

3.3. Transformation from SIML to SISL

After transforming the MIML examples (Xi, Yi) to the SIML examples (zi, Yi), i = 1, 2,. . .m,
the SIML learning task can be further transformed into a traditional supervised learning task SISL,
i.e., learning a function fSISL: Z× Y→{−1,+1}. For this goal, we can implement the transformation
from SIML to SISL in such a way that for any y ∈ Y, fSISL(zi, y) = +1 if y ∈ Yi, and −1 otherwise.
That is, fSISL={y| fSISL(zi, y) = +1}.

Figure 3 gives a simple illustration of this transformation. For a multi-label dataset, there are
some instances that have more than one class label. It is hard for us to train the classifiers directly

Appl. Sci. 2016, 6, 160 8 of 23

over the multi-label datasets. An intuitive solution to this problem is to use every multi-label data
more than once when training. This is rational because every SIML example could be considered as
a set of SISLs, where each SISL is of the same instance, but with a different label. Concretely, each
SIML example is taken as a positive SISL example of all the classes to which it belongs. As shown in
Figure 3, every circle represents an SIML example. In particular, each example in area Ais of two class
labels “©” and “×”, while the other examples are of either the “©” label or the “×” label. According
to the transformation from SIML to SISL mentioned above, an SIML example, say (Xu, {©,×})
in area A should be transformed into two SISL examples, (Xu1 ,©) and (Xu1 ,×). Consequently,
when training the “©” model, (Xu, {©,×}) is considered as (Xu1 ,©); otherwise, it is considered as
(Xu1 ,×). In this way, the SIML examples in area A is ensured to be used as a positive example both
in classes “©” and “×”. This method can more effectively make full use of the data and make the
experiment result closer to the true one.

Area A

Figure 3. The example of data processing.

3.4. ELM Ensemble Based on GA

So far, we have decomposed the MIML problem into the SISL problem using SIML as the bridge.
Since an MIML example is often of more than two class labels, the corresponding SISL problem should
be naturally a multi-class problem.

Two commonly-used methods for multi-class classification are one-against-all (OAA) and
one-against-one (OAO) [41]. For the N-class problem, OAA builds N binary classifiers, one for each
class separating the class from the others. Instead, the OAO strategy involves N(N − 1)/2 binary
classifiers. Each classifier is trained to separate each pair of classes. After all N(N − 1)/2 classifiers
are trained, a voting strategy is used to make the final decision. However, a common drawback of
the two strategies is that they both consider every trained classifier equally important, although
the real performance may vary over different classifiers.

An ensemble classifier was proposed as an effective method to address the above problem.
The output of an ensemble is a weighted average of the outputs of several classifiers, where
the weights should be high for those classifiers performing well and low for those whose outputs are
not reliable. However, finding the optimum weights is an optimization problem that is hard to exactly
solve, especially when the objective functions do not have “nice” properties, such as continuity,
differentiability, etc. In what follows, we utilize a genetic algorithm (GA)-based method to find
the appropriate weights for each classifier.

The genetic algorithm [42] is a randomized search and optimization technique. In GA,
the parameters of the search space are encoded in the form of strings called chromosomes. A collection
of chromosomes is called a population. Initially, a random population is created. A fitness function
is associated with each string that represents the degree of goodness of the string.
Biologically-inspired operators, such as selection, crossover and mutation, continue for a fixed
number of generations or until a termination condition is satisfied.

Appl. Sci. 2016, 6, 160 9 of 23

3.4.1. Fitness Function

Given a training instance x, the expected output of x is d(x) and the actual output of the i-th
individual ELM is oi(x). Moreover, let V be the validation set and w = [w1, w2, . . . , wN] a possible
weight assignment, i.e., the chromosome of an individual in the evolving population. According
to [43], the estimated generalization error of the ELM ensemble corresponding to w is:

EV
w =

N

∑
i=1

N

∑
j=1

wiwjCV
ij = wTCVw, (7)

where:

CV
ij =

∑
x∈V

(fi(x)− d(x))(f j(x)− d(x))

|V| (8)

It is obvious that EV
w expresses the goodness of w. The smaller EV

w is, the better w is. Thus, we
use f (w) = 1

EV
w

as the fitness function.

3.4.2. Selection

During each successive generation, a certain selection method is needed to rate the fitness of
each solution and preferentially select the best solution. In this paper, we use roulette wheel selection.
The fitness function associated with each chromosome is used to associate a probability of selection
with each individual chromosome. If fi is the fitness of individual i in the population, the probability
of i being selected is

pi =
fi

N
∑

j=1
f j

(9)

where n is the number of individuals in the population. In this way, chromosomes with higher fitness
values are less likely to be eliminated, but there is still a chance that they may be.

3.4.3. Crossover

We use the normal single point crossover. A crossover point is selected randomly between one
and l (length of the chromosome). Crossover probabilities are computed as in [44]. Let fmax be
the maximum fitness value of the current population, f̄ be the average fitness value of the population
and f ′ be the larger of the fitness values of the solutions to be crossed. Then, the probability of
crossover, µc, is calculated as:

µc =

k1 × fmax− f ′

fmax− f
, if f ′> f ,

k3, otherwise.
(10)

where the values of k1 and k3 are kept equal to 1.0 as in [44]. Note that when fmax = f , then
f ′ = fmax and µc will be equal to k3. The aim behind this adaptation is to achieve a trade-off between
exploration and exploitation in a different manner. The value of µc is increased when the better of
the two chromosomes to be crossed is itself quite poor. In contrast, when it is a good solution, µc is
low so as to reduce the likelihood of disrupting a good solution by crossover.

Mutation: Each chromosome undergoes mutation with a probability µm. The mutation
probability is also selected adaptively for each chromosome as in [44]. That is, µm is given below:

µm =

k2 × fmax− f
fmax− f

, if f> f ,

k4, otherwise.
(11)

Appl. Sci. 2016, 6, 160 10 of 23

where the values of k2 and k4 are kept equal to 0.5. Each position in a chromosome is mutated with
a probability µm in the following way. The value is replaced with a random variable drawn from

a Laplacian distribution, p(ε)∝e−
|ε−µ|

δ , where the scaling factor δ sets the magnitude of perturbation
and µ is the value at the position to be perturbed. The scaling factor δ is chosen equal to 0.1. The old
value at the position is replaced with the newly-generated value. By generating a random variable
using a Laplacian distribution, there is a nonzero probability of generating any valid position from
any other valid position, while the probability of generating a value near the old value is greater.

The above process of fitness computation, selection, crossover and mutation is executed for
a maximum number of generations. The best chromosome seen up to the last generation provides
the solution to the weighted classifier ensemble problem. Note that sum wi should be kept during
the evolving. Therefore, it is necessary to do normalization on the evolved w. Thus, we use a simple

normalization scheme that replaces wi with wi/
N
∑

i=1
wi in each generation.

4. Performance Evaluation

In this section, we study the performance of the proposed MIMLELM algorithm in terms of both
efficiency and effectiveness. The experiments are conducted on an HP PC (Lenovo, Shenyang, China)
with 2.33 GHz Intel Core 2 CPU, 2 GB main memory running Windows 7, and all algorithms are
implemented in MATLAB 2013. Both real and synthetic datasets are used in the experiments.

4.1. Datasets

Four real datasets are utilized in our experiments. The first dataset is Image[1], which comprises
2000 natural scene images and five classes. The percent of images of more than one class is over 22%.
On average, each image is of 1.24 ± 0.46 class labels and 1.36 ± 0.54 instances; The second dataset
is Test [22], which contains 2000 documents and seven classes. The percent of documents of multiple
labels is 15%. On average, each document is of 1.15 ± 0.37 class labels and 1.64 ± 0.73 instances.
The third and the fourth datasets are from two bacteria genomes, i.e., Geobacter sulfurreducens and
Azotobacter vinelandii [2], respectively. In the two datasets, each protein is represented as a bag of
domains and labeled with a group of GO (Gene Ontology) molecular function terms. In detail, there
are 397 proteins in Geobacter sulfurreducens with a total of 320 molecular function terms. The average
number of instances per protein (bag) is 3.20 ± 1.21, and the average number of labels per protein is
3.14± 3.33. The Azotobacter vinelandii dataset has 407 proteins with a total of 320 molecular function
terms. The average number of instances per protein (bag) is 3.07 ± 1.16, and the average number of
labels per protein is 4.00 ± 6.97. Table 1 gives the summarized characteristics of the four datasets,
where std. is the abbreviation of standard deviation.

Table 1. The information of the datasets. std.: standard deviation.

Data Set # of Objects # of Classes Instances per Bag
(Mean± std.)

Labels per Example
(Mean± std.)

Image 2000 5 1.36 ± 0.54 1.24 ± 0.46
Text 2000 7 1.64 ± 0.73 1.15 ± 0.37

Geobacter sulfurreducens 397 320 3.20 ± 1.21 3.14 ± 3.33
Azotobacter vinelandii 407 340 3.07 ± 1.16 4.00 ± 6.97

4.2. Evaluation Criteria

In multi-label learning, each object may have several labels simultaneously. The commonly-used
evaluation criteria, such as accuracy, precision and recall, are not suitable in this case. In this paper,
four popular multi-label learning evaluation criteria, i.e., one-error (OE), coverage (Co), ranking loss
(RL) and average precision (AP), are used to measure the performance of the proposed algorithm.
Given a test dataset S = {(X1, Y1), (X2, Y2), . . . , (Xp, Yp)}, the four criteria are defined as below, where

Appl. Sci. 2016, 6, 160 11 of 23

h(Xi) returns a set of proper labels of Xi, h(Xi, y) returns a real-value indicating the confidence for y
to be a proper label of Xi and rankh(Xi, y) returns the rank of y derived from h(Xi, y).

• one-errorS(h) = 1
p

p
∑

i=1

[
[arg max

y∈Y
h(Xi, y)] /∈ Yi

]
. The one-error evaluates how many times

the top-ranked label is not a proper label of the object. The performance is perfect when
one-errorS(h) = 0; the smaller the value of one-errorS(h), the better the performance of h.

• coverageS(h) = 1
p

p
∑

i=1
max
y∈Yi

rankh(Xi, y) − 1. The coverage evaluates how far it is needed, on

the average, to go down the list of labels in order to cover all of the proper labels of the object. It
is loosely related to precision at the level of perfect recall. The smaller the value of coverageS(h),
the better the performance of h.

• rlossS(h) = 1
p

p
∑

i=1

1
‖Yi‖‖Yi‖

∣∣{(y1, y2)|h(Xi, y1) ≤ h(Xi, y2), (y1, y2) ∈ Yi ×Yi}
∣∣, where Yi denotes

the complementary set of Yi in Y. The ranking loss evaluates the average fraction of label pairs
that are misordered for the object. The performance is perfect when rlossS(h) = 0; the smaller
the value of rlossS(h), the better the performance of h.

• avgprecS(h) = 1
p

p
∑

i=1

1
|Yi | ∑

y∈Yi

|{y′ |rankh(Xi ,y′)≤rankh(Xi ,y),y′∈Yi}|
rankh(Xi ,y)

. The average precision evaluates

the average fraction of proper labels ranked above a particular label y∈Yi. The performance
is perfect when avgprecS(h) = 1; the larger the value of avgprecS(h), the better the performance
of h.

4.3. Effectiveness

In this set of experiments, we study the effectiveness of the proposed MIMLELM on
the four real datasets. The four criteria mentioned in Section 4.2 are utilized for performance
evaluation. Particularly, MIMLSVM+ [5], one of the state-of-the-art algorithms for learning with
multi-instance multi-label examples, is utilized as the competitor. The MIMLSVM+ (Advanced
multi-instance multi-label with support vector machine) algorithm is implemented with a Gaussian
kernel, while the penalty factor cost is set from 10−3, 10−2, . . ., 103. The MIMLELM (multi-instance
multi-label with extreme learning machine) is implemented with the number of hidden layer
nodes set to be 100, 200 and 300, respectively. Specially, for a fair performance comparison, we
modified MIMLSVM+ to include the automatic method for k and the genetic algorithm-based weights
assignment. On each dataset, the data are randomly partitioned into a training set and a test set
according to the ratio of about 1:1. The training set is used to build a predictive model, and the test
set is used to evaluate its performance.

Experiments are repeated for thirty runs by using random training/test partitions, and
the average results are reported in Tables 2–5, where the best performance on each criterion is
highlighted in boldface, and ‘↓’ indicates “the smaller the better”, while ‘↑’ indicates “the bigger
the better”. As seen from the results in Tables 2–5, MIMLSVM+ achieves better performance
in terms of all cases. Applying statistical tests (nonparametric ones) to the rankings obtained
for each method in the different datasets according to [45], we find that the differences are
significant. However, another important observation is that MIMLSVM+ is more sensitive to
the parameter settings than MIMLELM. For example, on the Image dataset, the AP values
of MIMLSVM+ vary in a wider interval [0.3735, 0.5642] while those of MIMLELM vary in
a narrower range [0.4381, 0.5529]; the C values of MIMLSVM+ vary in a wider interval [1.1201, 2.0000],
while those of MIMLELM vary in a narrower range [1.5700, 2.0000]; the OE values of MIMLSVM+
vary in a wider interval [0.5783, 0.7969], while those of MIMLELM vary in a narrower range
[0.6720, 0.8400]; and the RL values of MIMLSVM+ vary in a wider interval [0.3511, 0.4513], while
those of MIMLELM vary in a narrower range [0.4109, 0.4750]. In the other three real datasets, we
have a similar observation. Moreover, we observe that in this set of experiments, MIMLELM works
better when HN is set to 200.

Appl. Sci. 2016, 6, 160 12 of 23

Table 2. The effectiveness comparison on the Image data set. AP: average precision; C: coverage;
OE: one-error; RL: ranking loss; MIMLSVM+: multi-instance multi-label support vector machine;
MIMLELM: multi-instance multi-label-extreme learning machine.

Image Evaluation Criterion
AP ↑ C↓ OE↓ RL↓

MIMLSVM+

Cost = 10−3, γ = 21 0.4999 1.2100 0.6191 0.3779
Cost = 10−2, γ = 22 0.5642 1.1201 0.5783 0.3609
Cost = 10−1, γ = 23 0.5142 1.1262 0.6888 0.3511

Cost = 1, γ = 21 0.4267 1.9808 0.7391 0.3711
Cost = 101, γ = 23 0.4705 1.9999 0.7969 0.3958
Cost = 102, γ = 25 0.3735 1.9799 0.6809 0.4513
Cost = 103, γ = 25 0.4541 2.0000 0.6950 0.3858

MIMLELM
HN = 100 0.4381 2.0000 0.8400 0.4750
HN = 200 0.5529 1.7410 0.6720 0.4109
HN = 300 0.4861 1.5700 0.8400 0.4376

Table 3. The effectiveness comparison on the Text dataset.

Text Evaluation Criterion
AP ↑ C↓ OE ↓ RL ↓

MIMLSVM+

Cost = 10−3, γ = 21 0.7563 1.0295 0.3000 0.2305
Cost = 10−2, γ = 21 0.7675 1.0405 0.2650 0.1968
Cost = 10−1, γ = 21 0.7946 1.0445 0.2650 0.2025

Cost = 1, γ = 21 0.7679 1.0145 0.2600 0.1978
Cost = 101, γ = 21 0.7807 1.0041 0.2400 0.1940
Cost = 102, γ = 21 0.7763 1.0450 0.2450 0.1953
Cost = 103, γ = 21 0.7801 1.0245 0.2350 0.1970

MIMLELM
HN = 100 0.7476 1.0670 0.3540 0.2075
HN = 200 0.7492 1.0928 0.3409 0.2132
HN = 300 0.7554 1.0365 0.3443 0.2023

Table 4. The effectiveness comparison on the Geobacter sulfurreducens (Geob.) dataset.

Geobacter Sulfurreducens Evaluation Criterion
AP ↑ C↓ OE↓ RL↓

MIMLSVM+

Cost = 10−3, γ = 25 0.6099 1.5122 0.5583 0.2284
Cost = 10−2, γ = 24 0.6529 1.2439 0.5341 0.2488
Cost = 10−1, γ = 22 0.6871 1.0488 0.4585 0.1343

Cost = 1, γ = 25 0.6755 1.0732 0.4609 0.1873
Cost = 101, γ = 23 0.6311 1.1707 0.5097 0.1742
Cost = 102, γ = 25 0.6733 1.1219 0.4854 0.2187
Cost = 103, γ = 21 0.6268 1.2195 0.5097 0.2122

MIMLELM
HN = 100 0.6438 1.3902 0.5707 0.2151
HN = 200 0.6649 1.3720 0.5390 0.2112
HN = 300 0.6495 1.4025 0.5695 0.2142

Appl. Sci. 2016, 6, 160 13 of 23

Table 5. The effectiveness comparison on the Azotobacter vinelandii (Azoto.) dataset.

Azotobacter Vinelandii Evaluation Criterion
AP↑ C↓ OE↓ RL↓

MIMLSVM+

Cost = 10−3, γ = 23 0.5452 1.3171 0.6341 0.2679
Cost = 10−2, γ = 22 0.5652 1.0732 0.6829 0.2312
Cost = 10−1, γ = 23 0.6863 1.1707 0.5854 0.1927

Cost = 1, γ = 21 0.5680 1.0488 0.6097 0.3301
Cost = 101, γ = 24 0.6456 1.0244 0.6160 0.2435
Cost = 102, γ = 25 0.5308 1.9512 0.7317 0.2150
Cost = 103, γ = 24 0.5380 1.9756 0.6829 0.2191

MIMLELM
HN = 100 0.6453 1.4732 0.6414 0.2292
HN = 200 0.6622 1.3610 0.6658 0.2129
HN = 300 0.6574 1.4585 0.6366 0.2318

Moreover, we conduct another set of experiments to gradually evaluate the effect
of each contribution in MIMLELM. That is, we first modify MIMLSVM+ to include the
automatic method for k, then use ELM instead of SVM and then include the genetic
algorithm-based weights assignment. The effectiveness of each option is gradually tested
on four real datasets using our evaluation criteria. The results are shown in Figure
4a–d, where SVM denotes the original MIMLSVM+ [5], SVM+k denotes the modified
MIMLSVM+ including the automatic method for k, ELM+k denotes the usage of ELM
instead of SVM in SVM+k and ELM+k+w denotes ELM+k, further including the genetic
algorithm-based weights assignment. As seen from Figure 4a–d, the options of including
the automatic method for k and the genetic algorithm-based weights assignment can make
the four evaluation criteria better, while the usage of ELM instead of SVM in SVM+k slightly reduces
the effectiveness. Since ELM can reach a comparable effectiveness as SVM at a much faster
learning speed, it is the best option to combine the three contributions in terms of both efficiency
and effectiveness.

 0

 0.2

 0.4

 0.6

 0.8

 1

Azoto.Geobo.TextImage

A
P

Datasets

SVM
SVM+k

ELM
ELM+k+w

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Azoto.Geobo.TextImage

C

Datasets

SVM
SVM+k
ELM+k

ELM+k+w

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

Azoto.Geobo.TextImage

O
E

Datasets

SVM
SVM+k
ELM+k

ELM+k+w

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Azoto.Geobo.TextImage

R
L

Datasets

SVM
SVM+k
ELM+k

ELM+k+w

(d)

Figure 4. Gradual effectiveness evaluation of each contribution in Multi-instance Multi-label
with Extreme Learning Machine (MIMLELM). (a) Gradual evaluation on average precision (AP);
(b) gradual evaluation on converage (C); (c) gradual evaluation on one-error (OE); (d) gradual
evaluation on ranking loss (RL).

Appl. Sci. 2016, 6, 160 14 of 23

As mentioned, we are the first to utilize ELM in the MIML problem. In this sense, it is more
suitable to consider the proposed MIML-ELM as a framework addressing MIML by ELM. In other
words, any better variation of ELM can be integrated into this framework to improve the effectiveness
of the original one. For example, some recently-proposed methods, RELM [46], MCVELM [47],
KELM [48], DropELM [49] and GEELM [50], can be integrated into this framework to improve
the effectiveness of MIMLELM. In this subsection, we conducted a special set of experiments to
check how the effectiveness of the proposed method could be further improved by utilizing other
ELM learning processes instead of the original one. In particular, we replaced ELM exploited in our
method by RELM [46], MCVELM [47], KELM [48], DropELM [49] and GEELM [50], respectively.
The results of the effectiveness comparison on four different datasets are shown in Tables 6–9,
respectively. As expected, the results indicates that the effectiveness of our method can be further
improved by utilizing other ELM learning processes instead of the original one.

As mentioned, we are the first to utilize ELM in the MIML problem. In this sense, it is more
suitable to consider the proposed MIML-ELM as a framework addressing MIML by ELM. In other
words, any better variation of ELM can be integrated into this framework to improve the effectiveness
of the original one. For example, some recently-proposed methods, RELM [46], MCVELM [47],
KELM [48], DropELM [49] and GEELM [50], can be integrated into this framework to improve
the effectiveness of MIML-ELM. In this subsection, we conducted a special set of experiments to
check how the effectiveness of the proposed method could be further improved by utilizing other
ELM learning processes instead of the original one. In particular, we replaced ELM exploited in our
method by RELM [46], MCVELM [47], KELM [48], DropELM [49] and GEELM [50], respectively.
The results of the effectiveness comparison on four different datasets are shown in Tables 6–9,
respectively. As expected, the results indicate that the effectiveness of our method can be further
improved by utilizing other ELM learning processes instead of the original one.

Table 6. The effectiveness comparison of Extreme Learning Machine (ELM)and its variants on
the Image dataset.

Image Evaluation Criterion
AP↑ C↓ OE↓ RL↓

ELM 0.5529 1.7410 0.6720 0.4109
RELM 0.7141 1.2325 0.4757 0.2909

MCVELM 0.7150 1.2239 0.4724 0.2885
KELM 0.7757 1.1346 0.4379 0.2678

DropELM 0.7814 1.1261 0.4347 0.2568
GEELM 0.7781 1.1312 0.4362 0.2667

Table 7. The effectiveness comparison of ELM and its variants on the Text dataset.

Text Evaluation Criterion
AP↑ C↓ OE↓ RL↓

ELM 0.7492 1.0928 0.3409 0.2132
RELM 0.7857 1.0420 0.3251 0.2033

MCVELM 0.7959 1.0286 0.3209 0.2007
KELM 0.8019 1.0209 0.3185 0.1992

DropELM 0.8113 1.0091 0.3047 0.1906
GEELM 0.7979 1.0260 0.3198 0.2000

Appl. Sci. 2016, 6, 160 15 of 23

Table 8. The effectiveness comparison of ELM and its variants on the Geobacter
sulfurreducens dataset.

Geob. Evaluation Criterion
AP↑ C ↓ OE ↓ RL ↓

ELM 0.6649 1.3720 0.5390 0.2112
RELM 0.7818 1.1668 0.4584 0.1796

MCVELM 0.7892 1.1559 0.4150 0.1626
KELM 0.8088 1.1279 0.4049 0.1586

DropELM 0.8107 1.1253 0.4020 0.1582
GEELM 0.7933 1.1499 0.4109 0.1617

Table 9. The effectiveness comparison of ELM and its variants on the Azotobacter vinelandii dataset.

Azoto. Evaluation Criterion
AP↑ C↓ OE↓ RL↓

ELM 0.6622 1.3610 0.6658 0.2129
RELM 0.7928 1.1368 0.5561 0.1778

MCVELM 0.7968 1.1235 0.5533 0.1757
KELM 0.8346 1.0907 0.5283 0.1617

DropELM 0.8524 1.0679 0.5172 0.1583
GEELM 0.7997 1.1194 0.5513 0.1650

4.4. Efficiency

In this series of experiments, we study the efficiency of MIMLELM by testing its scalability.
That is, each dataset is replicated different numbers of times, and then, we observe how the training
time and the testing time vary with the data size increasing. Again, MIMLSVM+ is utilized as
the competitor. Similarly, the MIMLSVM+ algorithm is implemented with a Gaussian kernel, while
the penalty factor cost is set from 10−3, 10−2, . . ., 103. The MIMLELM is implemented with
the number of hidden layer nodes set to be 100, 200 and 300, respectively.

The experimental results are given in Figures 5–8. As we observed, when the data size is small,
the efficiency difference between MIMLSVM+ and MIMLELM is not very significant. However, as
the data size increases, the superiority of MIMLELM becomes more and more significant. This case
is particularly evident in terms of the testing time. In the Image dataset, the dataset is replicated
0.5–2 times with the step size set to be 0.5. When the number of copies is two, the efficiency
improvement could be up to one 92.5% (from about 41.2 s down to about 21.4 s). In the Text dataset,
the dataset is replicated 0.5–2 times with the step size set to be 0.5. When the number of copies is
two, the efficiency improvement could be even up to 223.3% (from about 23.6 s down to about 7.3 s).
In the Geobacter sulfurreducens dataset, the dataset is replicated 1–5 times with the step size set to
be 1. When the number of copies is five, the efficiency improvement could be up to 82.4% (from about
3.1 s down to about 1.7 s). In the Azotobacter vinelandii dataset, the dataset is replicated 1–5 times
with the step size set to be one. When the number of copies is five, the efficiency improvement could
be up to 84.2% (from about 3.5 s down to about 1.9 s).

Appl. Sci. 2016, 6, 160 16 of 23

 0

 200

 400

 600

 800

 1000

 1200

21.510.5

tr
ai

ni
ng

 ti
m

e(
s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10
MIMLELM with HN=100

MIMLELM with HN=1000

(a)

 0

 10

 20

 30

 40

 50

 60

 70

21.510.5

te
st

in
g

tim
e(

s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10
MIMLELM with HN=100

MIMLELM with HN=1000

(b)

Figure 5. The efficiency comparison on the Image dataset. (a) The comparison of the training time;
(b) the comparison of the testing time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

21.510.5

tr
ai

ni
ng

 ti
m

e(
s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10
MIMLELM with HN=100

MIMLELM with HN=1000

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

21.510.5

te
st

in
g

tim
e(

s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10
MIMLELM with HN=100

MIMLELM with HN=1000

(b)

Figure 6. The efficiency comparison on the Text dataset. (a) The comparison of the training time;
(b) the comparison of the testing time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

54321

tr
ai

ni
ng

 ti
m

e(
s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10
MIMLELM with HN=100

MIMLELM with HN=1000

(a)

 0

 1

 2

 3

 4

 5

 6

54321

te
st

in
g

tim
e(

s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10
MIMLELM with HN=100

MIMLELM with HN=1000

(b)

Figure 7. The efficiency comparison on the Geobacter sulfurreducens dataset. (a) The comparison of
the training time; (b) the comparison of the testing time.

Appl. Sci. 2016, 6, 160 17 of 23

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

54321

tr
ai

ni
ng

 ti
m

e(
s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10
MIMLELM with HN=100

MIMLELM with HN=1000

(a)

 0

 1

 2

 3

 4

 5

 6

54321

te
st

in
g

tim
e(

s)

data scale

MIMLSVM+ with c=10-3,γ=21

MIMLSVM+ with c=10-2,γ=22

MIMLSVM+ with c=10-1,γ=23

MIMLSVM+ with c=100,γ=21

MIMLSVM+ with c=101,γ=23

MIMLSVM+ with c=102,γ=25

MIMLSVM+ with c=103,γ=25

MIMLELM with HN=10
MIMLELM with HN=100

MIMLELM with HN=1000

(b)

Figure 8. The efficiency comparison on the Azotobacter vinelandii dataset. (a) The comparison of
the training time; (b) the comparison of the testing time.

4.5. Statistical Significance of the Results

For the purpose of exploring the statistical significance of the results, we performed
a nonparametric Friedman test followed by a Holm post hoc test, as advised by Demsar [45] to
statistically compare algorithms on multiple datasets. Thus, the Friedman and the Holm test results
are reported, as well.

The Friedman test [51] can be used to compare k algorithms over N datasets by ranking each
algorithm on each dataset separately. The algorithm obtaining the best performance gets the rank
of 1, the second best ranks 2, and so on. In case of ties, average ranks are assigned. Then, the average
ranks of all algorithms on all datasets is calculated and compared. If the null hypothesis, which is
all algorithms are performing equivalently, is rejected under the Friedman test statistic, post hoc tests,
such as the Holm test [52], can be used to determine which algorithms perform statistically different.
When all classifiers are compared with a control classifier and p1≤p2≤. . .≤pk−1, Holm’s step-down
procedure starts with the most significant p value. If p1 is below α/(k − 1), the corresponding
hypothesis is rejected, and we are allowed to compare p2 to α/(k − 2). If the second hypothesis is
rejected, the test proceeds with the third, and so on. As soon as a certain null hypothesis cannot be
rejected, all of the remaining hypotheses are retained, as well.

In Figure 4a–d, we have conducted a set of experiments to gradually evaluate the effect of each
contribution in MIMLELM. That is, we first modify MIMLSVM+ to include the automatic method for
k, then use ELM instead of SVM and then include the genetic algorithm-based weights assignment.
The effectiveness of each option is gradually tested on four real datasets using four evaluation criteria.
In order to further explore if the improvements are significantly different, we performed a Friedman
test followed by a Holm post hoc test. In particular, Table 10 shows the rankings of each contribution
on each dataset over criterion C. According to the rankings, we computed χ2

F = 12× 4
4× 5 × [(42 + 2.252 +

2.752 + 12)− 4× 52

4] = 11.1 and FF = 3× 11.1
4× 3− 11.1 = 37. With four algorithms and four datasets, FF is

distributed according to the F distribution with 4 − 1 = 3 and (4 − 1) × (4 − 1) = 9 degrees of
freedom. The critical value of F(3, 9) for α = 0.05 is 3.86, so we reject the null-hypothesis. That is,
the Friedman test reports a significant difference among the four methods. In what follows, we choose
ELM+k+w as the control classifier and proceed with a Holm post hoc test. As shown in Table 11,

with SE=
√

4× 5
6× 4 = 0.913, the Holm procedure rejects the first hypothesis, since the corresponding p

value is smaller than the adjusted α. Thus, it is statically believed that our method, i.e., ELM+k+w,
has a significant performance improvement of criterion C over SVM. The similar cases can be found
when the tests are conducted on the other three criteria. Limited by space, we do not show them here.

In Tables 2–5, we compared the effectiveness of MIMLSVM+ and MIMLELM with different
condition settings on four criteria, where, for a fair performance comparison, MIMLSVM+ is modified
to include the automatic method for k and the genetic algorithm-based weights assignment as

Appl. Sci. 2016, 6, 160 18 of 23

MIMLELM does. Table 12 shows the rankings of 10 classifiers on each dataset over criterion C.
According to the rankings, we computed χ2

F = 12× 4
10× 11 × [(5.52 + 42 + 3.52 + 3.252 + 3.52 + 6.52 +

6.8752 + 8.6252 + 72 + 6.252)− 10× 112

4]≈ 13.43 and FF = 3× 13.43
4× 9− 13.43 ≈ 1.79. With 10 classifiers and four

datasets, FF is distributed according to the F distribution with 10−1 = 9 and (10 − 1) × (4 − 1) = 27
degrees of freedom. The critical value of F(9, 27) for α = 0.05 is 2.25. Thus, as expected, we could not
reject the null-hypothesis. That is, the Friedman test reports that there is not a significant difference
among the ten methods on criterion C. This is because what we proposed in this paper is a framework.
Equipped with the framework, the effectiveness of MIML can be improved further no matter whether
SVM or ELM is explored. Since ELM is comparable to SVM on effectiveness [6,32,37], MIMLELM is
certainly comparable to MIMLSVM+ on effectiveness. This confirms the general effectiveness of the
proposed framework. Similar cases can be found when the tests are conducted on the other three
criteria. Limited by space, we do not show them here.

Table 10. Friedman test of the gradual effectiveness evaluation on criterion C.

C↓ Image Text Geob. Azoto. average rank

SVM 2.4712(4) 2.235(4) 2.439(4) 2.317(4) 4
SVM + k 1.9257(2) 1.66(2) 1.5833(2) 1.6391(3) 2.25
ELM + k 2.1451(3) 1.7198(3) 1.6247(3) 1.6285(2) 2.75

ELM + k + w 1.741(1) 1.0928(1) 1.372(1) 1.361(1) 1

Table 11. Holm test of the gradual effectiveness evaluation on criterion C.

i Classifier z = (Ri− R0)/SE p α/(k− i)

1 SVM (4 − 1)/0.913 ≈ 3.286 0.0014 0.017
2 ELM + k (2.75 − 1)/0.913 ≈ 1.917 0.0562 0.025
3 SVM + k (2.25 − 1)/0.913 ≈ 1.369 0.1706 0.05

In Figures 5–8, we studied the training time and the testing time of MIMLSVM+ and MIMLELM
for the efficiency comparison, respectively. In order to further explore if the differences are significant,
we performed a Friedman test followed by a Holm post hoc test. In particular, Table 13 shows the
rankings of 10 classifiers on each dataset over training time. According to the rankings, we computed
χ2

F = 12× 4
10× 11×[(82 + 5.752 + 6.52 + 7.752 + 5.52 + 7.252 + 8.252 + 1.52 + 2.752 + 1.752)− 10× 112

4]≈ 26.45
and FF = 3× 26.45

4× 9− 26.45 ≈ 8.31. With ten classifiers and four datasets, FF is distributed according to
the F distribution with 10 − 1 = 9 and (10 − 1) × (4 − 1) = 27 degrees of freedom. The critical
value of F(9, 27) for α = 0.05 is 2.25, so we reject the null-hypothesis. That is, the Friedman test
reports a significant difference among the ten methods. In what follows, we choose ELM with
HN = 100 as the control classifier and proceed with a Holm post hoc test. As shown in Table 14,

with SE =
√

10× 11
6× 4 = 2.141, the Holm procedure rejects the hypotheses from the first to the fourth

since the corresponding p-values are smaller than the adjusted α’s. Thus, it is statically believed
that MIMLELM with HN = 100 has a significant performance improvement of training over most of
the MIMLSVM+ classifiers. Similarly, Table 15 shows the rankings of 10 classifiers on each dataset
over testing time. According to the rankings, we computed χ2

F = 12× 4
10× 11 × [(7.52 + 6.8752 + 6.1252 +

6.252 + 6.52 + 7.52 + 8.252 + 2.1252 + 1.752 + 2.1252)− 10× 112

4] ≈ 24.55 and FF = 3× 24.55
4× 9− 24.55 ≈ 6.43.

With ten classifiers and four datasets, FF is distributed according to the F distribution with 10− 1 = 9
and (10− 1)× (4− 1) = 27 degrees of freedom. The critical value of F(9, 27) for α = 0.05 is 2.25, so
we reject the null-hypothesis. That is, the Friedman test reports a significant difference among the
ten methods. In what follows, we choose ELM with HN = 200 as the control classifier and proceed

with a Holm post hoc test. As shown in Table 16, with SE =
√

10× 11
6× 4 = 2.141, the Holm procedure

rejects the hypotheses from the first to the third since the corresponding p-values are smaller than

Appl. Sci. 2016, 6, 160 19 of 23

the adjusted α’s. Thus, it is statically believed that MIMLELM with HN = 200 has a significant
performance improvement of training over two of the MIMLSVM+ classifiers.

Table 12. Friedman test of the effectiveness comparison in Tables 2–5 on criterion C.

C↓ Image Text Geob. Azoto. average rank

MIMLSVM+

Cost = 10−3, γ = 21 1.2100(3) 1.0295(4) 1.5122(10) 1.3171(5) 5.5
Cost = 10−2, γ = 22 1.1201(1) 1.0405(6) 1.2439(6) 1.0732(3) 4
Cost = 10−1, γ = 23 1.1262(2) 1.0445(7) 1.0488(1) 1.1707(4) 3.5

Cost = 1, γ = 21 1.9808(7) 1.0145(2) 1.0732(2) 1.0488(5) 3.25
Cost = 101, γ = 23 1.9999(8) 1.0041(1) 1.1707(4) 1.0244(5) 5.5
Cost = 102, γ = 25 1.9799(6) 1.0450(8) 1.1219(3) 1.9512(9) 6.5
Cost = 103, γ = 25 2.0000(9.5) 1.0245(3) 1.2195(5) 1.9756(10) 6.875

MIMLELM
HN = 100 2.0000(9.5) 1.0670(9) 1.3902(8) 1.4732(8) 8.625
HN = 200 1.7410(5) 1.0928(10) 1.3720(7) 1.3610(6) 7
HN = 300 1.5700(4) 1.0365(5) 1.4025(9) 1.4585(7) 6.25

Table 13. Friedman test of the training time.

Training Time↓ Image Text Geob. Azoto. average rank

MIMLSVM+

Cost = 10−3, γ = 21 717.6202(10) 284.75(10) 46.582(8) 50.3727(4) 8
Cost = 10−2, γ = 22 690.1484(4) 283.86(7) 46.41(6) 50.6691(6) 5.75
Cost = 10−1, γ = 23 690.2365(5) 284.02(8) 46.27(5) 50.9343(8) 6.5

Cost = 1, γ = 21 706.2458(6) 283.65(6) 46.8(9) 51.0591(10) 7.75
Cost = 101, γ = 23 710.6634(7) 283.21(4) 46.036(4) 50.7315(7) 5.5
Cost = 102, γ = 25 717.3216(8) 283.59(5) 46.4272(7) 50.9344(9) 7.25
Cost = 103, γ = 25 711.5548(9) 284.47(9) 46.8312(10) 50.5936(5) 8.25

MIMLELM
HN = 100 641.3661(1) 210.55(2) 38.657(2) 41.4495(1) 1.5
HN = 200 642.1002(2) 211.29(3) 38.922(3) 41.9643(3) 2.75
HN = 300 644.2047(3) 209.84(1) 38.641(1) 41.9019(2) 1.75

In summary, the proposed framework can significantly improve the effectiveness of MIML
learning. Equipped with the framework, the effectiveness of MIMLELM is comparable to that of
MIMLSVM+, while the efficiency of MIMLELM is significantly better than that of MIMLSVM+.

Table 14. Holm test of the training time.

i Classifier z = (Ri− R0)/SE p α/(k− i)

1 cost = 103, γ = 25 (8.25 − 1.5)/2.141 ≈ 3.153 0.00194 0.00556
2 cost = 10−3, γ = 21 (8 − 1.5)/2.141 ≈ 3.036 0.027 0.00625
3 cost = 100, γ = 21 (7.75 − 1.5)/2.141 ≈ 2.919 0.0036 0.00714
4 cost = 102, γ = 25 (7.25 − 1.5)/2.141 ≈ 2.686 0.0074 0.00833
5 cost = 10−1, γ = 23 (6.5 − 1.5)/2.141 ≈ 2.335 0.0198 0.00396
6 cost = 10−2, γ = 22 (5.75 − 1.5)/2.141 ≈ 1.985 0.0478 0.001195
7 cost = 101, γ = 23 (5.5 − 1.5)/2.141 ≈ 1.868 0.0628 0.0167
8 HN = 200 (2.75 − 1.5)/2.141 ≈ 0.584 0.562 0.025
9 HN = 300 (1.75 − 1.5)/2.141 ≈ 0.117 0.912 0.005

Appl. Sci. 2016, 6, 160 20 of 23

Table 15. Friedman test of the testing time.

Testing Time↓ Image Text Geob. Azoto. average rank

MIMLSVM+

Cost = 10−3, γ = 21 41.1999(8) 23.587(7) 3.0732(7.5) 3.4944(7.5) 7.5
Cost = 10−2, γ = 22 39.2343(5) 23.148(5) 3.0888(10) 3.4944(7.5) 6.875
Cost = 10−1, γ = 23 39.1066(4) 23.834(9) 3.042(4) 3.4944(7.5) 6.125

Cost = 1, γ = 21 40.0244(6) 23.615(8) 3.0576(6) 3.4788(5) 6.25
Cost = 101, γ = 23 40.8324(7) 23.012(4) 3.0732(7.5) 3.4944(7.5) 6.5
Cost = 102, γ = 25 41.3534(9) 23.465(6) 3.053(5) 3.4976(10) 7.5
Cost = 103, γ = 25 742.439(10) 23.936(10) 3.0786(9) 3.3634(4) 8.25

MIMLELM
HN = 100 28.5014(3) 7.3164(1) 1.7316(2) 1.9188(2.5) 2.125
HN = 200 26.4258(1) 7.4256(3) 1.7316(2) 1.8876(1) 1.75
HN = 300 27.0154(2) 7.3457(2) 1.7316(2) 1.9188(2.5) 2.125

Table 16. Holm test of the testing time.

i Classifier z = (Ri− R0)/SE p α/(k− i)

1 cost = 103, γ = 25 (8.25 − 1.75)/2.141 ≈ 3.036 0.0027 0.00556
2 cost = 10−3, γ = 21 (7.5 − 1.75)/2.141 ≈ 2.686 0.047 0.00625
3 cost = 102, γ = 25 (7.5 − 1.75)/2.141 ≈ 2.686 0.047 0.00714
4 cost = 10−2, γ = 22 (6.875 − 1.75)/2.141 ≈ 2.394 0.0168 0.00833
5 cost = 101, γ = 23 (6.5 − 1.75)/2.141 ≈ 2.219 0.0272 0.00396
6 cost = 1, γ = 215 (6.25 − 1.75)/2.141 ≈ 2.102 0.0358 0.001195
7 cost = 10−1, γ = 23 (6.125 − 1.75)/2.141 ≈ 2.043 0.0414 0.00167
8 HN = 100 (2.125 − 1.75)/2.141 ≈ 0.175 0.865 0.025
9 HN = 300 (2.125 − 1.75)/2.141 ≈ 0.175 0.865 0.005

5. Conclusions

MIML is a framework for learning with complicated objects and has been proven to be
effective in many applications. However, the existing two-phase MIML approaches may suffer from
the effectiveness problem arising from the user-specific cluster number and the efficiency problem
arising from the high computational cost. In this paper, we propose the MIMLELM approach to learn
with MIML examples quickly. On the one hand, the efficiency is highly improved by integrating
extreme learning machine into the MIML learning framework. To our best knowledge, we are
the first to utilize ELM in the MIML problem and to conduct the comparison of ELM and SVM on
MIML. On the other hand, we develop a method of theoretical guarantee to determine the number
of clusters automatically and to exploit a genetic algorithm-based ELM ensemble to further improve
the effectiveness.

Acknowledgments: Project supported by the National Nature Science Foundation of China (No. 61272182,
61100028, 61572117), the State Key Program of National Natural Science of China (61332014), the New
Century Excellent Talents (NCET-11-0085) and the Fundamental Research Funds for the Central Universities
(N150404008, N150402002, N130504001).

Author Contributions: Ying Yin and Yuhai Zhao conceived and designed the experiments; Chenguang Li
performed the experiments; Ying Yin, Yuhai Zhao and Bin Zhang analyzed the data; Chenguang Li contributed
reagents/materials/analysis tools; Ying Yin and Yuhai Zhao wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhou, Z.H.; Zhang, M.L. Multi-instance multi-label learning with application to scene classification.
In Advances in Neural Information Processing Systems 19; Schagolkopf, B., Platt, J., Hoffman, T., Eds.;
MIT Press: Cambridge, MA, USA, 2007; pp. 1609–1616.

Appl. Sci. 2016, 6, 160 21 of 23

2. Wu, J.; Huang, S.; Zhou, Z. Genome-wide protein function prediction through multiinstance multi-label
learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2014, 11, 891–902.

3. Dietterich, T.G.; Lathrop, R.H.; Lozano-Paaerez, T. Solving the multiple instance problem with axis-parallel
rectangles. Artif. Intell. 1997, 89, 31–71.

4. Schapire, R.E.; Singer, Y. Boostexter: A boosting-based system for text categorization. Mach. Learn. 2000,
39, 135–168.

5. Li, Y.; Ji, S.; Kumar, S.; Ye, J.; Zhou, Z. Drosophila gene expression pattern annotation through
multi-instance multi-label learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 98–112.

6. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward
neural networks. In Proceedings of International Joint Conference on Neural Networks (IJCNN2004).
Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990.

7. Chen, Y.; Bi, J.; Wang, J.Z. MILES: Multiple-instance learning via embedded instance selection. IEEE Trans.
Pattern Anal. Mach. Intell. 2006, 28, 1931–1947.

8. Chen, Y.; Wang, J.Z. Image categorization by learning and reasoning with regions. J. Mach. Learn. Res. 2004,
5, 913–939.

9. Yang, C.; Lozano-Paaerez, T. Image Database Retrieval with Multiple-Instance Learning Techniques; ICDE:
San Diego, CA, USA, 2000; pp. 233–243.

10. Zhang, Q.; Goldman, S.A.; Yu, W.; Fritts, J.E. Content-based image retrieval using multipleinstance
learning. In Proceedings of the Nineteenth International Conference (ICML 2002), University of New South
Wales, Sydney, Australia, 8–12 July 2002; pp. 682–689.

11. Andrews, S.; Tsochantaridis, I.; Hofmann, T. Support vector machines for multiple-instance learning.
In Proceedings of the Advances in Neural Information Processing Systems 15 Neural Information
Processing Systems, NIPS 2002, Vancouver, BC, Canada, 9–14 December 2002; pp. 561–568.

12. Settles, B.; Craven, M.; Ray, S. Multiple-instance active learning. In Proceedings of the Twenty-First Annual
Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007;
pp. 1289–1296.

13. Zhou, Z.; Jiang, K.; Li, M. Multi-instance learning based web mining. Appl. Intell. 2005, 22, 135–147.
14. Jorgensen, Z.; Zhou, Y.; Inge, W.M. A multiple instance learning strategy for combating good word attacks

on spam filters. J. Mach. Learn. Res. 2008, 9, 1115–1146.
15. Viola, P.A.; Platt, J.C.; Zhang, C. Multiple instance boosting for object detection. In Proceedings of the

Advances in Neural Information Processing Systems 18 Neural Information Processing Systems, NIPS 2005,
Vancouver, BC, Canada, 5–8 December 2005; pp. 1417–1424.

16. Fung, G.; Dundar, M.; Krishnapuram, B.; Rao, R.B. Multiple instance learning for computer aided diagnosis.
In Proceedings of the Twentieth Annual Conference on Advances in Neural Information Processing
Systems 19, Vancouver, BC, Canada, 4–7 December 2006; pp. 425–432.

17. Joachims, T. Text categorization with suport vector machines: Learning with many relevant features.
In Proceedings of the 10th European Conference on Machine Learning, ECML-98, Chemnitz, Germany,
21–23 April 1998; pp. 137–142.

18. Yang, Y. An evaluation of statistical approaches to text categorization. Inf. Retr. 1999, 1, 69–90.
19. Elisseeff, A.; Weston, J. A kernel method for multi-labelled classification. In Proceedings of the Advances

in Neural Information Processing Systems 14, NIPS 2001, Vancouver, BC, Canada, 3–8 December 2001;
pp. 681–687.

20. Nigam, K.; McCallum, A.; Thrun, S.; Mitchell, T.M. Text classification from labeled and unlabeled
documents using EM. Mach. Learn. 2000, 39, 103–134.

21. Liu, Y.; Jin, R.; Yang, L. Semi-supervised multi-label learning by constrained non-negative matrix
factorization. In Proceedings of the Twenty-First National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intelligence Conference, Boston, MA, USA, 16–20 July 2006;
pp. 421–426.

22. Zhang, Y.; Zhou, Z. Multi-label dimensionality reduction via dependence maximization. In Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, IL, USA,
13–17 July 2008; pp. 1503–1505.

Appl. Sci. 2016, 6, 160 22 of 23

23. Godbole, S. Sarawagi, S. Discriminative methods for multi-labeled classification. In Proceedings of
the 8th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2004,
Sydney, Australia, 26–28 May 2004; pp. 22–30.

24. Boutell, M.R.; Luo, J.; Shen, X.; Brown, C.M. Learning multi-label scene classification. Pattern Recognit.
2004, 37, 1757–1771.

25. Kang, F.; Jin, R.; Sukthankar, R. Correlated label propagation with application to multilabel learning.
In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2006), New York, NY, USA, 17–22 June 2006; pp. 1719–1726.

26. Qi, G.; Hua, X.; Rui, Y.; Tang, J.; Mei, T.; Zhang, H. Correlative multi-label video annotation. In Proceedings
of the 15th International Conference on Multimedia 2007, Augsburg, Germany, 24–29 September 2007;
pp. 17–26.

27. Barutçuoglu, Z.; Schapire, R.E.; Troyanskaya, O.G. Hierarchical multi-label prediction of gene function.
Bioinformatics 2006, 22, 830–836.

28. Brinker, K.; Fagurnkranz, J.; Hagullermeier, E. A unified model for multilabel classification and
ranking. In Proceedings of the 17th European Conference on Artificial Intelligence, Including
Prestigious Applications of Intelligent Systems (PAIS 2006), ECAI 2006, Riva del Garda, Italy,
29 August–1 September 2006; pp. 489–493.

29. Rak, R.; Kurgan, L.A.; Reformat, M. Multi-label associative classification of medical documents from
MEDLINE. In Proceedings of the Fourth International Conference on Machine Learning and Applications,
ICMLA 2005, Los Angeles, CA, USA, 15–17 December 2005.

30. Thabtah, F.A.; Cowling, P.I.; Peng, Y. MMAC: A new multi-class, multi-label associative classification
approach. In Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004),
Brighton, UK, 1–4 November 2004; pp. 217–224.

31. Zhao, X.; Wang, G.; Bi, X.; Gong, P.; Zhao, Y. XML document classification based on ELM. Neurocomputing
2011, 74, 2444–2451.

32. Zhang, R.; Huang, G.B.; Sundararajan, N.; Saratchandran, P. Multi-category classification using an
extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans. Comput.
Biol. Bioinform. 2007, 4, 485–495.

33. Wang, G.; Zhao, Y.; Wang, D. A protein secondary structure prediction framework based on the extreme
learning machine. Neurocomputing 2008, 72, 262–268.

34. Wang, D.D.; Wang, R.; Yan, H. Fast prediction of protein-protein interaction sites based on extreme learning
machines. Neurocomputing 2014, 128, 258–266.

35. Zhang, R.; Huang, G.B.; Sundararajan, N.; Saratchandran, P. Multicategory classification using an
extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans. Comput.
Biol. Bioinform.2007, 4, 485–495.

36. Yeu, C.-W.T.; Lim, M.-H.; Huang, G.-B.; Agarwal, A.; Ong, Y.-S. A new machine learning paradigm for
terrain reconstruction. IEEE Geosci. Remote Sens. Lett. 2006, 3, 382–386.

37. Huang, G.B.; Ding, X.; Zhou, H. Optimization method based extreme learning machine for classification.
Neurocomputing 2010, 74, 155–163.

38. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing
2006, 70, 489–501.

39. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723.
40. Edgar, G. Measure, Topology, and Fractal Geometry, 2nd ed.; Springer: New York, NY, USA, 2008.
41. Wang, Z.; Zhao, Y.; Wang, G.; Li, Y.; Wang, X. On extending extreme learning machine to non-redundant

synergy pattern based graph classification. Neurocomputing 2015, 149, 330–339.
42. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley:

Boston, MA, USA, 1989.
43. Zhou, Z.; Wu, J.; Jiang, Y.; Chen, S. Genetic algorithm based selective neural network ensemble.

In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001,
Seattle, DC, USA, 4–10 August 2001; pp. 797–802.

44. Srinivas, M.; Patnaik, L.M. Adaptive probabilities of crossover and mutation in genetic algorithms.
IEEE Trans. Syst. Man Cybern. 1994, 24, 656–667.

45. Demar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2009, 7, 1–30.

Appl. Sci. 2016, 6, 160 23 of 23

46. Huang, G.B.; Zhou, H.; Ding, X.; Zhang R. Extreme learning machine for regression and multiclass
classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2012, 42, 513–529.

47. Iosifidis, A.; Tefas, A.; Pitas, I. Minimum class variance extreme learning machine for human action
recognition. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 1968–1979.

48. Alexandros, I.; Anastastios, T.; Ioannis, P. On the kernel extreme learning machine classifier.
Pattern Recognit. Lett. 2015, 54, 11–17.

49. Alexandros, I.; Anastastios, T.; Ioannis P. DropELM: Fast neural network regularization with Dropout and
DropConnect. Neurocomputing 2015, 162, 57–66.

50. Alexandros, I.; Anastastios, T.; Ioannis, P. Graph embedded extreme learning machine. IEEE Trans. Cybern.
2016, 46, 311–324.

51. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings.
Ann. Math. Stat. 1939, 11, 86–92.

52. Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	The Preliminaries
	Multi-Instance Multi-Label Learning
	A Brief Introduction to ELM

	The Proposed Approach MIMLELM
	Determination of the Number of Clusters
	Transformation from MIML to SIML
	Transformation from SIML to SISL
	ELM Ensemble Based on GA
	Fitness Function
	Selection
	Crossover

	Performance Evaluation
	Datasets
	Evaluation Criteria
	Effectiveness
	Efficiency
	Statistical Significance of the Results

	Conclusions

