friried applied
o sciences

Article

A Fast Reactive Power Optimization in Distribution
Network Based on Large Random Matrix Theory and
Data Analysis

Wanxing Sheng 1, Keyan Liu !, Hongyan Pei 2, Yunhua Li 2*, Dongli Jia ! and Yinglong Diao !

1 Power distribution research department, China Electric Power Research Institute, Beijing 100192, China;

wxsheng@epri.sgcc.com.cn (W.S.); liukeyan@epri.sgce.com.cn (K.L.); jiadl@epri.sgcc.com.cn (D.].);
diaoyinglong@epri.sgcc.com.cn (Y.D.)

School of Automation Science and Electric Engineering, Beihang University, Beijing 100191, China;
peihy2012@163.com

*  Correspondence: yhli@buaa.edu.cn; Tel.: +86-10-8233-9038

Academic Editor: Huei-Chu Weng
Received: 1 April 2016; Accepted: 10 May 2016; Published: 24 May 2016

Abstract: In this paper, a reactive power optimization method based on historical data is investigated
to solve the dynamic reactive power optimization problem in distribution network. In order to reflect
the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS)
is defined to measure the degree of similarity between the loads in different days and the calculation
method of the load similarity of load random matrix (LRM) is presented. By calculating the load
similarity between the forecasting random matrix and the random matrix of historical load, the
historical reactive power optimization dispatching scheme that most matches the forecasting load
can be found for reactive power control usage. The differences of daily load curves between working
days and weekends in different seasons are considered in the proposed method. The proposed
method is tested on a standard 14 nodes distribution network with three different types of load.
The computational result demonstrates that the proposed method for reactive power optimization is
fast, feasible and effective in distribution network.

Keywords: random matrix theory; reactive power optimization; distribution network analysis;
big data

1. Introduction

Voltage control and reactive power optimization (RPO) have been identified as two of the
important operation functions in distribution network (DN). The RPO is usually implemented to get
the optimal objective by optimally controlling load ratio control transformer, step-voltage regulators,
shunt capacitors, shunt reactor, static synchronous compensator (STATCOM), etc. The minimal line
loss is often selected as the objectives.

Many researchers, in recent years, have investigated RPO in DN. An optimization approach
was proposed in [1] based on recursive mixed-integer programming method. The feature of the
proposed algorithm is to treat the capacitor or reactor compensation unit number as a discrete
variable. A mixed-integer linear programming method using convexification and linearization
was proposed in [2]. Genetic algorithm [3] and the other stochastic search algorithms are global
optimization algorithms and suitable for multi-path searching and solving problems with discrete
integer constraints. A hybrid optimization algorithm combining with improved GA and continuous
linear programming method was proposed in [4], which can obtain the global optimal solution and
reduce the computation time.
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Based on the one-day-ahead load forecasting, dynamic RPO determines the reactive power control
devices action sequence in next day, with the purpose to reduce daily network losses, improve voltage
quality and avoid excessive operation [5].

Distributed generation (DG) in DN makes RPO a more complex problem. A trust-region sequential
quadratic programming (TRSQP) method is proposed in [6] to solve the RPO problem for distribution
networks with DG. With wind power and photovoltaic power introduced into distribution network,
the effects of wind generation and photovoltaic generation have been taken into consideration in RPO
problems for DN. Uncertain wind power is considered in [7] and photovoltaic power is considered
in [8] when optimizing reactive power in DN.

The traditional RPO methods are mathematical model-based methods, and there are two levels.
One level is the derivative-based methods using sensibility matrix, Jacobi matrix, Hessian matrix,
etc. The second level is the stochastic searching algorithms based methods, such as GA, PSO, etc.
Although the traditional methods can formulate accurate mathematical model, many iterations and a
lot of time are required in the solution process.

Most previous studies on RPO mainly focused on improving the performance of mathematical
programming based and stochastic search algorithm. In addition, the load model is often treated as
several simple and fixed typical types. Little effort was focused on utilizing data analysis method on
historical data of the RPO.

With a big data method, regularity of RPO can be found to avoid time-consuming iterative
calculation and reduce computing time, improving the real-time capability. Some achievement has
been made in studies on big data applications in power system currently. In [9], a big data architecture
designed for smart grids was proposed based on random matrix theory (RMT). However, the
investigation on RPO in DN with big data technology has not yet been carried out. Exploring the
regularity in RPO from the historical data of power system, combining with the characteristics of loads
can introduce new approach in DN.

Large random matrix theory, with its advantages to deal with mass data, has already been applied
to many fields, including signal detection [10], etc. In this paper, the focus of the study is mainly
devoted to the sampled covariance matrix’s largest eigen value. Random matrix theory is a big
subject with application in many disciplines of science [11], engineering [12], communication [13]
and finance [14]. The data of power system shows considerable randomness with the influence of
weather, finance, sociocultural, etc. Thus, it is necessary to introduce random matrix theory into power
system analysis.

The amount and kind of data in our living world have been exploding. Big data analysis
will become a key basis of competition, underpinning new waves of productivity growth and
innovation [15]. As the power grid moves to smart grid, the power system has to deal with a
large amount of data collected from millions of sensors and integrate series sets of data analytics and
applications [16]. Therefore, it is necessary to introduce big data analysis technology into power grid
management. With the help of big data technology, we can make corrective, predictive, distributed
and adaptive decisions [17].

A big data RPO method based on historical data and random matrix (RM) is presented in this
paper, whose target is to solve the day-ahead RPO (DPRO) problem by combining with historical load
and dispatching scheme of reactive power control devices. Network loads are expressed in a form of
RM in this paper. Load similarity (LS) is defined to measure the degree of similarity between the loads
in different days. By computing the load similarity between the forecasting load random matrix and
the historical load random matrix, the reactive power control approach for one-day-ahead can refer to
the historical dispatching scheme of RPO.

The remainder of the paper is organized as follows. Random matrix and data model in RPO
are presented in Section 2. Section 3 presents the optimization formulation. Section 4 states the
proposed method for predicting the reactive power adjustment. Results and comparisons are provided
in Section 5 with the proposed method, using a real 10 kV distribution system. Section 6 summarizes
main contributions and conclusions.
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2. Random Matrix and Data Model in Reactive Power Optimization

2.1. Random Matrix of Loads

Large random matrix refers to the matrix including random numbers with part or all of that
elements [18]. The loads change periodically in accordance with seasons, weeks and days, and it
shows a random distribution feature with the influences of some factors, including weather condition,
temperature, humidity, etc. It is feasible to construct a RM of load to analyze the varying patterns of
load data.

RM of loads is defined as the one whose elements are nodal loads in power system. Assuming that
the nodes number is N, the load data are sampled hourly, and the daily load curve can be expressed by
a load vector with the size equaling to 24. Taking active power vector for an example, the daily load
curve of the node i can be expressed by the vector p;:

pi= (Pilz Pi2, Pi3r - Pi24)T (1)

where pi1, pi2, Pi3, ---, Piza denote the active power of the node 7 at 1:00, 2:00, 3:00, ..., 24:00,
respectively. For a network with N nodes, loads on all nodes can be expressed by a random matrix
with N x 24 dimensions, and the load random matrix of the active load can be expressed as:

P=[p.pyprs - '/PN]T ()

The reactive power vector of the node i can be expressed as q; = (41, 9i2, 9i3, - - q1'24)T, and the
load random matrix of the reactive power can be expressed as:

Q=la1a93 - qN]T ®)
2.2. Lengths and Covariance of Random Matrix of Loads

The norm of vector is important to measure the length of a vector. For a real vector
x = (x1,X2,X3, ., xm)T, assuming its Euclid norm is expressed with d, then d can be expressed as:

(4)

In order to compare the similarity of different matrices, characteristics of the length, the
distribution and the fluctuation of the matrices are measured. For the convenience of comparing
the length of random load matrices, the length of a random matrix X is defined as:

d = \Jtr(X-XT) ®)

In Equation (5), tr(- ) represents the trace of a matrix. The length of active power and the reactive
power random matrix can be respectively expressed with dp and d:

H

dp = 1/tr(P - PT ©6)

dg = 4/tr(Q- Q") @)

In the multivariate statistics analysis, the sample covariance is usually essential when calculating
some important statistics variables. The analysis of sample covariance is particularly important in
multivariate statistics. Assuming vectors x, y are two groups of random samples with Gaussian
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distributions, x = (x1, xp, x3, ..., xm)T, y = (Y1,Y2, Y3, - ym)T, then the covariance of two vectors can be
expressed as:

§\>—‘

cov(x,y)

Z —X)(yi —7) (8)

m m
where ¥, i are the average valuesof x, y,and ¥ = = > x;, 7 = L > y..
i=1 =
In order to compare the correlation between two random matrices, each matrix is treated as
a extended vector in this paper. The covariance of matrices A and B is expressed by cov(A, B).
Assuming matrices A, B are M x N dimensions matrices and A = {aij} Mxns B = {bi]-} Mxn the

covariance of A and B can be expressed as:

1 M N _
cov(A,B) = 72 Z (a;j —a)(bij — b) )

hered = 13" 3
whered = —— a
M-N5 5

2.3. Data Model of Loads

Different load types are considered in establishing the load data model. The loads include three
typical types, residential load type, commercial load type and industrial load type. In the process of
data modeling, the original data are from real load data with hourly interval of Nantucket Electric
Company [19]. The data are grouped with residential customer groups, commercial customer groups
and industrial customer groups. The historical load data of three typical loads above from 2006 to 2014
are utilized to construct the simulation load data model.

The objective of RPO in operation period is to determine the proper action sequences of reactive
power control devices one day ahead, based on load forecasting. Most studies on RPO treated load as
simple or fixed typical load types based on the load forecasting of the day ahead. Loads in different
seasons have different characteristics in the distribution and fluctuation of loads. Thus, the historical
load data, the sequence adjustment operations of reactive power devices should be considered and
utilized for the decision support of RPO. The daily load curves of residential load type, commercial
load type and industrial load type are shown in Figure 1.

25 T T

Load (MW)

L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20 22 24
Time period (Hour)

(a)

Figure 1. Cont.
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Figure 1. Three types of typical daily load curves in different seasons: (a) residential load;
(b) commercial load; and (c) industrial load.

The load data model for big data RPO can be established based on the stored historical load data
in DN. The daily load curves of the three kinds of load can be expressed with vectors pres(t), Pcom(t)
and pp,4(t), as shown in Equation (10). The maximum allowable active load of node i is p; o in a
simulation case. The maximum loads of the three kinds of load in a year are max(pres), max(pcom),
max(pyu4)- Then, the simulation load vector can be calculated as follows:

Pi,stdmgiii;(ézs) , forresidential load
pi(t) = Pi,std% ,  forcommercial load (10)
Pi,stdng%p%) , forindustrial load

wheret =1,2,3,...,365 for a year.
The active power in load random matrix is P(t) = [p;(t), p,(t), p5(t), - - ~,pN(t)]T, and the reactive
power in load random matrix is Q(t) = [g;(t),q,(t),q5(t), - - -, qn(t 1"
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2.4. Load Grouping

The daily load curves in different periods of a year have obviously different characters. A detailed
grouping of the daily load curves considering characteristics in distribution and fluctuation can narrow
the searching range and reduce time when comparing and matching loads in similarity. As shown in
Figure 1, each line of daily load curves in different seasons greatly varies.

For residential load shown in Figure 1a, daily load curves in winter and spring appear two peaks
and the evening peak appears 1 h earlier in winter than that in spring. In summer and autumn, there is
one valley appeared between 2:00 and 7:00 a.m., and one peak between 5:00 and 10:00 p.m. The peak
time lasts longer in summer than in autumn. For commercial load shown in Figure 1b, the peak
time lasts longer in winter, from 8:00 a.m. to 8:00 p-m.,, than in spring from 9:00 a.m. to 5:00 p-m.
Compared with load in winter and spring, the peak in summer and autumn is higher and it appears
the highest in autumn. For industrial load shown in Figure 1c, the load in winter and spring share
little fluctuation. The peak in summer and autumn appears from 9:00 a.m. to 9:00 p.m. Above all, the
daily load curves can be separated into four types, spring load, summer load, autumn load and winter
load, based on the different seasons.

Besides, daily load curves in workdays and weekends are different. Weekly load curves of
residential load, commercial load and industrial load are shown in Figure 2. For residential load, load
in weekend is a little lower than that in workday. While for commercial load and industrial load, load
in weekend is obviously lower than that in workday. As the difference between loads in workday and
weekend, daily load curves can be separated in two types, workday load and weekend load.

45

Residential load
Commercial load
— Industrial load

4+

Load (MW)

05r b
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Figure 2. Three types of typical weekly load curves.

3. Problem Formulation

3.1. Overview

The day-ahead RPO problem can be defined as a dynamic optimization problem. The optimization
objective is to minimize the total cost in the whole day of active power loss and the switching operation,
while keeping no constraints violation. By solving the dynamic optimization, the optimal schedule in
the coming day of switching device operation can be calculated one-day ahead.
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3.2. Objective Function

The objective is to minimize the whole day’s active power loss at the same time ensuring that no
constraint violations occur.

24
minf(u) = min Pfoss
h= 1

PIFALOSS = Z Bgl] {( ) (Vh) ZVZ-hV]-hCOSQij}
(if)e

(11)

where P} is the power loss at time /1, B represents the set of branches, and (i, j) € B denotes the two
nodes of one branch. Vih and th are voltage magnitudes of two nodes i and j at time /, respectively.
gij is the conductance value between nodes i and j. 8;; is the phase angles difference of 6; and 0;. u is
the vector containing all the control variables which is expressed as follow:

u= {ul,uzl. . ./uh,. . .,u24} (12)
where u” is the vector of RPO control variables at time %, which is expressed as follow:

uh - (ch' QCZ' QCNC’ rl/ r2/ ' TrN,) (13)

where Q’gi and Trhi are the compensation capacity of reactive power capacitor and the tap setting
of regulating transformer at time /, respectively. N, is the number of the compensator capacitors
including substation capacitors and feeder capacitors. N; is the number of regulating transformers.
The vector of state variables x is expressed as follow:

X — {xllle. I .,x24} (14)
where x" is the vector of state variables at time 1, which is expressed as follow:
= (VI VY, VR, 01,03, 01) (15)
where N is the total number of nodes.

3.3. Constraints

3.3.1. Equality Constraints
The constraint of power flow can be expressed as:
N .
Ppgi — Pai = Vi 3. Vj(Gijcosb; + Bjjsindj)
j= 1

Qpci — Qui = Vi Z i(Gijsin®;; — Bjjcosd;;)
]_

(16)

where Ppg; and Qpg; are active and reactive generation outputs, respectively; Py and Qy; are
active/reactive loads at node i, respectively; and G;; and Bj; are the real/imaginary parts of the
nodal admittance matrix, respectively.

3.3.2. Inequality Constraints

Reactive power limits of capacitors:

min < Q< QU i=1,..,N, 17)
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Switching operations constraints:

TN < T T =1, N, (18)

I

Nodal voltage constraints:
Vimin < ‘/lh g Vimax l — 1,...,N (19)

where Q™" and QM are the minimum and maximum compensation capacity of reactive power
capacitor, respectively. TM" and T/M¥ are lower/upper tap setting of regulating transformers,
respectively. Vl-min and V"® are the minimum and maximum limits of voltage magnitude in 24 h at
node i, respectively.

3.3.3. Constraints on Equipment Operations Number

Since the compensator capacitors and tap setting of regulating transformers are discrete values,
there are operations limits in order to prolong equipment life. The equipment operations number
constraints are as follows:

23

> |et- Qi <. 20)
h=1

23

Yim-n<a (21)
h=1

where C. and C; are the operations limit of compensator capacitors and tap setting of regulating
transformers, respectively.

3.4. Overall Formulation

The control variables of RPO problem include the compensator capacitors at load buses Q, tap
setting of regulating transformers units T;. The status variables include the nodal voltage V, nodal
voltage phase angle 0, efc. Taking the objectives and constraints into consideration, the RPO problem
can be expressed as follows:

minPjss = f (u,x) (22)
s.t. Geg(u,x) =0 (23)
8L < 8neg (u,x) < gu (24)

4. The Proposed Method for Predicting the Reactive Power Adjustment

4.1. Sensitivity Analysis

Sensitivity analysis is one of the commonly used power system analysis methods, based on
the power flow constraints and reflecting the mutual influence between variables by differentiation
relations. Compared with traditional analysis methods, it has advantages in power system analysis.
It transforms inter bus P-Q-V relationships into an easier form to make decisions [20]. To calculate the
active power loss sensitivity to the reactive power control variable, define the power flow constraint to
be generalized as:

g(u,v)=0 (25)

The total daily active power loss can be generalized as:

Poss = f(ur v) (26)
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When the control variable increment Au and the state variable increment are small, the quadratic
and higher terms in the Taylor expandable of Equation (25) can be ignored. The increment of g(u, v)
can be approximately expressed as:

Ag = Z—iAu + %Ax (27)

Let Ag = 0, the state variable increment can be expressed as:

_ (%\ g
Ax = — (0x> %Au (28)

The total daily active power loss increment can be formulated as:

0 0
APjss = %Au + a—iAx (29)

Combining Equation (28) and Equation (29) yields the total daily active power loss increment:

_|of _of (a7 as
APioss = lau T ox ((9x ou Au (30)
Then, the active power loss sensitivity to the control variable can be expressed as:
_f of (ag\ ' ag
S”_6u6x<6x u G

4.2. Load Similarity

In the same period of different years, the daily load curves are similar. To measure the similarity
of forecasting load and the historical load quantitatively, load similarity (LS) is defined to measure the
similarity level of the length quantitatively. To reflect the fluctuation of daily load cures in the same
network of two days, the load similarity s is defined.

According to Equations (2) and (3), the historical load and forecasting load of the day ahead can
be represented with random matrix. Py and Qp, respectively, represent the historical active load and
reactive load. Pr and Qr, respectively, represent the active load and reactive load of the day ahead.

Pr , Ap = Pr Combining with the method to
Qu Qr

obtain the length of the matrix in Equation (5) and the method to obtain the covariance of random
matrix in Equation (9), the load similarity can be listed as:

s — <1 _ |dAH - dAF> COV(AH,AF) (32)

Structure the load augmented matrix Ay =

da, +da, \/cov(AH,AH)~\/cov(AF,AF)
‘dAHfdAF‘ cov(Ay,Af) T
where 0 < 1— Tay Fa, <1,-1< Jeov (i, AH)"LI \/CZ A A < 1, so the load similarity ranges from

-1 to 1. As load similarity s approaches 1, the similarity of matrix Ay and Af rises, indicating the
similarity of historical load and forecasting load rises. Only when Ay = Ar, load similarity iss = 1,
indicating historical load and forecasting load are the same.

4.3. Reactive Power Optimization Method Based on Big Data

The big data reactive power optimization (BDO) method presented in this paper is targeted to
solve the dynamic RPO problem in distribution network. It optimizes dispatching scheme of reactive
power control devices of the day ahead, based on forecasting load, reducing active power losses
and making voltage quality better. Compared with the traditional optimization method based on
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exact mathematical models, the big data RPO method relies on the historical RPO empirical data.
By calculating the load similarity between the forecasting load random matrix and the historical load
random matrix, dispatching scheme of the day ahead can be obtain from the best matching historical
RPO dispatching scheme.

4.3.1. Data Preparation

(a) Obtain the forecasting load data of the day ahead and establish the forecasting load random
matrix Pr, Qr according to Equations(2) and (3). Then, establish the forecasting load augmented
matrix Ar.

(b) Obtain the historical load data of the distribution network in recent years and establish the
historical load augmented matrix Ag(t) of each day, wheret = 1,2,3,- - -, L and L stands for the total
number of days. Then, obtain the reactive power control devices dispatching scheme of each day,
including the sequence of tap settings and the sequence of capacitor capacities in 24 h.

(c) Divide the historical load augmented matrices into four groups according to seasons, as shown
in Figure 3. Then, divide the historical load augmented matrices for each season into two subgroups,
workdays and weekends; not that holidays are treated as weekends. Define A as the seasonal grouping
property and p as weekday grouping property. Define c(A, pt) as the subset of t after the grouping
according to Figure 3. The groups of load are shown in Table 1.

Table 1. Groups of load.

c(A, 1) Workday, 1 =1 Weekend, 1 =1
Spring, A =1 tec(1,1) tec(1,2)
Summer, A = 2 tec(2,1) tec(2,2)
Autumn, A =3 tec(3,1) tec(3,2)
Winter, A = 4 tec(4,1) tec(4,2)

e e — S = —
2006 2007 | . 2013 2014

Load data in different years

S —
Load database

Spring Summer Autumn Winter
workday m workday m workday

weekend m weekend m weekend

Figure 3. Load grouping process.

4.3.2. Load Similarity Matching

The big data RPO method is presented in detail as follows:
Step 1: Establish the forecasting load augmented matrix of the day ahead, based on the forecasting
load. According to the date of the day ahead, determine the load grouping properties A and .
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Step 2: Based on grouping properties, select the group f € c(A, i) and establish the corresponding
historical load augmented matrices Ay (t), where t € c(A, p).

Step3: According to Equation (32), calculate the load similarity s(¢) of historical load augmented
matrix Ay (t) and forecasting load augmented matrix Ar, when t € ¢(A, u).

Step 4: According to Equation (33), the best matching day t = fmax can be found when the load
similarity becomes the maximum.

S(tmax) = max[s(t)], t € c(A, ) (33)

Step 5: Set the minimum load similarity margin sp;, based on experience.

Step 6: Compare the largest load similarity s(fmax) with the minimum load similarity margin syin.

Step 7: If s(tmax) = Smin, the historical load of the day with date f = tmax and forecasting load
have high similarity. The reactive power control devices dispatching scheme can be obtained from the
historical sequence of tap setting and sequence of compensation capacity.

Step 8: If s(tmax) < Smin, the historical load of the day with date t = ty,x and forecasting load
have low similarity. The reactive power control devices dispatching scheme of the day ahead should
be calculated with a fine adjustment method based on sensitivity analysis.

Step 9: Store the RPO data into database including the forecasting load and the reactive power
control devices dispatching scheme.

The flow diagram of the big data RPO method is shown in Figure 4.

Establish the forcasting load
augmented matrix 4,.,
Set the load property A4, u

Establish the historical load augmented matrix Historical load I
A, (1), tec(A,p) database

Calculate the load similarity s(z)
between previous load and estimated load

v

Find the maximum load similarity
$(t ) = max[s(2)]

Forcasting load

No

Adjustment based on
sensitivity analysis

Yes

Find the best matched historical reactive power control devices
Change-sequences  u(z,, ) -

-

Obtain reactive power optimization dispatching scheme

Store the load and

P optimization dispatching
1 1 1 1 24 24 24 24

U= (OOl T s Ty ooy Q2o Q2 T2 T2 ) scheme

Figure 4. Fine adjustment method based on sensitivity analysis.
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4.3.3. Fine Adjustment Method Based on Sensitivity Analysis

When the load similarity between the forecasting load augmented matrix Ar and the historical
load augmented matrix Ay is smaller than the minimum load similarity margin syn, the reactive
power control devices dispatching scheme cannot be achieved by the load similarity matching directly.
Then, a fine adjustment method based on sensitivity analysis is required because the forecasting
load and the historical load share little similarity. Based on Equation (31), the total daily active
power loss sensitivity to the control variable can be achieved. To reduce the total daily active power
loss, the increment should satisfy the constraint AP,,ss < 0 during the fine adjustment processes.
According to Equation (30), the sensitivity and control variable increment should satisfy the following
inequalities constraints:

(34)

S, <0,Au>0
S, >0,Au<0

Based on Equation (34), in order to adjust the action moment of the control devices only without
increasing the actions of the control devices, the control variable increment can be calculate according
to Algorithm 1.

Algorithm 1. Control variable increment calculation rules

if the sensitivity of active loss to control variable S, < 0

h+1 or uh > uh—l

ifu" > u
control variable increment Au" = max(u+1,u
end if

else if the sensitivity of active loss to control variable S, > 0
h+1 h h—1

h—l) _ uh

if ul < u

oru’ <u
control variable increment Au” = min(uhH, uhil) —ul
end if
Else control variable increment Au’ = 0

end if

With the control variable increment calculation rules, the control variable fine adjustment method
can be presented as follow:

Step 1: According to reactive power control devices dispatching scheme achieved by load
similarity matching, initialize the control variable uZ, where = 1,2,3,...,24. Let the iteration
number k = 1.

Step 2: Calculate the reactive power loss Py, x when the control variable is u

Step 3: Calculate the active power loss sensitivity S, x to the control variable.

Step 4: According to the control variable increment calculation rules, calculate the control variable
increment AuZ.

h
e

Step 5: Update the control variable by uZ = ufj + AuZ and calculate the new active power
loss Ploss,k+l-

Step 6: If Piogsrr1 < Piossks let k = k + 1 and continue the iteration process to Step 3.
Otherwise, output the final control variable u’,j.

The computing flow chart of the he control variable uZ is shown in Figure 5.
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Initialize control variable u, ,

k=1

v

‘ Calculate active power loss £, , ‘

>¢

‘ Calculate sensitivity S, , ‘

v

f=k+1 Calclulate control variable
A increment  Au,
v
Update control variable
=t + B

Calculate active power loss £ 4.,

P

loss,k+1

<P

loss,k

Output final control variable u

Figure 5. Flow chart of control variable fine adjustment method.

5. Experiments and Results

5.1. Experiments Setting and Descriptions

To obtain the effectiveness of the proposed method, a standard DN test system is chosen to test
based on [21]. The single-line diagram of the DN test system is shown in Figure 6. There are 14 nodes
in this system with three feeders. The reactive power devices are one ULTC, one substation capacitor
and three feeder capacitors in the system, whose configuration information is shown in Table 2.

1 2 3 4 5

A\ Residential Load ® A L] L

|
l:| Commercial Load Il Il = === l<L

O Industrial Load

= Cy: 5x1.5 MVar
0 6 7 8 9 10

A I A & @

v eed BLETEERS ST S B

70/10 kV = Cpy: 5x1.5 MVar
ULTC:32 taps )

gtk ‘% ”ﬁ b

Cs: 3x2.5 MVar = Cps: 4x1.5 MVar

Figure 6. Test case of standard 14-node system.
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Table 2. Configuration of reactive power devices.

Device Setting

ULTC 70/10 kV, —10% to 10% regulation with 32 steps
Cs Substation capacitors: 2.5 Mvar each
Cr Feeder capacitors: 1.5 Mvar each

In the test system, the nodes are separated into three types, residential load type, commercial
load type and industrial load type (Table 3). The historical load data used in the test are from
practical hourly load data collected by Nantucket Electric Company. Based on the load data model
presented in Section 2, the simulation load data are established with the practical load for nine years
from 2006 to 2014 according to Equation (10). The data of the years from 2006 to 2013 are treated as
historical load. Suppose load forecasting has been accurately completed and ignore the load forecasting
deviation. The data of 2014 can be used to test the method. An improved multi-population genetic
algorithm (MGA) is chosen to obtain the historical RPO dispatching scheme based on the simulation
load. Then, the history data including the sequence of tap setting actions and capacitor capacities
are available.

Table 3. Load types.

Load Type Node
Residential load 3,6,8,14
Commercial load 4,5,7,9,13
Industrial load 2,10,11,12

5.2. Experiment on Standard Test Case

5.2.1. Calculation of Minimum Load Similarity Margin

The minimum load similarity margin sy, is a parameter to affect the similarity matching accuracy.
To determine sp,n, 365 load matrices of one year are chosen to be tested. Define Pjys;p164 as the active
power loss after optimized by the MGA method and Pj,sppo as that after optimized by the BDO
method without fine adjustment. To compare the active power losses of two methods, a factor named
loss error is defined as follow:

P — P
lossBDO lossMGA % 100% (35)

err =
PlossMGA

Figure 7 shows the distribution of load similarity and loss error. As seen from Figure 7, the loss
errors are consistently lower than 1%. Most of the points are centralized at the sector area divided
by the two lines through point (0, 1). The point distributions approach high density when close to
point (0, 1). As shown on Figure 7, the loss errors are lower than 0.5% when the load similarities are
larger than 0.95. Twenty groups of optimization results are shown in Table 4. Compared with the
optimization result of MGA, the active power losses of BDO are larger than those of MGA, but the loss
errors are lower than 1%, which is acceptable. Thus, the minimum load similarity margin can be set to
0.95 in this paper.

5.2.2. Three test cases

Case 1: Test of a Random Day

A workday in summer with heavy load is chosen to be tested. During the experiment procedure,
we set the load property A = 2 for summer, p = 1 for workday and the minimum load similarity
margin Spyin = 0.95.
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During the experiment, the maximum load similarity is s(fmax) = 0.9684 > sin, so the historical
RPO dispatching scheme of date tmax can be used on the tested day without fine adjustment.
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Load similarity value

Figure 7. Distribution of load similarity and loss error.

Table 4. Optimization result of MGA (multi-population genetic algorithm) and BDO (big data reactive
power optimization) without fine adjustment.

No. Loss of MGA (MWh) Loss of BDO (MWh) Similarity Error (%)

1 7.9886 7.9971 0.9741 0.1074
2 7.8271 7.8406 0.8888 0.1734
3 15.3140 15.3225 0.9779 0.0561
4 8.5332 8.5356 0.9618 0.0282
5 7.1424 7.1453 0.9731 0.0408
6 11.5872 11.6022 0.9595 0.1288
7 7.4006 7.4100 0.9332 0.1268
8 15.1935 15.2026 0.9780 0.0599
9 8.6196 8.6207 0.9856 0.0131
10 14.0853 14.0928 0.9857 0.0529
11 8.9968 8.9973 0.9557 0.0054
12 8.7716 8.7723 0.9597 0.0080
13 10.5138 10.5196 0.9754 0.0551
14 7.0980 7.0980 0.9688 0.0000
15 7.3734 7.3806 0.9382 0.0976
16 6.6822 6.6869 0.9509 0.0700
17 9.0290 9.0409 0.9552 0.1311
18 9.4201 9.4521 0.9515 0.3393
19 8.9582 8.9799 0.9665 0.2428
20 8.0961 8.1206 0.9350 0.3029

Most of the reactive power control device action sequences by BDO and MGA are the same,
except some actions of Cr; and Cp; at several points shown in Figure 8a,b. The optimization results of
the selected day are shown in Table 5.
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Based on the results of BDO and MGA, as shown in Table 5, the comparison of the two methods
can be presented as follows. In the aspect of active power loss, the BDO method achieves a little larger
active power loss than the MGA method. The loss error is 2.76%, which is acceptable in engineering
application under undemanding condition. In the aspect of device action times, the BDO method can
spend less action times than the MGA method, which can prolong the service life of the devices. In the
aspect of computation time, the BDO method can achieve the optimization result within 0.5 s, while
the computation time of MGA method lasts as long as 141.6 s. It is concluded that the BDO method
can be a fast RPO method.
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Figure 8. Capacities of capacitor units of different methods: (a) capacitor unit Cp; at Node 4; and

(b) capacitor unit Cp, at Node 9.

Table 5. Optimization results of a random day.

Optimization Method Action Times Loss (MWh)  Computing Time (s)

ULTC Cg Cr1 Cp Cr3

MGA 4 2 2 2 2 14.4631 141.6
BDO 4 2 1 2 2 14.4805 0.283
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Comparing the optimization results of BDO method and MGA method, the differences appear at
the feeder capacitor units Cp; and Cpp, as shown in Figure 8a,b. The BDO method shows less action
times at Cp; and presents less compensation capacity at Cp, compared with the MGA method.

Case 2: Test of Some Random Days

In order to compare performances of BDO and MGA, 20 random days are chosen to be tested.
The optimization results are shown in Table 6, in which the losses of BDO (a) and BDO (b) stand for
the losses before and after the application of control variables fine adjustment method, respectively.

Table 6. Optimization results of 20 random days.

Load Loss (MWh) Loss Computing Time (s)

No. Similarity $(fmax) > Smin Error (%)
MGA BDO (a) BDO (b) MGA BDO
1 0.9657 Yes 7.2708 7.2710 - 0.0020 138.91 0.2473
2 0.9682 Yes 7.3735 7.3747 - 0.0153 133.34 0.2810
3 0.9536 Yes 7.8297 7.8472 - 0.2241 155.77 0.2966
4 0.9332 No 7.4009 7.4017 7.4012 0.0048 155.51 0.3130
5 0.9465 No 7.4885 7.4908 7.4897 0.0162 108.40 0.3263
6 0.9668 Yes 6.1113 6.1120 - 0.0127 141.80 0.2826
7 0.9797 Yes 7.3538 7.3563 - 0.0334 136.40 0.2353
8 0.9787 Yes 8.0612 8.0658 - 0.0581 168.11 0.2577
9 0.9670 Yes 9.4710 9.4823 - 0.1193 186.73 0.2482
10 0.9264 No 13.3107  13.3258 13.2658 —0.3370 187.37 0.3505
11 0.9852 Yes 14.9465 14.9511 - 0.0304 108.45 0.2615
12 0.9796 Yes 13.0150  13.0156 - 0.0046 146.09 0.3024
13 0.9358 No 14.7954  14.8173 14.7873 —0.0550 94.44 0.2742
14 0.9399 No 8.6167 8.6319 8.6119 —0.0546 98.46 0.3067
15 0.9783 Yes 9.6760 9.6763 - 0.0030 142.73 0.2571
16 0.9802 Yes 9.0971 9.1012 - 0.0456 204.31 0.2379
17 0.9509 Yes 6.6868 6.6906 - 0.0571 112.21 0.2373
18 0.9765 Yes 8.3112 8.3162 - 0.0599 157.86 0.2946
19 0.9632 Yes 10.3017  10.3087 - 0.0674 133.98 0.2747
20 0.9765 Yes 6.9651 6.9654 - 0.0045 187.69 0.2741

As shown in Table 6, there are five days requiring fine adjustment with similarities smaller than
0.95 and another 15 days obtaining the optimization results simply by similarity matching. The largest
loss error is 0.2241%, which means the BDO method can obtain a similar result to the MGA method.
There are negative loss errors, which mean the BDO method may obtain a more excellent result than
the MGA method.

Case 3: Test of Typical Days

Based on the load grouping process shown in Figure 3, typical days of different categories are
chosen to be tested among workdays and weekends in different seasons. Both the BDO method and
the MGA method are used to obtain the optimization results. As shown in Table 7, though the losses
by the BDO method are a little larger than those by the MGA method, it is acceptable within the range
of allowable error. The dates of matched historical day are in a range of the nearest five years, which
means we can select historical data of only the last five years when choosing historical data.



Appl. Sci. 2016, 6, 158 18 of 19
Table 7. Optimization results of typical days.
Load Property Forecasting Date Historical Date Si L(-)lad- t Loss (MWh)
imilarity BDO MGA
Workday, spring 17 March 2014 5 March 2012 0.9576 7.0678 6.8871
Weekend, spring 16 March 2014 7 April 2013 0.9618 6.1504 6.0030
Workday, summer 18 June 2014 10 June 2013 0.9644 16.1209 15.7828
Weekend, summer 15 June 2014 7 July 2013 0.9531 14.7790 14.3192
Workday, autumn 15 September 2014 13 September 2011 0.9701 129096  12.7573
Weekend, autumn 14 September 2014 15 September 2012 0.9665 124243  12.1118
Workday, winter 17 December 2014 9 December 2009 0.9636 7.8655 7.6621
Weekend, winter 14 December 2014 16 December 2012 0.9547 6.1919 5.8347

6. Conclusions

A fast RPO method based on historical data is presented. The proposed method is tested on a DN,
and comparison has been made with a MGA method. The experimental result proves that the RPO
method is an effective and feasible method within the range of allowable deviations. The contribution
and the novelties of the proposed method can be generalized as:

(1) The proposed novel RPO method is robust and fast. The method has better feasibility than
stochastic searching method.

(2) It is suitable for fast RPO in distribution network, which has enough historical RPO data.
As the same time, it is unsuitable for a new network without historical data. Network topology
structure is also assumed to be invariant.
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