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Abstract: It is known that deviation from the Drude law for free carriers is dramatic in most
electronically conductive nanomaterials. We review recent studies of the conductivity of nanoscale
materials at terahertz (THz) frequencies. We suggest that among a variety of theoretical formalisms,
a model of series sequence of transport involving grains and grain boundaries provides a reasonable
explanation of Lorentz-type resonance (non-Drude behavior) in nanomaterials. Of particular interest
is why do free carriers exhibit a Lorentz-type resonance.
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1. Introduction

The interaction of THz radiation (0.1–10 THz; 0.4–40 MeV) with charge carriers provides important
information on carrier transport in a wide range of materials, when the charge carrier scattering
time lies around 10�14–10�13 s [1,2]. In this frequency range, the most prominent change in the
frequency-dependent complex conductivity is expected to occur.

Free carriers follow the Drude law if the medium is homogeneous [3]. It is of interest to know what
happen in inhomogeneous media. It is known that a deviation from Drude behavior is observed in
most electronically conductive nanostructured materials, such as metals [4–6], semiconductors [7–16],
and oxides [17–19]. The non-Drude behavior in nanomaterials is a kind of Lorentz resonance. Why the
dynamics of free carriers is dominated by resonance but not relaxation-type? In the present review,
we will answer this question and how to model the dynamics of free carriers in inhomogeneous
nanostructured materials.

2. Dynamics of Free Carriers in Nanomaterials

Before proceeding with discussion, we will show a difference between the Drude relaxation
and the Lorentz resonance in terms of the complex (optical) conductivity, σ*(ω) = σR(ω) + iσI(ω) [3].
Note that the local electric field is taken to vary in time as exp(�iωt). Solid and dotted lines, (a) and
(b), show the real and imaginary parts of conductivity, σR(ω) and σI(ω), respectively, for the Drude
relaxation, and lines (c) and (d) are for the Lorentz resonance. A frequency-independent real part of
conductivity in curve (a) gives the dc conductivity. We hence expect that the low-frequency real part of
conductivity (energy loss) corresponds to the dc conductivity (dc loss), when the transport is dominated
by the Drude law. As already stated, a Lorentz-type behavior dominates THz conductivity in most of
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nanomaterials. We, therefore, discuss why do free carriers behave as a Lorentz-like resonance, since
free carriers should follow the Drude law in usual understanding.

A few models have been proposed for the origin of the Lorentz-type resonance behavior [1].
We know that a quantum mechanical electronic (optical) transition between states is well described by
the Lorentz resonance. In the following, we state briefly the models so far proposed:

(1) When a motion of free carriers involves a restoring force, i.e., the restoring force is added in
the Drude equation, the equation of motion is described by a damped harmonic oscillator, which
should leads to the Lorentz oscillator [3]. A surface depletion or accumulation field can be a
source of the restoring force. This is called the plasmon model and was applied to semiconductor
nanoparticles [1,20].

(2) By assuming only one backscattering of free carriers, complex conductivity shows the
Lorentz-type behavior, which is called the generalized Drude model or the Drude-Smith (DS)
model [21]. As the DS model has been most widely used to explain the non-Drude behavior [1],
we summarize here the DS approach. A complex conductivity given by Smith [21] is given as:

σ � pωq �
σp0q

1� iωτ

�
1�

8¸
n�1

cn

p1� iωτqn

�
(1)

where σ(0) is the Boltzmann dc conductivity given by e2nfτ/m*, nf is the density of free carrier, m* the
effective mass, τ the scattering time, andω the angular frequency of external excitation, assumed to be
exp(�iωt). The coefficient cn represents the fraction of the carrier’s original velocity that is retained
after the nth scattering. Note that n = 0 produces just the Drude law. When we take only one scattering
(n = 1) and �1.0 ¤ c1 < 0 (backscattering), free carrier behavior dramatically changes from the Drude
relaxation to the Lorentz-type resonance (see Figure 1). A large issue in the DS model is that there is no
proper physical basis, while good fitting to the experimental results is obtained. Note also that the DS
model should basically be applied to homogeneous media.
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Figure 1. Optical conductivity in the Drude relaxation ((a) and (b)) and in the Lorentz resonance  
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(3) When we discuss the electronic transport in inhomogeneous media, such as nanoparticles 
with grain boundaries, charge transfer can occur from one constituent to another. Thus, the role of 
interfaces (grain boundaries) may be important. A schematic view for such carrier transport is shown 
in Figure 2. 
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Figure 1. Optical conductivity in the Drude relaxation ((a) and (b)) and in the Lorentz resonance
((c) and (d)).

(3) When we discuss the electronic transport in inhomogeneous media, such as nanoparticles
with grain boundaries, charge transfer can occur from one constituent to another. Thus, the role of
interfaces (grain boundaries) may be important. A schematic view for such carrier transport is shown
in Figure 2.
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Figure 2. Schematic view of carrier transport within grains (intragrain) and through grain boundaries
(intergrain) in nanomaterials

We call this a series sequence of the free (intragrain) and tunneling (intergrain; grain boundary)
carrier (SSFTC) transport model [2,22]. Let us review the SSFTC formalism. As stated already, the
frequency dependence of complex conductivity for free carrier is given by the Drude law (n = 0 in
Equation (1)) as:

σ f � pωq �
σp0q

1� iωτ
(2)

Note that τ in this equation should be viewed as an effective relaxation time that accounts
for various scattering processes within the grain, so-called intragrain scattering processes. For the
tunneling transport, the so-called Dyre expression, based on an effective medium approach, which
should be equivalent to a parallel capacitor-resistor random connection, is adopted [23]. The tunneling
conductivity is given as:

σt � pωq � σtp0q
�iωτt

lnp1� iωτtq
(3)

where σt(0) is the dc tunneling conductivity and is given by nt(ert)2/2kTτt. Here, nt is the density
of tunneling carrier, rt the tunneling length (distance between grains), and τt the tunneling time.
The effective (overall) complex conductivity, in a simple one-dimensional approximation [23–25], is
given as [2,22]:

1
σeff � pωq

�
f

σ f � pωq
�

1� f
σt � pωq

(4)

where f is the spectral weight of intragrain transport.
As will be discussed in Section 3, σeff*(ω) shows Lorentz-type resonance, as was found in the

DS model. The negative imaginary conductivity, curve (d) in the Lorentz resonance, originates from
capacitive nature of electronic charge. It should be emphasized here that a series sequence of the Drude
and the Debye-type relaxations produces Lorentz-type resonance.

(4) An effective medium theory (EMT) [26] is expected also to apply to THz conductivity in
inhomogeneous media [1]. The EMT should be employed to model the composite materials, in
particular when charge transfer between composites has not occurred, e.g., relatively small fraction
of metallic (or high conductive) component in insulators. The Lorentz-like resonance is predicted
from the EMT calculation [1]. A loss-peak frequency (see curve (c) in Figure 1) highly depends on the
plasma frequency, i.e., depends on free carrier density, and, hence, significant loss-peak shift should be
observed in such media, similar to the plasmon case. In fact, in common with nanomaterials of metals
and semiconductors, the loss peak may lie in THz frequency range (no big shift in a loss peak).

We thus conclude that the SSFTC model is the best model to explain the electronic transport in
nanomaterials. Typical examples are shown in the following section.
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3. Typical Examples of THz Conductivity in Nanomaterials

For the purposes of this focused review, we will consider and discuss only a few selected examples
of the THz conductivity, such as popular nano- semiconductors, oxides, and metals, rather than a
comprehensive and extensive review. An extensive review of a large collection of materials is beyond
the scope of this focused review. Note that the following experimental data are all provided by pulsed
sources based on terahertz time-domain spectroscopy (THz-TDS) and measured at room temperature.
There are a number of excellent reviews on this topics [1,27] and, therefore, we do not discuss THz
techniques in this article.

Open circles and triangles in Figure 3 show the experimental results of real and imaginary parts
of conductivity, respectively, in nanocrystalline Si films (average grain size is 15–25 nm) [8]. To extract
the complex conductivity we use the relationship between the dielectric permittivity and conductivity
given as:

σ � pωq � �iωε0ε � pωq (5)

where ε*(ω) + ε8 = εR(ω) + iεI(ω), ε0 is the absolute permittivity, εR(ω) and εI(ω) are the real and
imaginary part of dielectric constants, respectively, and ε8 is the background dielectric constant. Note
again that a time dependence of the form exp(�iωt) is used here. Optical pumping spectroscopy has
been used for producing enough free carriers (electrons) at room temperature, and, hence, we do
not need ε8 for calculation as a physical parameter [1]. The negative value of the imaginary part of
conductivity is obtained.
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Figure 3. Complex conductivity in nanocrystalline Si films. Open circles and triangles are experimental
results of the real and imaginary parts of conductivity, respectively; data extracted from [8]. Solid lines
are conductivity predicted from the SSFTC model.

Solid lines in Figure 3 show the best fit of the SSFTC model to the experimental data. Adjusted
physical parameters are all reasonable and are listed in Table 1. We now recognize that the SSFTC
model predicts a similar behavior of the Lorentz resonance as shown in Figure 1 (curves (c) and
(d)). It is important to emphasize that experimental data are only available within a certain narrow
frequency range. In the present case, a peak is predicted by the model outside the experimental
frequency window. Fitting within the data range leads to a peak outside the data range, but there is no
way of validating this prediction without extending the experimental data range to cover the peak.
However, as will be shown for nanogold particles (Figure 7), a peak is indeed found in the observed
frequency range. We, therefore, discuss a detailed comparison between the Lorentz resonance and the
SSFTC prediction in the final part of this section.
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Table 1. Physical parameters used for calculation in the series sequence of the free and tunneling carrier
(SSFCT) transport model. σdc is the measured dc conductivity.

Quantity Si Ge2Sb2Te5 ZnO SnO2 Au Cryst-ZnO

f 0.83 0.996 0.94 0.97 0.999 1
m* 0.3 0.3 0.3 0.3 1 0.24

n (cm�3) 5.3 � 1018 1.5 � 1020 7.0 � 1019 1.0 � 1020 1.0 � 1022 4.5 � 1017

τ (s) 2.0 � 10�14 2.4 � 10�14 4.0 � 10�14 5.0 � 10�14 3.0 � 10�14 2.7 � 10�14

nt (cm�3) 2.0 � 1019 2.0 � 1019 1.6 � 1018 1.6 � 1018 1.5 � 1021 -
τt (s) 4.0 � 10�13 2.0 � 10�11 2.0 � 10�14 9.0 � 10�13 3.0 � 10�12 -
ε8 - 320 14 15 1 -

σeff(0) (S cm�1) 28.0 15.4 4.0 11.4 55,000 142
σdc (S cm�1) 1–10 20 4 0.6 - 46

Open circles and triangles in Figure 4 show the real and imaginary parts of conductivity
in the crystalline phase of Ge2Sb2Te5 (from the Kadlec group at the Academy of Sciences of the
Czech Republic in Pargue), which is the most useful phase-change material, developed for digital
versatile disk (DVD) [28]. As the crystalline phase of phase-change materials is a degenerate
semiconductor (witha high density of free carriers) and, hence, the optical-pumping (photocarrier)
technique, as in nanocrystalline Si (see Figure 3) is not required. In this case, background conductivity
(imaginary), σ8 = ωε0ε8, is taken into account [1,2]. Solid lines show the real and imaginary parts of
conductivity predicted by the SSFTC model, and the physical parameters from the fitting are listed in
Table 1. Note that features obtained here are very similar to those obtained for other phase-change
materials [14].
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Figure 4. Complex conductivity in crystalline phase of Ge2Sb2Te5 films. Open circles and triangles
are experimental results of the real and imaginary parts of conductivity, respectively. Solid lines are
conductivity predicted from the SSFTC model.

Let us examine the THz conductivity in so-called oxide metals and semiconductors. ZnO and
SnO2, for example, show both metallic and semiconducting natures [17,29]. Open symbols in Figures 5
and 6 show the complex conductivity in nanostructured ZnO [17] and SnO2 [29] films, respectively.

Fitting of the SSFTC model to the experimental data shown by solid lines produces reasonable
physical parameters and these are listed in Table 1. The both nanostructured oxides discussed here
have enough free carriers and hence the optical pumping technique is not employed. Note that the
EMT or hopping transport model has been applied to interpret the THz conductivity in Sb-doped
SnO2 [29]. However, as already stated, the EMT or hopping transport mechanism does not work
properly, when nanoparticles are closely packed. The measured σdc value (0.5–10 S� cm�1) [29] is
closed to the effective conductivity deduced from the SSFTC model (see Table 1).
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Figure 5. Complex conductivity in nanostructured ZnO films. Open circles and triangles, respectively,
are the experimental data extracted from [17]. Solid lines are conductivity predicted from the
SSFTC model.
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triangles are the experimental data extracted from [29]. Solid lines are predicted conductivity from the
SSFTC model.

Let us examine the THz conductivity in nanostructured gold films. Open circles and triangles in
Figure 7 show one of examples of the real and imaginary parts of conductivity in nanogold films [30].
Solid lines are predicted conductivity in the SSFTC model. As the imaginary part of conductivity
shows the positive signature (curve (b) in Figure 1), it seems to be the Drude-type behavior. Fitting to
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Next, we will show what is observed in a single crystalline material. An example is shown for
ZnO epitaxial films in Figure 8. Open circles and triangles show the real and imaginary parts of
conductivity [31]. Solid lines show the predictions from the Drude law and physical parameters are
listed in Table 1.
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A good fit of the Drude law to the experimental results in epitaxial GaN has been also reported [32].
As already stated, the Drude-Smith model [21], in principle, should be applied to single crystalline
materials since the disorder effect is not important in the DS model; it is simply a generalization of the
Drude formula. No such non-Drude behavior, which fits to the DS model, is reported.

It was stated that the SSFTC mechanism produces the Lorentz-type resonance, as shown in
Figure 3. In the Lorentz resonance, however, conductivity at a low frequency should be zero. Therefore,
the SSFTC model produces a similar trend to the Lorentz resonance. As shown in Figure 9, when we
change physical parameters, e.g., a decrease of f in Equation (4), in which the tunneling contribution
becomes large, the resonant conductivity predicted by the SSFTC model (solid lines) becomes very
close to that using the Lorentz resonance (dashed lines), described as [1,3]:

σ � pωq �
Ne2

m�

τL�
1�

�
iτLpω�ωp2{ωq

�� (6)

here, N is the number of Lorentz oscillator, τL the damping time, and ωp the plasma frequency.
The physical parameters are shown in the caption of Figure 9.
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Figure 9. Complex conductivity predicted from the SSFTC, solid lines (a) and (c), where
n = 4.5 � 1018 cm�3, nt = 4.0 � 1019 cm�3, f = 0.70, τ = 2.0 � 10�14 s, and τt = 4.0 � 10�12 s
are used. Dashed lines, (b) and (d), are from the Lorentz resonance, where N = 4.5 � 1018 cm�3,
ωp = 4.5 � 1013 s�1, and τL = 1.3 � 10�13 s.
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The reason for this can be clearly understood in terms of equivalent electrical circuits. The Drude
mechanism, i.e., free carrier scattering (and loss), is equivalent to LRg series connection, where L is
the inductance and Rg the resistance in grains. The tunneling mechanism, i.e., charge accumulation
(and loss), is equivalent to CRgb parallel connection, where C is the capacitance and Rgb the resistance
in grain boundaries. We know that a series connection of these elements produces the Lorentz-type
resonance at a certain frequency [2]. Current flow (conductivity) is dominated by Rgb at lower
frequencies and is dominated by L at a high frequency, i.e., zero conductivity at low and high
frequencies when Rgb is large. We recognize, therefore, that a negative imaginary conductivity at a
lower frequency is dominated by the grain boundary transport and a positive imaginary conductivity
is dominated by the free carrier scattering within the grain. The SSFTC model can judge which factor
is dominant in nanostructured materials.

Recent reports on the THz conductivity in InP nanowires [33] and silicon nanocrystal
superlattices [34] show similar behaviors, as shown in Figure 9, suggesting the importance of the
tunneling contribution of carriers in these new materials.

We should mention another important modeling technique that is based on computer simulations.
It is recognized that Monte Carlo simulations can provide useful insight and information on carrier
dynamics [12,35], which replicate well the non-Drude type behavior. This technique is useful when
one discusses the carrier dynamics inside semiconductor nanoparticles. Carrier scattering processes
at boundaries have been discussed in great detail [12]. If the carrier mean-free-path (MFP) is much
smaller than grain size (or grain size is much larger than MFP), the carriers are regarded as moving in
homogeneous media. In this case, the carrier dynamics can be well interpreted by the Drude-Smith
model [21,36].

Finally, it should be mentioned that the interband optical transition (Lorentz oscillator), combined
with the Drude contribution of free carriers, also shows a non-Drude behavior, which has been reported
in carbon-based nanotubes [37]. Thus, the examination of the SSFTC model for other material systems
will shed a great deal of light on the mechanism of optical conductivity in the terahertz range.

4. Conclusions

Current understanding of the THz conductivity in nanostructured materials, through metals to
semiconductors was reviewed. It was shown that a model of series sequence of free and tunneling
carrier (SSFTC) transport had a fundamental physical basis and well-explained the observed non-Drude
behavior in nanomaterials. The effective conductivity deduced from the SSFTC model is close to
the measured dc conductivity, as listed in Table 1. Of particular interest is that the SSFTC transport
mechanism produces a Lorentz-type resonance. Surprisingly, almost the same profile with the Lorentz
resonance is predicted from the SSFTC model under certain conditions.
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