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Abstract: Traffic information estimation and forecasting methods based on cellular floating vehicle
data (CFVD) are proposed to analyze the signals (e.g., handovers (HOs), call arrivals (CAs), normal
location updates (NLUs) and periodic location updates (PLUs)) from cellular networks. For traffic
information estimation, analytic models are proposed to estimate the traffic flow in accordance with
the amounts of HOs and NLUs and to estimate the traffic density in accordance with the amounts
of CAs and PLUs. Then, the vehicle speeds can be estimated in accordance with the estimated
traffic flows and estimated traffic densities. For vehicle speed forecasting, a back-propagation neural
network algorithm is considered to predict the future vehicle speed in accordance with the current
traffic information (i.e., the estimated vehicle speeds from CFVD). In the experimental environment,
this study adopted the practical traffic information (i.e., traffic flow and vehicle speed) from Taiwan
Area National Freeway Bureau as the input characteristics of the traffic simulation program and
referred to the mobile station (MS) communication behaviors from Chunghwa Telecom to simulate
the traffic information and communication records. The experimental results illustrated that the
average accuracy of the vehicle speed forecasting method is 95.72%. Therefore, the proposed methods
based on CFVD are suitable for an intelligent transportation system.

Keywords: vehicle speed estimation; vehicle speed forecasting; cellular floating vehicle data;
intelligent transportation system; cellular networks

1. Introduction

In recent years, the usage and improvement of mobile techniques have been growing for a
variety of real-life applications. For instance, many intelligent transportation systems (ITSs) and
services have been designed and developed by several enterprises [1–4]. For the development of ITSs,
studying how to collect the traffic information efficiently is a really important topic. The case studies
of cooperative intelligent transportation systems (C-ITS) [2,3] and connected-vehicle technology [4]
developed real-time traffic information collection methods and evaluated traffic status. Furthermore,
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Gao et al. [1] considered traffic status to predict travel time for the design of a navigation system and
the avoidance of traffic jams.

ITSs have three kinds of popular position collection approaches, which are the vehicle detector (VD),
the reports of global positioning system (GPS)-equipped probe cars and cellular floating vehicle data
(CFVD). VD is a sensor based on the techniques of active infrared/laser, magnetic, radar or video to
regularly detect vehicles on a road for the analysis of time mean speed and traffic flow [5,6] GPS-equipped
probe cars can periodically report their location information to a server for computing the space mean
speed [7]. CFVD, which is obtained by tracking the network signals of the mobile station (MS) in the car,
can be analyzed to estimate the traffic information (e.g., traffic flow, vehicle speed and traffic density) [5].
The advantages and limitations of these three methods are illustrated in the following paragraphs.

The establishment cost and maintenance fees of VDs were discussed and analyzed in some studies
from different countries [8]. For instance, the Texas Transportation Institute spent 43,500 U.S. dollars to
install video image vehicle detection systems (VIVD) for the detection of real-time traffic information
in 2002. The Ministry of Transportation and Communications in Taiwan spent 75,873 U.S. dollars to
establish one VD per each kilometer on Taiwan Highway No. 1 for the collection of real-time road
information [9]. However, the maintenance fees of VD solutions are really high because the damage of
VD usually result by the environmental factors.

Some studies discussed traffic collection and estimation methods based on the reports of
GPS-equipped probe cars, which were compared to the traffic information from VDs for the evaluation
of traffic estimation accuracies. For instance, Cheu et al. [10] showed that the lower error rate of
space mean speed estimation (less than 3%) can be obtained with enough active probe vehicles.
Herrera et al. [10] showed that GPS-equipped probe vehicles periodically recorded their speeds and
locations in practical environments for traffic information estimation. Furthermore, their study
suggested that a 2%–3% penetration of GPS-equipped probe vehicles is enough to provide accurate
measurements of space mean speed. However, the cost of deployment of GPS-equipped probe cars is
very expensive for reaching a penetration rate of 2%–3% [10,11].

CFVD can be obtained by tracking MS signals (call arrival (CA), handover (HO), double handover
(DHO), normal location update (NLU) and period location update (PLU)), and it can be used for
the analysis of traffic status [12,13]. Furthermore, the International Telecommunication Union (ITU)
indicated that the handphone penetration rate is more than 100% in many countries [14], and the
penetration rate is high enough to assume that everyone has a handphone. Therefore, some studies
assumed one handphone in one vehicle. For instance, Lin et al. [9] analyzed two HO locations based
on the location service (LCS) as CFVD to estimate the real-time travel time and real-time vehicle speed
between HO locations. Their experimental results indicated that the accuracy of the proposed traffic
information estimation method was high. However, due to tracing the routes of each MS, a higher
computation power is required, and privacy threats may exist. Moreover, future traffic information
forecasting based on CFVD has not been investigated.

Therefore, this study proposes analytic models and traffic information estimation methods based
on CFVD to obtain a low-cost solution for ITS. The proposed analytic models are used to analyze the
relationship between traffic information (e.g., traffic flow, traffic density and vehicle speed) and the
amount of cellular network signals (e.g., HO, NLU, CA and PLU). Then, traffic information can be
estimated based on the proposed analytic models and CFVD. Furthermore, a vehicle speed forecasting
method based on a back-propagation neural network (BPNN) algorithm is proposed to analyze the
estimated vehicle speeds from CFVD and to predict the future vehicle speed for road users.

The rest of this study is organized as follows. Section 2 discusses the related studies and techniques
of traffic information estimation and forecasting methods. Section 3 purposes vehicle speed estimation
and forecasting methods based on CFVD. A case study of a highway in Taiwan and experimental
results are illustrated and analyzed in Section 4. Finally, Section 5 summarizes the contributions of this
study and presents future work.
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2. Literature Review

In this section, the techniques of cellular networks, CFVD and traffic information forecasting
methods are illustrated in the following subsections. The architecture of cellular networks and mobility
management methods are described in Section 2.1. Section 2.2 presents the advantages and limitations
of each CFVD method. Finally, traffic information estimation and forecasting methods based on data
mining techniques are discussed in Section 2.3.

2.1. Cellular Networks

This section presents the network architecture of the Global System for Mobile Communications
(GSM)/General Packet Radio Service (GPRS)/Universal Mobile Telecommunications System (UMTS).
The components and mobility management (MM) in cellular networks are described as follows.

2.1.1. System Components

The GSM consists of the MS, base transceiver station (BTS), base station controller (BSC), mobile
switching center (MSC), home location register (HLR) and visitor location register (VLR). MSs
communicate with the network through the BTS and BSC via the A-bis interface (the interface between
the BTS and the BSC). The BSC communicates with the MSC via the A (the interface between the
BSC and the circuit switched core network) interface, and MSC can connect the calls from the MSs to
the public switched telephone network (PSTN). Moreover, the HLR and VLR can provide mobility
management and record the location information of the MS [15].

GPRS evolved from GSM and added two new components, which include the serving GPRS
support node (SGSN) and the gateway GPRS support node (GGSN). GPRS can establish the data
connection with the Internet. However, this study focuses on circuit-switched networks, and the
signaling of packet-switched networks is not discussed and analyzed.

The UMTS consists of user equipment (UE), Node B, the radio network controller (RNC) and the
components in GSM and GPRS. UEs communicate with the network through Node B and the RNC via
the Iub (the interface between the Node B and the RNC) interface. The BSC communicates with the
MSC via the IuCS (the interface between the RNC and the circuit switched core network) interface,
and the MSC can connect the calls from the UEs to the PSTN [15].

2.1.2. Mobility Management

For MM, the functions related to the management of the common transmission resources may be
performed in accordance with the MS/UE. There are two modes, which include idle mode and radio
resource (RR) connected mode in RR management.

Idle Mode

In idle mode, the location updating procedures are performed for MM. The location updating
procedure is a general procedure, which is used for the following purposes [16].

(1) Normal location updating: NLU is performed when a new location area is entered (European
Telecommunications Standards Institute (ETSI), 1995).

(2) Periodic location updating: PLU is performed at the expiration of the timer (ETSI, 1995).
(3) International Mobile Subscriber Identity (IMSI) attach: IMSI attach is performed when the MS is

turned on [16].

Radio Resource Connected Mode

In RR connected mode, the handover procedures are performed for MM. The MSC can control
the call and the MM of the MS during the call. When MS enters a new cell during a call, the handover
procedure is performed to provide good quality RR by the MSC [17]. This study assumes that each
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MS in the car can perform the handover procedure in accordance with the specification when the MS
enters a new cell during a call.

2.2. Traffic Information Estimation Methods

The techniques of traffic information estimation method based on CFVD can be classified into
two groups, which include (1) location services and (2) signal statistics.

2.2.1. Location Services

Several location positioning methods, which were defined in the LCS specification of the 3rd
Generation Partnership Project (3GPP), could be grouped into three classes, including: (1) assisted
GPS (A-GPS) methods; (2) mobile scan report (MSR)-based location methods; and (3) database lookup
methods [18,19].

For A-GPS methods, a GPS component should be equipped in each MS to determine the location
of the MS. However, these methods cannot be performed for the MSs without GPS components.
Therefore, A-GPS methods are not discussed and applied in this study.

For MSR-based location methods, each MS can send periodically MSR messages (e.g., received
signal strength indication (RSSI), round-trip delay and relative delay) to core networks in cellular
networks (e.g., Global System Mobile Communications (GSM), Universal Mobile Telecommunications
System (UMTS) and Long-Term Evolution (LTE)) [9]. Some studies analyzed the MSR messages
to determine the locations of MSs, and these locations can be used to estimate traffic information.
For instance, Cheng et al. [9] proposed a fingerprint-positioning algorithm (FPA) based on the k-nearest
neighbors (kNN) algorithm to analyze the RSSIs of MSR messages for generating the locations of MS
in car, and the average vehicle speed and travel time between two locations of the same MS can be
estimated by FPA. Because the interfaces of A-bis and Iub in radio networks should be monitored to
retrieve RSSIs for FPA, it is required to have above 10,000 servers to deploy to proceed with recording
and analysis by Taiwanese environment. However, core network signals (e.g., CA, HO, NLU and
PLU) can be captured via the interfaces of A and IuCS, so only less than 100 servers are needed to
be deployed by the Taiwanese environment. The experiment results of FPA showed a high accuracy
of vehicle speed estimation, although this method may need higher signaling costs for sending MSR
message between MSs and base stations.

For database lookup methods, the information of cellular network signals, which include cell ID,
CA, HO and NLU, are considered to generate the mapping table of cell ID, handoff-pair and geographic
location. For instance, the cell ID can be retrieved to query the mapping table and to get the geographic
location of the queried cell when the CA signal occurs, and the handoff-pair can be retrieved to query
the mapping table and to get the geographic location of the queried handoff-pair when the HO signal
occurs. When two or more locations of the same MS are determined by database lookup methods, the
average vehicle speed and travel time between these locations can be estimated [20]. Birle et al. [21]
recorded two handover signals to measure the retention period of each cell, and the time difference
between handover signals and the length of the road segment covered by the cell could be analyzed
for the estimation of vehicle speed.

The locations of MSs can be precisely determined by using LCS methods, and traffic information
can be obtained by the analyses of locations of MSs. However, the location of the MS should be traced,
and the power consumption and time complexity of these methods are higher in runtime. Furthermore,
the issue of the invasion of privacy should be considered and investigated.

2.2.2. Signal Statistics

Some studies analyzed the relationship between traffic information and the amount of cellular
network signals (e.g., NLU, PLU, HO and CA) on the road segments and proposed traffic information
estimation methods based on signal statistics. For instance, Caceres et al. [22] collected and counted
the handover events, which were triggered when the communicating MSs entered a new cell for traffic



Appl. Sci. 2016, 6, 47 5 of 19

flow estimation. Furthermore, a virtual traffic counter at inter-cell boundaries was proposed to monitor
call events in different cells and to estimate traffic flow [23]. A method was proposed to retrieve the
NLU events, which were triggered when MSs entered a new location area, and to estimate traffic
flow in accordance with the amount of NLU events [24]. For traffic density estimation, a method was
proposed to monitor the CA events and to analyze the relationship between traffic density and the
amount of CA events [25]. These studies indicated that their proposed methods can estimate traffic
information precisely with anonymous MSs.

2.2.3. Summary

Although A-GPS and MRS-based location methods can obtain the precise location information of
the MS, heavy computational loads are required for these methods. Database lookup methods may be
used to obtain traffic information, but the frequency of vehicle speed report generation is not enough
in Taiwan [12]. Moreover, due to tracking of the location of each MS, privacy challenges may arise
from using location service methods.

The amount of cellular network signals (e.g., NLU, PLU, HO and CA) from anonymous MSs can
be collected and analyzed by signal statistics methods for traffic information estimation. However,
long road segments that are covered by a location area are about 10 km, so the traffic information of
short road segments cannot be obtained by the analysis of NLU and PLU events. Although the amount
of HO events can be used to estimate the traffic condition of short road segments, the variation of HO
events may be large in dynamic traffic environments. Therefore, this study proposes a data fusion
method based on signal statistics to estimate and forecast traffic information for ITS.

2.3. Traffic Information Forecasting Methods

For traffic information forecasting methods, several studies used data mining techniques (e.g.,
linear regression [26,27], logistic regression (LR) [28], Bayesian classifier [29,30], k-nearest neighbors
(kNN) [31–33], artificial neural network (ANN) [34–37], etc.) to analyze the historical traffic information
and obtain the forecasted traffic information.

For traffic information forecasting methods based on regression approaches, some studies
used and applied linear regression and LR approaches to predict the future vehicle speed, and the
experimental results in these studies showed that the average accuracy of vehicle speed forecasting was
higher than 90% for highways [26,28]. However, these regression approaches are unsuitable to analyze
the non-linear distribution of data, so the accuracy of the vehicle speed prediction-based regression
approach was only 73.3% for an urban road network in [27]. Furthermore, the regression approaches
are the special cases of ANN without hidden layers, and the accuracy of the traffic information
forecasting method based on ANN may be higher than regression approaches [34–37].

For traffic information forecasting methods based on probability approaches, Bayesian classifier
approaches were proposed and used to analyze traffic information and conditions [29], and these
approaches could be combined with regression approaches to improve the accuracy of traffic
information prediction [30]. However, the assumption and limitation of Bayesian classifier approaches
were the independence between input characteristics. Therefore, Bayesian classifier approaches may
not be applied to a variety of practical cases.

For traffic information forecasting methods based on the distances between data attributes, a kNN
approach was proposed to analyze the previous arrival time, dwell time and delay time for bus arrival
time prediction [31,32]. Moreover, some studies used a kNN approach to analyze the relationship
of traffic information and weather conditions for the improvement of vehicle speed prediction [33].
Although the results showed that the mean relative errors of using the kNN method were lower, the
power consumption and time complexity of the kNN method were higher with big data at runtime.

For traffic information forecasting methods based on ANN, some studies proposed and applied
ANN to forecast short-term traffic information, and the experimental results showed that the accuracy
of using ANN was better than using other approaches [35–37]. Although a previous study classified
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road segments into several road types for reducing ANN models [35], the diverse traffic characteristics
of road segments may exist in the same type of road. Moreover, using ANN to analyze CFVD for
short-term traffic information prediction has not been investigated. Therefore, this study proposed a
traffic information forecasting method based on ANN to analyze and predict the traffic information of
each road segment from CFVD.

3. Traffic Information Estimation and Forecasting Methods

The traffic information estimation methods based on CFVD are proposed and analyzed in
Section 3.1, and the estimated traffic information is adopted as the input parameters for the proposed
traffic forecasting method in Section 3.2. The details of traffic information estimation and forecasting
methods are described as follows.

3.1. Traffic Information Estimation Methods

This study proposes some analytic models to estimate traffic flow based on the amount of HOs and
NLUs and to estimate traffic density based on the amount of CAs and PLUs. The traffic information
estimation method of CFVD is applied to estimate the traffic flow and traffic density. The estimated
traffic flow and traffic density are then used for vehicle speed estimation. The notation used in this
paper is summarized in Table 1. The vehicle speed can be estimated in accordance with traffic flow
and traffic density by Equation (1) [19].

Ui “
Qi
Ki

(1)

Table 1. The definition of notation. PLU, periodic location update; HO, handover; CA, all arrival; NLU,
normal location update.

Parameter Description

Q (car/h) The practical traffic flow
K (car/km) The practical traffic density
U (km/h) The practical vehicle speed
τ (h/call) The call inter-arrival time
λ (call/h) The call arrival rate
t (h/call) The call holding time

1/µ (h/call) The mean call holding time
x (km) The time x is between the preceding call arrival and entering the target road
li (km) The length of road segment covered by Celli
b (h) The cycle time of PLU

hi (event/h) The amount of HOs of road segment covered by Celli
ai (event/h) The amount of CAs of road segment covered by Celli
pi (event/h) The amount of PLUs of road segment covered by Celli
qi,h (car/h) The estimated traffic flow by using hi
qi,n (car/h) The estimated traffic flow by using NLU events

ki,a (car/km) The estimated traffic density by using ai
ki,p (car/km) The estimated traffic density by using pi
ui,ha (km/h) The estimated vehicle speed by using qi,h and ki,a
ui,na (km/h) The estimated vehicle speed by using qi,n and ki,a
ui,hp (km/h) The estimated vehicle speed by using qi,h and ki,p
ui,np (km/h) The estimated vehicle speed by using qi,n and ki,p

Uψi (km/h) The practical vehicle speed of road segment i at cycle ψ

Uψ`1
i (km/h) The practical vehicle speed of road segment i at cycle pψ` 1q

Uψ`11
i (km/h) The predicted vehicle speed of road segment i at cycle pψ` 1q

uψi,ha (km/h) The estimated vehicle speed of ui,ha at cycle ψ

uψi,na (km/h) The estimated vehicle speed of ui,na at cycle ψ

uψi,hp (km/h) The estimated vehicle speed of ui,hp at cycle ψ

uψi,np (km/h) The estimated vehicle speed of ui,np at cycle ψ
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3.1.1. Traffic Flow Estimation

This study considers the amount of HOs (hi) and the amount of NLUs (qi,n) to estimate traffic
flow (Qi) on the road segment covered by Celli.

Traffic Flow Estimation by Using HO Events

When a call arrives within the coverage area of a cell, the destination (or the originating) MS will
be connected if a channel is available. While a communicating MS moves from the coverage area of
one cell to the coverage area of another cell, the channel in the old cell is released, and the new cell will
provide a channel to the MS if there is a free channel. This process is called a handover.

Figure 1a illustrates the space diagram for vehicle movement and the handover on a road.
Figure 1b depicts the timing diagram for the handover on the road segment covered by Celli. The MS
in a car performs the call set-up at time t0 (in Figure 1a,b); then, the MS goes into the handover area of
the coverage of Celli´1 and Celli at time t1 (in Figure 1a,b), and the base station controller (BSC) or
radio network controller (RNC) will allocate an available channel for the communicating MS. At this
moment, if Celli has a free channel, the connection between the MS and Celli will be established
successfully. The process is called a handover from Celli´1 to Celli.
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Figure 1. (a) The scenario diagram for vehicle movement and the handover on the road; (b) the timing
diagram for the handover on the road segment covered by Celli. BSC, base station controller; RNC,
radio network controller.

This study assumes that the call holding time (t) is exponentially distributed with the mean 1{µ
to generate handovers [25]. The average speed of cars is Ui, and the traffic flow is Qi. Furthermore,
the length of road segment covered by Celli is li. Let the variable x be the time difference between
t0 and t1, and li/Ui denotes the time difference between t1 and t2. The handover procedure will be
performed when the call holding time (t) is larger than x. Thereby, the amount of handover (hi) on the
road segment covered by Celli can be expressed as Equation (2), and this study can estimate traffic
flow (qi,h) by using Equation (3), which is the traffic flow multiplied by the number of HO events.
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qi,h “ hi ˆ µ (3)

Traffic Flow Estimation by Using NLU Events

In cellular networks, the NLU event is generated when an MS moves from a location area (LA)
to another LA. Therefore, traffic flow can be estimated by using the number of NLU events. This
study assumes that the actual traffic flow on the road segment covered by Celli is Qi and one MS is in
each car (shown in Figure 2) [24]. Therefore, the estimated traffic flow qi,n (i.e., the number of NLU
events) on the road segment covered by Celli can be calculated as Equation (4), which is the traffic
flow multiplied by the number of NLU events.

qi,n “ Qi (4)
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3.1.2. Traffic Density Estimation

For traffic density estimation, this study considers the amount of CAs (ai) and the amount of
periodic location updates (PLUs) (pi) to estimate traffic density (Ki) on the road segment covered
by Celli.

Traffic Density Estimation by Using CA events

In cellular networks, a cell is supplied with radio service by vicinal BTSs or Node Bs. The BSC
in GSM and RNC in UMTS are responsible for the network control. When a call arrives within the
coverage area of a cell, the BSC or the RNC provides a free channel to the MS, and the MS will be
connected with the corresponding base station if there is a free channel.

Figure 3a depicts the scenario diagram for vehicle movement and call arrivals on the road.
Figure 4b shows the timing diagram for call arrivals on the road segment covered by a specific Celli.
The MS in a car moving along the road performs the first call at time t0 (in Figure 3a,b) and enters the
coverage area of Celli at time t1 (in Figure 3a,b). The MS performs another call at time t2 (in Figure 3a,b)
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before leaving Celli (time t3 in Figure 3a,b), and the call performed by the MS is called a call arrival
in Celli.Appl. Sci. 2016, 6, x 9 of 20 
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This study assumes that the call inter-arrival time (τ) is exponentially distributed with the mean
1{λ to generate call arrivals [25]. The length of road segment covered by Celli is li, and the average
speed of cars is Ui. Therefore, li/Ui denotes the time difference between t1 and t3. This study analyzes
the amount of call arrivals (ai) that occur between t1 and t3 on the road segment covered by Celli.
The amount of call arrivals can be expressed as Equation (5), and Equation (6) indicates that this study
can derive estimated traffic density (ki,a) from the amount of call arrivals.
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ki,a “ qi

»

—

–

1-
ˆ

1-
λai
qi

˙

1
λli

fi

ffi

fl

«
Qi
Ui
“ Ki , where lim

UiÑ8
1´ e

´
1

Ui “
1

Ui
(6)

Traffic Density Estimation by Using PLU Events

For mobility management, the MS periodically performs the PLU event for the core network in
cellular networks. Some MSs may perform the PLU event across the cell in Figure 2. Therefore, the
probability models shown in Equations (7) and (8) are proposed to provide estimated vehicle density
ki,p (i.e., the number of MS) on the road segment covered by Celli according to the number of PLU
events. This model had been proven in [24,38], and this study summarizes the assumptions in this
model as follows.

‚ The actual vehicle density Ki and traffic speed Ui can be obtained from VD on the road.
Furthermore, the length of a road segment covered by the cell is l.

‚ The call arrival rate to a cell is λ, and the call arrival process is assumed to be a Poisson process.
‚ The cycle time of PLU is b, and the number of PLU events is pi.

pi “ Qi ˆ PrpPLUq

“ Qi ˆ p3´ e´λbq ˆ

ˆ

e´λb l
2Uib

˙

“ Ki ˆ p3´ e´λbq ˆ

ˆ

e´λb l
2Uib

˙

(7)

ki,p “
pi

`

3´ e´λb
˘

ˆ

ˆ

e´λb l
2Uib

˙ (8)

3.1.3. Vehicle Speed Estimation

In this paper, the vehicle speed is obtained by the estimated traffic flow by using HO events (qi,h),
the estimated traffic flow by using NLU events (qi,n), the estimated traffic density by using CA events
(ki,a) and the estimated traffic density by using PLU events (ki,p). Based on Sections 3.1.1 and 3.1.2,
the estimated vehicle speeds ui,ha, ui,na, ui,hp and ui,np can be expressed as Equations (9)–(12). For
instance, the estimated vehicle speed ui,ha can be obtained by using qi,h and ki,a; the estimated vehicle
speed ui,na can be obtained by using qi,n and ki,a; the estimated vehicle speed ui,hp can be obtained by
using qi,h and ki,p; the estimated vehicle speed ui,np can be obtained by using qi,n and ki,p.

ui,ha “
qi,h

ki,a
“

»

—

–

1-
ˆ

1-
λai
µhi

˙

1
λli

fi

ffi

fl

´1

(9)

ui,na “
qi,n

ki,a
“

»

—

–

1-
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1-
λai
qi,n

˙

1
λli

fi

ffi

fl

´1

(10)

ui,hp “
qi,h

ki,p
“

µhip3´ e´λbq

ˆ

e´λb l
2Uib

˙

pi
(11)

ui,np “
qi,n

ki,p
“

qi,np3´ e´λbq

ˆ

e´λb l
2Uib

˙

pi
(12)
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3.2. Vehicle Speed Forecasting Method

For vehicle speed prediction, a BPNN algorithm is considered to predict the future vehicle speed
in accordance with the current traffic information (i.e., the estimated vehicle speeds from CFVD in
Section 3.1). An intelligent transportation system, which includes a cellular network signal retriever
(CNSR), traffic information estimation methods and a vehicle speed forecasting method, has been
designed and implemented for traffic information estimation and prediction (shown in Figure 4). The
ITS can retrieve cellular network signals (e.g., NLU, PLU, HO and CA) via the A interface and the
IuCS interface and analyze these signals to estimate traffic information (e.g., traffic flow, traffic density
and vehicle speed). Then, the estimated vehicle speed can be adopted as input characteristics into the
proposed vehicle speed forecasting method to predict short-term vehicle speed for road user decision.

In this subsection, the average vehicle speed of road segment i at cycle ψ is expressed as Uψi , and
the estimated vehicle speed at cycle ψ in accordance with Equations (9)–(12) can be expressed as uψi,ha,

uψi,na, uψi,hp and uψi,np, respectively. This study collects the values of the current traffic information (i.e.,

uψi,ha, uψi,na, uψi,hp and uψi,np) as the input characteristics of the neurons in the BPNN to predict the future

vehicle speed (i.e., Uψ` 1
i ) (see Figure 5). Therefore, the number of neurons in the input layer is four.

There is one hidden layer, and the output value of the predicted vehicle speed Uψ`1
i 1 can be obtained

by BPNN.Appl. Sci. 2016, 6, 47 12 of 20 
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In the training stage, the historical datasets of cellular network signals from CNSR and traffic
information from VDs are collected and calculated the amount of NLU, PLU, HO and CA events. Then
vehicle speed can be estimated in accordance with the estimated traffic flows by using NLU and HO
events and the estimated traffic densities by using PLU and CA events to obtain the values of uψi,ha,

uψi,na, uψi,hp and uψi,np at cycle ψ. Moreover, the average vehicle speed Uψ` 1
i of road segment i at next

cycle (ψ + 1) can be collected by VD. The proposed vehicle speed forecasting method based on BPNN
adopts uψi,ha, uψi,na, uψi,hp and uψi,np as input characteristics and Uψ`1

i as the output characteristic to train
a neural network.

In the runtime stage, the real-time estimated vehicle speeds can be obtained by the proposed
traffic information estimation methods based on using CFVD. Then, the estimated vehicle speeds (ui,ha,
ui,na, ui,hp and ui,np) of road segment i can be adopted into the trained neural network in the training
stage to forecast the short-term vehicle speed at the next cycle.

4. Experimental Results and Analyses

This section adopts the practical traffic information (i.e., traffic flow and vehicle speed) from
Taiwan Area National Freeway Bureau as the input characteristics of the traffic simulation program and
refers to the MS communication behaviors from Chunghwa Telecom to simulate the traffic information
and communication records. The details of the experimental environments are presented in Section 4.1.
The traffic information estimation and forecasting methods are illustrated in Sections 4.2 and 4.3.

4.1. Experimental Environments

In this study, trace-driven experiments, which consider vehicle movement traces and MS
communication traces, are designed to evaluate the traffic information estimation and forecasting
methods based on CFVD (shown in Figure 6). The inputs of the trace generator include the road
conditions (e.g., the length of the road, the number of lanes, the locations of handover points and traffic
flows), the vehicle movement behaviors (e.g., vehicles speeds, car following model and lane-changing
model) and MS communication behaviors (e.g., call inter-arrival time and call holding time). The output
is a trace file, which records the vehicle’s ID, vehicle speed, its CAs, its HOs, its NLUs and its PLUs.
For the generation of vehicle movement traces, the practical traffic information, which included traffic
flows and vehicle speeds from VDs on National Highway No. 3 in Taiwan during October in 2010,
was collected and expressed as the characteristics of road conditions (i.e., traffic flows) and vehicle
movement behaviors (i.e., vehicle speeds) for traffic simulation. Furthermore, call holding time is
exponentially distributed with the mean 1{µ, and the call inter-arrival time is exponentially distributed
with the mean 1{λ in accordance with the mobile communication records from Chunghwa Telecom for
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the generation of MS communication traces [13]. Then, vehicle movement and MS communication
traces can be generated by a traffic simulation program, VISSIM. Figure 7 shows nine handover points
and nine cells distributed in three location areas on the road from 0–9 km, and the coverage of a cell is
1 km. Moreover, this study assumes that there are nine VDs, which are built in the same locations with
handover points for evaluating the traffic information of each road segment covered by a cell.
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4.2. The Evaluation of Traffic Information Estimation Methods

The proposed analytic models were evaluated for the evaluation of traffic flow estimation based
on the amount of HOs and NLUs and the evaluation of traffic density estimation based on the amount
of CAs and PLUs in Sections 4.2.1 and 4.2.2. Finally, the vehicle speed estimation methods based on
the estimated traffic flow and the estimated traffic density were evaluated in Section 4.2.3.

4.2.1. The Evaluation of Traffic Flow Estimation

For the evaluation of traffic flow estimation, the simulated amounts of HOs and NLUs from Celli
are collected as CFVD to generate qi,h and qi,n. NLU is only performed with MS entering new LA, so
the estimated traffic flows are consistence in the same LA in the proposed approach. For instance, the
amount of HOs in Cell1 (h1) was 126 at 8 a.m. and 9 a.m., so the traffic flow of the first road segment
(q1,h) could be estimated as 7560 car/h by utilizing Equation (3) and MS communication behaviors
(e.g., the expected value (1{µ) of call holding time is 1 min/call). Furthermore, because 6672 NLUs
in Cell1 were performed at 8 a.m. and 9 a.m., the traffic flow of the first road segment (q1,n) could be
estimated as 6672 car/h according to Equation (4). This study calculated the accuracies of traffic flow

estimation as 1´

ˇ

ˇQi ´ qi,h
ˇ

ˇ

Qi
and 1´

ˇ

ˇQi ´ qi,n
ˇ

ˇ

Qi
. Table 2 shows that the average accuracies of traffic

flow estimation of the first road segment between 8 a.m. and 22 p.m. are 89% for the amount of HOs
and 100% for the amount of NLUs. As shown in Table 3, the comparison of the traffic flow estimation
comparisons between q1,h and qi,n indicates that the amount of NLUs is more suitable for traffic flow
estimation than the amount of HOs.
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Table 2. The accuracies of traffic flow estimation of the road segment covered by Cell1.

Time Q1
The Amount

of HOs
The Amount

of NLUs
q1,h q1,n 1´

ˇ

ˇ

ˇ
Q1 ´ q1,h

ˇ

ˇ

ˇ

Q1

1´

ˇ

ˇ

ˇ
Q1 ´ q1,n

ˇ

ˇ

ˇ

Q1

8 6672 126 6672 7560 6672 87% 100%
9 6200 112 6200 6720 6200 92% 100%
10 5435 92 5435 5520 5435 98% 100%
11 5663 80 5663 4800 5663 85% 100%
12 5532 90 5532 5400 5532 98% 100%
13 5265 90 5265 5400 5265 97% 100%
14 5546 90 5546 5400 5546 97% 100%
15 6368 88 6368 5280 6368 83% 100%
16 5762 78 5762 4680 5762 81% 100%
17 6101 124 6101 7440 6101 78% 100%
18 6122 104 6122 6240 6122 98% 100%
19 5378 74 5378 4440 5378 83% 100%
20 4667 72 4667 4320 4667 93% 100%
21 4625 64 4625 3840 4625 83% 100%
22 4312 60 4312 3600 4312 83% 100%

Mean 89% 100%

Table 3. The accuracies of traffic flow estimation of each road segment.

Cell 1´

ˇ

ˇ

ˇ
Qi ´ qi,h

ˇ

ˇ

ˇ

Qi
1´

ˇ

ˇ

ˇ
Qi ´ qi,n

ˇ

ˇ

ˇ

Qi

Cell1 89% 100%
Cell2 76% 100%
Cell3 77% 100%
Cell4 78% 100%
Cell5 70% 100%
Cell6 67% 99%
Cell7 68% 100%
Cell8 70% 100%
Cell9 72% 100%
Mean 74% 100%

4.2.2. The Evaluation of Traffic Density Estimation

For the evaluation of traffic density estimation, the simulated amounts of CAs and PLUs from
Celli are collected as CFVD to generate ki,a and ki,p. For instance, the amount of CAs in Cell1 (a1) was
97 at 8 a.m., so the traffic density of the first road segment (k1,a) could be estimated as 97 car/km by
Equation (6) and MS communication behaviors (e.g., the expected value (1{λ) of the call inter-arrival
time is 1 h/call). Furthermore, because 126 PLUs were performed in Cell1 at 8 a.m., the traffic density
of the first road segment (k1,p) could be estimated as 128 car/h in accordance with Equation (8) and
MS communication behaviors (e.g., call inter-arrival time). This study calculated the accuracies of

traffic density estimation as 1´

ˇ

ˇKi ´ ki,a
ˇ

ˇ

Ki
and 1´

ˇ

ˇKi ´ ki,p
ˇ

ˇ

Ki
. Table 4 shows that the average accuracies

of traffic density estimation of the first road segment between 8 a.m. and 22 p.m. are 91% for the
amount of CAs and 81% for the amount of PLUs. As shown in Table 5, the results of the traffic density
estimation between ki,a and ki,p indicate that the amount of CAs is more suitable for traffic density
estimation than the amount of PLUs.
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Table 4. The accuracies of traffic density estimation of the road segment covered by Cell1.

Time K1
The Amount

of CAs
The Amount

of PLUs k1,a k1,p 1´

ˇ

ˇK1 ´ k1,a
ˇ

ˇ

K1
1´

ˇ

ˇK1 ´ k1,p
ˇ

ˇ

K1

8 97 97 126 97 128 99% 67%
9 88 86 112 86 103 97% 83%
10 77 71 92 71 81 93% 95%
11 69 62 80 62 74 90% 92%
12 67 69 90 69 58 96% 87%
13 63 69 90 69 70 91% 89%
14 67 69 90 69 74 97% 89%
15 78 68 88 68 99 87% 72%
16 70 60 78 60 85 86% 78%
17 87 96 124 96 105 89% 78%
18 87 80 104 80 105 92% 79%
19 76 57 74 57 97 75% 72%
20 56 55 72 55 60 99% 92%
21 55 49 64 49 70 89% 73%
22 51 46 60 46 64 90% 75%

Mean 91% 81%

Table 5. The accuracies of traffic density estimation of each road segment.

Cell 1´

ˇ

ˇKi ´ ki,a
ˇ

ˇ

Ki
1´

ˇ

ˇ

ˇ
Ki ´ ki,p

ˇ

ˇ

ˇ

Ki

Cell1 91% 81%
Cell2 88% 75%
Cell3 90% 70%
Cell4 86% 86%
Cell5 84% 75%
Cell6 88% 73%
Cell7 86% 76%
Cell8 87% 84%
Cell9 84% 73%
Mean 87% 77%

4.2.3. The Evaluation of Vehicle Speed Estimation

For the evaluation of vehicle speed estimation, the estimated vehicle speeds ui,ha, ui,na, ui,hp and
ui,np can be generated via the estimated traffic flow from HO events (qi,h) Equation (3), the estimated
traffic flow by using NLU events (qi,n) Equation (4), the estimated traffic density by using CA events
(ki,a) and the estimated traffic density by using PLU events (ki,p) by Equations (9)–(12). For instance, the
average vehicle speed of the first road segment u1,ha can be estimated as 78 km/h (i.e., u1,ha “ q1,h{k1,a)
at 8 a.m. in accordance with the estimated traffic flow by using HO events (i.e., q1,h = 7560 car/h)
and the estimated traffic density by using CA events (i.e., k1,a = 97 car/km). This study calculated

the accuracies of traffic density estimation as 1 ´

ˇ

ˇUi ´ ui,ha
ˇ

ˇ

Ui
, 1 ´

ˇ

ˇUi ´ ui,na
ˇ

ˇ

Ui
, 1 ´

ˇ

ˇ

ˇ
Ui ´ ui,hp

ˇ

ˇ

ˇ

Ui
and

1´

ˇ

ˇUi ´ ui,np
ˇ

ˇ

Ui
. In accordance with the results in Sections 4.2.1 and 4.2.2, Table 6 shows that the

average accuracies of vehicle speed estimation of the first road segment between 8 a.m. and 22 p.m.
are 92%, 90%, 81% and 85% for the estimated vehicle speeds ui,ha, ui,na, ui,hp and ui,np, respectively.
As shown in Table 7, the results of the vehicle speed estimation show that the estimated traffic flow
based on the amount of NLUs and estimated traffic density based on the amount of CAs can obtain
the highest accuracy of vehicle speed estimation.
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Table 6. The accuracies of vehicle speed estimation of the road segment covered by Cell1.

Time U1 u1,ha u1,na u1,hp u1,np 1´

ˇ

ˇU1 ´ u1,ha
ˇ

ˇ

U1
1´

ˇ

ˇU1 ´ u1,na
ˇ

ˇ

U1
1´

ˇ

ˇ

ˇ
U1 ´ u1,hp

ˇ

ˇ

ˇ

U1
1´

ˇ

ˇU1 ´ u1,np
ˇ

ˇ

U1

8 69 78 69 59 52 87% 99% 85% 75%
9 70 78 72 65 60 89% 97% 93% 86%

10 71 78 77 69 67 90% 92% 97% 95%
11 83 77 91 65 76 94% 89% 78% 92%
12 83 78 80 93 96 94% 96% 88% 85%
13 83 78 76 77 75 94% 92% 92% 90%
14 83 78 80 73 75 94% 97% 88% 90%
15 82 78 94 53 64 95% 86% 65% 78%
16 83 78 96 55 68 94% 84% 67% 82%
17 70 78 64 71 58 90% 90% 100% 82%
18 70 78 77 59 58 89% 91% 84% 83%
19 71 78 94 46 55 90% 67% 65% 78%
20 84 79 85 72 78 94% 99% 86% 93%
21 84 78 94 55 66 93% 87% 65% 79%
22 84 78 94 56 67 93% 89% 67% 80%

Mean 92% 90% 81% 85%

Table 7. The accuracies of vehicle speed estimation of each road segment.

Cell 1´

ˇ

ˇUi ´ ui,ha
ˇ

ˇ

Ui
1´

ˇ

ˇUi ´ ui,na
ˇ

ˇ

Ui
1´

ˇ

ˇ

ˇ
Ui ´ ui,hp

ˇ

ˇ

ˇ

Ui
1´

ˇ

ˇ

ˇ
Ui ´ ui,np

ˇ

ˇ

ˇ

Ui

Cell1 92% 90% 81% 85%
Cell2 80% 86% 62% 81%
Cell3 75% 90% 62% 79%
Cell4 86% 83% 72% 88%
Cell5 76% 81% 59% 80%
Cell6 73% 85% 55% 80%
Cell7 76% 84% 57% 82%
Cell8 72% 85% 64% 86%
Cell9 78% 80% 56% 78%
Mean 79% 85% 63% 82%

4.3. The Evaluation of Vehicle Speed Forecasting Method

In this subsection, an LR algorithm and a BPNN algorithm were implemented for the evaluation
and comparison of the vehicle speed forecasting method. The estimated vehicle speeds uψi,ha, uψi,na,

uψi,hp and uψi,np from CFVD at cycle ψ were used to predict the future vehicle speed at the next cycle

in experiments. For instance, the estimated vehicle speeds of the first road segment u8
1,ha, u8

1,na, u8
1,hp

and u8
1,np from CFVD at 8 a.m., which were 78 km/h, 69 km/h, 59 km/h and 52 km/h, were adopted

as input characteristics in the LR and BPNN algorithms. The predicted vehicle speed U9
1 1 could be

calculated as 69 km/h by the BPNN algorithm, and the practical vehicle speed U9
1 was 70 km/h.

Therefore, the accuracy of vehicle speed forecasting could be measured as 98.90% (i.e., 1´

ˇ

ˇU9
1 ´U9

1 1
ˇ

ˇ

U9
1

).

Table 8 shows that the average accuracies of vehicle speed forecasting based on the LR and BPNN
algorithms between 8 a.m. and 22 p.m. are 94.82% and 96.01%. As shown in Table 9, the results
of the vehicle speed forecasting comparisons indicate that the BPNN algorithm is more suitable for
predicting the future vehicle speed for ITS.
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Table 8. The accuracies of vehicle speed forecasting of the road segment covered by Cell1. LR,
logistic regression.

Time Uψ`1
i

Forecasted Vehicle
Speed of LR

Forecasted Vehicle
Speed of BPNN

The Accuracy
of LR

The Accuracy
of BPNN

8 70 76 69 92.32% 98.90%
9 71 78 73 90.05% 96.32%

10 83 79 77 95.95% 93.26%
11 83 83 81 99.78% 97.30%
12 83 85 86 98.40% 96.86%
13 83 80 80 96.60% 96.74%
14 82 80 80 97.89% 98.18%
15 83 81 78 97.89% 93.95%
16 70 82 79 83.16% 87.91%
17 70 72 73 97.73% 96.19%
18 71 74 75 95.30% 93.91%
19 84 79 81 94.50% 96.52%
20 84 79 80 94.54% 95.47%
21 84 80 84 94.75% 99.93%
22 85 79 86 93.47% 98.76%

Mean 94.82% 96.01%

Table 9. The accuracies of vehicle speed forecasting of each road segment.

Cell The Accuracy of LR The Accuracy of BPNN

Cell1 94.82% 96.01%
Cell2 93.76% 96.29%
Cell3 93.42% 95.24%
Cell4 92.39% 94.03%
Cell5 93.25% 94.72%
Cell6 93.59% 97.35%
Cell7 92.26% 95.74%
Cell8 93.73% 95.19%
Cell9 93.84% 96.88%
Mean 93.45% 95.72%

5. Conclusions and Future Work

Several studies have reviewed and analyzed how to obtain the traffic information from CFVD.
However, they cannot be applied directly to predict the future traffic information in dynamical
environments. Therefore, this study proposes analytic models to estimate the traffic flow in accordance
with the amounts of HOs and NLUs and to estimate the traffic density in accordance with the amounts
of CAs and PLUs. Furthermore, the vehicle speeds can be estimated according to the estimated traffic
flows and estimated traffic densities. For vehicle speed forecasting, a back-propagation neural network
algorithm is considered to predict the future vehicle speed via the current traffic information. In an
experimental environment, this study adopted the practical traffic information from Taiwan Area
National Freeway Bureau as the input characteristics of the traffic simulation program and referred to
the MS communication behaviors from Chunghwa Telecom to simulate the traffic information and
communication records. The experimental results illustrated that the average accuracies of vehicle
speed estimation of road segments are 79%, 85%, 63% and 82% for the estimated vehicle speeds ui,ha,
ui,na, ui,hp and ui,np, respectively. Moreover, the average accuracy of the vehicle speed forecasting
method based on BPNN is 95.72%. Therefore, the proposed methods can be used to estimate and
predict vehicle speed from CFVD for ITS.

However, this study assumes that each MS in the car can be filtered and tracked for the collection
of cellular network signals (e.g., CAs, HOs, NLUs and PLUs). In the future, filtering out non-vehicle
terminals and correctly predicting the routes of vehicle terminals can be investigated in the next study.
Furthermore, this study focuses on analyzing the signals from GSM and UMTS networks to estimate
the traffic information of the highway for the evaluation of the proposed methods. As the demand for



Appl. Sci. 2016, 6, 47 18 of 19

real-time traffic information increases, the next goal is to estimate and analyze the traffic congestion
and transportation delays of urban road segments.
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