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Abstract: The bone scaffolds should possess suitable physicochemical properties and osteogenic
activities. In this study, porous calcium sulfate (CaSOy) scaffolds were fabricated successfully
via selected laser sintering (SLS). Nano-hydroxyapatite (nHAp), a bioactive material with a low
degradation rate, was introduced into CaSO, scaffolds to overcome the overquick absorption.
The results demonstrated that nHAp could not only control the degradation rate of scaffolds
by adjusting their content, but also improve the pH environment by alleviating the acidification
progress during the degradation of CaSOy scaffolds. Moreover, the improved scaffolds were covered
completely with the apatite spherulites in simulated body fluid (SBF), showing their favorable
bioactivity. In addition, the compression strength and fracture toughness were distinctly enhanced,
which could be ascribed to large specific area of nHAp and the corresponding stress transfer.

Keywords: selected laser sintering; porous scaffolds; degradation rate; pH environment; bioactivity

1. Introduction

Biodegradable scaffolds are becoming extremely promising objects for bone substitution and
repair [1-4]. They can provide a temporary structural support for cell growth and migration,
and act as an extracellular matrix to induce tissue regeneration [5,6]. Calcium sulfate (CaSO;) is
one of the most absorbable materials among all bioceramics. It possesses good biocompatibility and
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osteoconduction [7,8]. However, CaSO, degrades too fast and decreases pH of the surrounding
environment by releasing acidic products, resulting in an inflammatory reaction. In addition,
CaSOy has poor bioactivity which cannot form an effective bone bond with the surrounding
tissue [9,10].

Hydroxyapatite (HAp, Ca1o(PO4)s(OH);) is a necessary component of the bone tissue. It possesses
numerous favorable properties like bioactivity, osteoinductivity, and nontoxicity [11,12]. Besides,
HAp has slow biodegradability and presents alkalescency, which can neutralize the acidic product
and maintain pH stabilization of the surrounding environment [13]. Moreover, nanoscale HAp is
more efficient when used for bone repair compared with the conventional method, because it can
stimulate tissue regeneration at the bone-implant interface [14]. Meanwhile, nano-hydroxyapatite
(nHAp) possesses a large specific area, which can help to provide a strong interfacial interaction
between nHAp and matrix, and thus enhance the mechanical strength [15].

In recent years, nHAp as a potential bioactive material and nano-reinforcing phase has been
studied [16-18]. Sunil et al. added different contents of nHAp into magnesium and exhibited the
ideal result of adjusting its degradation behavior and pH value during the immersion of samples
in simulated body fluid (SBF) [19]. Covarrubias et al. investigated biological characteristics of
nanoceramics and indicated that nHAp possessed the favorable ability to induce bone-like apatite
formation, and promote protein adsorption and stem cell differentiation [20]. Chen et al. reported that
nHAp was employed to intensify chitosan scaffolds by the biomimetic method, and showed that the
mechanical strength and densification degree of scaffolds were not increased [21].

Selected laser sintering (SLS) is a novel processing technology in tissue engineering applications,
which allows the sintering of powder materials in an exceedingly brief duration compared with the
conventional sintering methods. Besides, it can easily construct a complex appearance and controllable
porous structure of the scaffolds. Bone scaffolds formed using SLS possess an interconnected porous
structure, which is beneficial for supporting cell adhesion, growth, and ingrowth of new bone tissue.
In this study, nHAp was added to CaSO4 and it was expected that tunable degradation rate and
good bioactivity would be obtained. The CaSO,/nHAp scaffold was prepared by SLS. The effects
of nHAp on degradability, pH change trend, and bioactivity were tested by immersing the scaffold
into the SBF solution. The mechanical property tests were carried out using the compression and
indentation method. Furthermore, the biocompatibility was assessed by investigating the adhesion
and proliferation behavior of the osteoblast-like cell on the scaffold.

2. Materials and Methods

2.1. Materials and Fabrication

Medical-grade CaSO4 powder was obtained through Alfa Aesar China (Shanghai) Co., Ltd.
(Shanghai, China) Parameters of the powder were as follows: purity: 99%, particle size: ~2 um,
density: 2.960 g-cm~3. The nHAp powder was bought from the Nanjing Emperor Nona Material
Co., (Nanjing, China), and it was synthesized using (CH30)3 and Ca(NO3),-4H,O as precursors by
sol-gel method. The powder had a length of 150 nm and a diameter of 20 nm. Its purity and pH
were 99.5% and 7.41, respectively. The CaSO, and nHAp powder in mass ratios of 95/5, 90/10, 85/15,
and 80/20 were mixed, respectively. The mixed powder was dispersed into anhydrous alcohol and
sonicated for two hours. Subsequently, the dispersed powder in suspension was filtered by filter paper
and dried at 50 °C for six hours in an oven.

The mixed powder was used for preparing 3D porous scaffolds by a self-developed SLS
system [22]. The whole system was made up of a control system, a motion platform, a support
frame, and a focus system. The minimum laser spot was able to reach 100 um by the laser focus
system. The maximum laser power was 100 W. The process of laser sintering was as follows. Firstly,
the mixed powder was paved onto the motion platform to obtain a thin powder layer. Then, a laser
beam was conducted on a selected area of the powder to form a solid layer. Afterward, the motion
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platform was lowered by an elevator to obtain the desired thickness of the monolayer. The above steps
were constantly repeated layer-by-layer until the scaffold built. After removing unsintered powder,
a scaffold with an interconnected porous structure was finally obtained. Preparation parameters of the
scaffold are expressed in Table 1.

Table 1. Processing parameters of the scaffold.

Laser Power Scanning Speed  Spot Diameter  Layer Thickness  Scan Spacing

75W 100 mm-min—1 1.0 mm 0.1 mm 3.5 mm

2.2. Characterization

The phase composition of the starting powder and the scaffold were detected by X-ray diffraction
(XRD, Bruker-AXS, Karlsruhe, Germany). It was operated at 40 kV /250 mA and scanning speed
of 8°/min with Cu K« radiation. The results were recorded from 20° to 70° (step size: 0.1°/s).
Distribution conditions of nHAp in the CaSO4 matrix was obtained using scanning electron microscopy
(SEM, TESCAN, Brno, Czech Republic) with energy dispersive spectroscopy (EDS). The scaffolds were
fractured and placed on aluminum stubs. Then, the cross-sections were coated with a 10 nm platinum
(Pt) layer using a sputter coater (JFC-1600, JEOL Co., Tokyo, Japan) due to poor conductivity of
the scaffolds.

Compression tests of the scaffolds were conducted using a mechanical testing instrument
(WD-01, Zhuoji Instruments, Shanghai, China) with the 100 N loading cell at a crosshead speed
of 0.5 mm/min. The compressive strength was assessed by the recorded maximum loading.
The toughness measurement was evaluated using Vickers indentation technique (HXD-1000TM,
Taiming Optical Instrument Co., Shanghai, China). Indentation was carried out on the polished
scaffolds surface by a diamond indenter at a loading of 4.9 N (ramp loading of 0.49 N/s and a dwell
time of 15 s at maximum loading). Equation (1), proposed by Charles and Evans. was utilized for
counting the fracture toughness (Kjc, MPa-m'/2) [23]:

Kjc = 0.0824(P/c'%) (1)
where P and c indicate the indentation loading (N) and the radial crack length (m), respectively.

2.3. SBF Immersion

The degradability of scaffolds was evaluated through the SBF soaking test. The SBF was prepared
using the Kokubo method [24]. Inorganic aqueous solution (pH = 7.4) with ion concentration near
human blood plasma was used [25]. Scaffolds with different contents of nHAp were soaked in SBF
and kept at 37 °C. The ratio of scaffold surface area to SBF volume was kept at 1 cm? to 10 mL. The SBF
was refreshed every two days. After finishing each immersion period, the scaffolds were taken away
from solution and dried for 12 h at 60 °C.

The weight of scaffolds was measured before (Wy) and after soaking (W;) to determine their
degradation degree. The degradation (weight loss) was calculated using the following equation:
Degradation = (Wy — W)/ Wy x 100%. Meanwhile, the pH of soaking solution was measured every
other day through an electrolyte-type pH meter (PHS-2C, Jingke Leici, Shanghai, China). Moreover,
the apatite formation on the scaffolds was detected by SEM, EDS, and Fourier-transform infrared
(FTIR, Thermo Scientific Co., Madison, WI, USA) technology.

2.4. Cell Culture

The osteosarcoma cell line (MG-63), purchased from the Cell Culture Center, (CCC, Chinese Academy
of Medical Science, Beijing, China), was used for the test. The cells were revived by culturing
into Dulbecco’s Modified Eagle Medium (DMEM) with 10% (v/v) fetal bovine serum (FBS) at
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37°C in a humidified atmosphere. Then, cells were detached from cell culture plates using
0.03% ethylenediaminetetraacetic acid /0.25% trypsin solution. All scaffolds were sterilized by exposure
to ultraviolet light for two hours. Afterwards, the cells were seeded dropwise onto the wetted scaffolds
(5 x 103 cells/cm?), and incubated at 37 °C for 1 day and 3 days. After incubation, the scaffolds with
cells were fixed using glutaraldehyde, rinsed using phosphate-buffered saline (PBS), and dehydrated
using various concentration of ethanol solution (20%-100%). Finally, the scaffolds were coated with Pt
in vacuum and observed by SEM.

Calcein acetoxymethyl ester (AM) is a common fluorescent stain used for staining live cells.
Before staining, the scaffolds with cells were fixed using 4% paraformaldehyde solution for 30 min and
permeabilized using PBS with 0.5% Triton for 10 min. Then, the scaffolds were immersed with FBS,
rinsed with PBS, stained with calcein AM, and placed in the dark for 5 min. After that, the scaffolds
were rinsed using PBS and observed under fluorescent microscope (BX51, Olympus, Tokyo, Japan).
In addition, cell proliferation behaviors were evaluated by the methylthiazol tetrazolium (MTT) assay.
Firstly, the cells were cultivated on scaffolds for 1, 2, and 3 days, respectively. Then, 40 uL MTT
solution (0.5 mg-mL~!) was taken into cell culture plates and kept for 4 h at 37 °C. Dimethyl sulfoxide
(DMSO) (200 mL) was added into the culture plate for completely dissolving the formazan product
after medium was removed. In the end, 100 mL solution was removed and transferred to the new well
plate. The absorbance was tested at 490 nm using the plate reader (VersaMaxTM, Molecular Devices,
Sunnyvale, CA, USA).

2.5. Statistical Analysis

At least eight specimens were tested per group for the SBF immersion and mechanical property
experiments, and five parallel specimens per group for the cell culture. The experimental data were
analyzed using OriginPro 8.0 and reported as the mean + standard deviation. p < 0.05 (significance
level) was considered statistically different.

3. Results and Discussion

3.1. Scaffolds Fabrication

The cylindrical scaffold was fabricated using SLS and is displayed in Figure 1, which had
well-controlled open pores. The size of the scaffold was about 17.0 mm x 6.0 mm (diameter x height).
The pores size and wall thickness were 1.5 mm and 2.0 mm, respectively. The pore channels were
completely interconnected and distributed throughout the whole scaffold, which were necessary for
new tissue ingrowth and vascularization construct [26]. Porosity of the cylindrical scaffold can be
estimated as 30.8% by Equation (2) [27]:

P=(Va-V)/Va @)

where the porosity was designated as P (%), apparent volume was designated as V, (mm?), and true
volume was designated as Vi (mm?).
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Figure 1. (a) Front view; (b) top view; and (c) enlarged view of the calcium sulfate /nano-hydroxyapatite
(CaSO4/nHAp) scaffold.

3.2. Phase and Microstructures

The phase composition of starting nHAp powder and the CaSOj scaffolds with different contents
of nHAp was analyzed by XRD (Figure 2). It could be found in the patterns that the scaffolds were
composed of HAp and CaSOjy crystalline phase by comparison with the standard XRD pattern of
HAp (JCPDS 72-1243) and CaSO, (JCPDS 70-0909). There were no other phases generated during the
sintering process, which was in accordance with previous results of another researcher [28]. It was
demonstrated that nHAp remained stable in the matrix, which could be compatible with CaSO;.
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Figure 2. X-ray diffraction (XRD) patterns of (a) starting nHAp powder and the scaffolds with different
contents of nHAp: (b) 0 wt %; (c) 5 wt %; (d) 10 wt %; (e) 15 wt %; and (f) 20 wt %.

In order to analyze the nHAp distribution in the CaSO,4 matrix, morphologies of the scaffolds
at high magnifications were obtained by SEM (Figure 3). HAp nanoparticles were distributed as
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primary particles in the microstructure of scaffolds containing 5, 10, and 15 wt % nHAp (Figure 3b—d).
The particle size of some randomly selected HAp nanoparticles in these scaffolds was all in conformity
with the particle size of starting nHAp powder. As the nHAp further increased to 20 wt %, agglomerates
of the nanoparticles were observed (Figure 3e). Zamanian et al. also obtained similar distribution
regularity of nanoparticles in the microstructure by adding nHAp into calcium hydroxide [29].

Fine ceramic particles tend to incorporate together under adhesion forces between particles, such as
van der Waals forces or electrostatic forces.

Figure 3. Cross-section of the scaffolds containing (a) 0 wt %; (b) 5 wt %; (c) 10 wt %,; (d) 15 wt %; and
(e) 20 wt % nHAp. The nanoparticles in circles indicate nHAp.

3.3. Degradability and pH

The CaSOy scaffolds containing various contents of nHAp were soaked in SBF solution for
different periods to evaluate its degradability (Figure 4). It was found that the scaffolds without nHAp
were nearly completely degraded within 21 days. Fast degradability of CaSO4 was also confirmed by
Kuo et al. [30]. After adding the nHAp, the degradation was obviously delayed and slowed gradually
with increasing nHAp. Therefore, controlling the nHAp content is an efficient way to adjust the
degradation rate of the scaffolds. The degradation rate decrease could be attributed to the fact that
nHAp possesses a quite low degradability. Meanwhile, nHAp adherence to CaSOy could effectively

reduce the contact of the CaSO, with the immersion solution and thus decrease the degradation rate
of scaffolds.

—m—CaS0,/0 wt % nHAp
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Figure 4. Degradation of the scaffolds after soaking in simulated body fluid (SBF) for different times.
Significant difference between the composite scaffolds and pure CaSOy scaffolds (* p < 0.05).
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The pH value changes of the SBF solution during the scaffolds immersion are shown in Figure 5.
The solution presented an alkaline to acidic pH transition after soaking the scaffolds without nHAp,
while the acidification progress of the immersion solution was alleviated effectively by introducing
nHAp into the scaffolds. Moreover, the solution showed a mild alkaline pH (from 7.4 to 7.0)
when nHAp contents increased to 15 or 20 wt %. This might be explained by nHAp presenting
slight alkalinity, which was able to neutralize the acidic product of CaSO,4 and thus hinder the pH
decrease. The improved pH environment could prevent inflammatory responses in vivo. In addition,
it was reported that an alkaline environment was helpful for apatite formation and promoted its
nucleation rate.

—=— CaS0O,/0 wt % nHAp
-~ ®--CaSO,/5 wt % nHAp
A CaSO,/10 wt % nHAp
~-¥--CaSO,/15 wt % nHAp
4 CaSO,/20 wt % nHAp

6.4 ——— 7 7
0 2 4 6 8 10 12 14 16
Soaking time (day)

Figure 5. The pH value changes of SBF solution after the scaffolds soaking for different times.
Significant difference between the composite scaffolds and pure CaSOy scaffolds (* p < 0.05).

3.4. Mechanical Property

The effect of nHAp on the mechanical property of the scaffolds is shown in Figure 6.
The compressive strength was enhanced gradually with nHAp increasing from 0 to 15 wt %.
Subsequently, the strength declined when the nHAp increased further to 20 wt %. Meanwhile,
the fracture toughness exhibited a similar change trend and arrived to the peak value at 15 wt %
nHAp content. Peak values of the strength and toughness were 34.46 MPa and 1.41 MPa-m'/2,
which increased by 68% and 29%, respectively, compared with that of the scaffolds without nHAp.

The mechanical property improvement was attributed to uniform dispersion of HAp nanoparticles
and the corresponding stress transfer. HAp nanoparticles had the strong interfacial bonding with the
CaSO, matrix due to its large specific area (50 m?/g). Under the loading, the stress could be transferred
between HAp nanoparticles and the matrix. The high-stress region would be released and transferred
to another region, and thus enhance the loading resistance of scaffolds. On the other hand, excessive
nHAp would form an agglomerate structure and reduce the bonding interface area between the matrix
and nHAp, which would result in stress concentration and some inner flaws in the matrix, such as
voids and cracks, weakening its mechanical strength [31].
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Figure 6. Compressive strength and fracture toughness of the scaffolds at different nHAp contents.
Significant difference between the composite scaffolds and pure CaSOy scaffolds (* p < 0.05, ** p < 0.01).

3.5. Bioactivity

Bioactivity of the scaffolds was assessed by soaking in SBF for 1 and 3 days, respectively (Figure 7).
The results demonstrated that there was a lot of spherical precipitate with bonelike apatite shape on
the scaffolds containing nHAp. Besides, most of the scaffold’s surface was covered by the apatite
precipitate after soaking for 3 days when the nHAp increased to 15 wt %. The scaffolds containing
20 wt % nHAp was covered completely by the apatite precipitate at that time. The precipitate did not
appear on the control group. As multiple studies have pointed out, there is no apatite formation on
the pure CaSO, during soaking in SBF [32,33], which coincides with the experimental result in this
test. The EDS analysis (Figure 8a) further demonstrated that the precipitate layer on the scaffolds was
mainly composed of calcium (Ca) and phosphorus (P). Their ratio was about 1.74, which is close to the
stoichiometric ratio of Ca/P in the apatite (1.67).

Figure 7. Morphologies of the scaffolds containing (a,f) 0 wt % (control); (b,g) 5 wt %; (c,h) 10 wt %;
(d,i) 15 wt %; and (e,j) 20 wt % nHAp after soaking in SBF for (a—e) 1 day and (f-j) 3 days.
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Figure 8. (a) Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)

analysis of the precipitate on the CaSO,/15 wt % nHAp scaffolds after soaking in SBF for 3 days;

(b) Fourier-transform infrared (FTIR) spectra of the CaSO,/15 wt % nHAp scaffolds soaked in SBF for
3 days.

In addition, composition of the scaffolds with 15 wt % nHAp before and after soaking was also
analyzed by FTIR spectroscopy (Figure 8b). The intensity of PO4>~ absorption bands, located at around
567 cm~! and 1035 cm !, presented a significant increase. Moreover, the CO32~ absorption bands
were observed at 1418 cm ! in the scaffolds after soaking, which did not appear in the scaffolds before
soaking. All of these results confirmed that the bonelike apatite formed on the scaffold after soaking.

The nHAp played an important role in the apatite formation, which was able to serve as the
nucleation site for the apatite crystal growth in SBE. The apatite layer in the biological environment
could greatly promote the formation of strong bone bonds between the scaffolds and bone tissues,
as well as bone regeneration progress [34,35]. Besides, the apatite, covering the scaffolds, slowed the
degradation rate of the scaffolds by reducing its contact with the soaking solution.

3.6. Cell Adhesion and Proliferation

The cell morphologies on the scaffolds were analyzed by SEM and fluorescent staining
(Figures 9 and 10). In comparison to the rounded cells in the control group, the cells on the scaffolds
with nHAp spread well after cultivating for 1 day and exhibited a fusiform morphology. Besides,
the extension degree of the cells gradually enhanced with increasing nHAp content. After 3 days,
the cells formed a confluent layer by cytoplasmic extension and attached closely throughout the
scaffolds. The MTT assay was used for investigating the cell proliferation behavior after culturing for 1,
2, and 3 days, respectively (Figure 11). The experimental result showed that the cells presented a good
proliferation trend on the scaffolds with the culture time extension. Meanwhile, the cells numbers on
the scaffolds with nHAp was obviously higher than that of the control group.
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Figure 9. SEM images of MG-63 cells cultured on the scaffolds containing (a,f) 0 wt % (control);
(b,g) 5 wt %; (c,h) 10 wt %; (d,i) 15 wt %; and (e,j) 20 wt % nHAp for (a—e) 1 day and (f—j) 3 days.

100 100 pm 100 100 pm

100 100 pm 100 100 pm

Figure 10. Fluorescent images of MG-63 cells cultured on the scaffolds containing (a,f) 0 wt % (control);
(b,g) 5 wt %; (c,h) 10 wt %; (d,i) 15 wt %; and (e,j) 20 wt % nHAp for (a—e) 1 day and (f—j) 3 days.
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Figure 11. Proliferation behaviors of cells cultivated on the scaffolds for 1, 2, and 3 days. Significant
difference between the composite scaffolds and pure CaSOj scaffolds (* p < 0.05, ** p < 0.01).

The results of cell culture suggested that the scaffolds containing nHAp could promote cell
growth and proliferation, showing good biocompatibility. This was due to the fact that nHAp helps to
adsorb more protein, such as fibronectin or vitronectin, on the scaffold’s surface. The adsorbed protein
attracts more cells towards this region and thus enhanced the cell adhesion and proliferation ability.
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In addition, nHAp restrained the acidification effect during CaSO, degradation and created a slightly
alkaline environment, which is beneficial for supporting cell metabolism.

4. Conclusions

In this study, nHAp was added to CaSO, to obtain the bioactive scaffolds with a tunable
degradation rate, which was prepared through the SLS. The SBF immersion test showed that the nHAp
was able to effectively improve degradability and apatite-formation ability of the scaffolds. Besides,
the scaffolds containing nHAp showed a good ability to prevent decreasing pH during degradation;
this is due to the neutralizing effect of nHAp on the acidic degradation byproducts released from
CaSO4. Moreover, the mechanical strength was correspondingly enhanced while increasing nHAp to
15 wt %, while further increasing nHAp led to decreased mechanical strength due to agglomeration of
nanoparticles in the matrix. The cell culture experiment demonstrated that the composite scaffolds had
excellent biocompatibility to support cell attachment and proliferation. Therefore, the CaSO4/nHAp
scaffold is a very promising candidate for bone defect treatment.
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