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Abstract: Unmanned combat air vehicle (UCAV) path planning aims to calculate the optimal 

or suboptimal flight path considering the different threats and constraints under the 

complex battlefield environment. This flight path can help the UCAV avoid enemy threats 

and improve the efficiency of the investigation. This paper presents a new quantum wind 

driven optimization (QWDO) for the path planning of UCAV. QWDO algorithm uses 

quantum rotation gate strategy on population evolution and the quantum non-gate strategy 

to realize the individual variation of population. These operations improve the diversity of 

population and avoid premature convergence. This paper tests this optimization in two 

instances. The experimental results show that the proposed algorithm is feasible in these 

two cases. Compared to quantum bat algorithm (QBA), quantum particle swarm 

optimization (QPSO), wind driven optimization (WDO), bat algorithm (BA), particle 

swarm optimization (PSO), and differential evolution (DE), the QWDO algorithm 

exhibited better performance. The simulation results demonstrate that the QWDO 

algorithm is an effective and feasible method for solving UCAV path planning. 

Keywords: wind driven optimization (WDO); unmanned combat air vehicle (UCAV); 

path planning; quantum wind driven optimization (QWDO) 
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1. Introduction 

In recent years, with the rapid development of science and technology, modern battlefield military 

equipment has shown a clear trend toward unmanned operation. As an important means of airborne 

reconnaissance, surveillance and combat, the aircraft is increasingly a primary concerned of militaries 

around the world. However, with the increasing complexity of the modern battlefield environment and 

the continuous expansion of the scope of operation, UCAV not only need to avoid or reduce the 

probability of detection, but also avoid many adverse factors that may affect the flight in no-fly zones 

and barrier regions, which have brought serious challenges to the implementation of aerial 

reconnaissance, surveillance, combat and other missions to the UCAV. Therefore, in order to improve 

the operational efficiency and the survival probability, path planning must take into account the 

requirements of the task, the threat distribution, the fuel restriction and other constraints, when 

producing a global optimal or sub-optimal route that can effectively avoid the threat of an enemy and 

protect the UCAV. Furthermore, a path-planning algorithm must be able to adjust and modify the route 

according to changes in the battlefield. 

At present, in military and civilian fields, the UCAV path-planning problem has been widely 

studied. Many heuristic authors have proposed algorithms have been used to solve the problem, which 

have achieved good results Ma et al. proposed a particle swarm optimization based on second-order 

oscillating (SOPSO) to solve the problem [1]. Ma et al. proposed the path planning method based on 

artificial fish school algorithm (AFSA) to solve UCAV path-planning problem [2]. Duan et al. applied 

differential evolution (DE) to solve the problem [3]. Wang et al. proposed a bat algorithm with mutation 

(BAM) for solving the UCAV path-planning problem [4]. Wang et al. proposed a new modified firefly 

algorithm (MFA) based on a modification in exchange information to solve the UCAV path planning 

problem [5]. Li et al. proposed a novel artificial bee colony algorithm (ABC) improved by a 

balance-evolution strategy to solve the problem [6]. Zhou et al. proposed a wolf colony search algorithm 

(WCA) based on the complex method to solve the UCAV path planning problem [7]. Zhu et al. proposed a 

novel Chaotic Predator-Prey Biogeography-Based Optimization (CPPBBO) approach based on the chaos 

theory and the concept of predator–prey for solving UCAV path planning problem [8]. 

The wind driven optimization (WDO) is a novel nature-inspired technique that was proposed by 

Bayraktar et al. in 2010 [9,10]. In the atmosphere, wind balances atmospheric pressure through flow. 

Wind flows from high pressure to low pressure at a certain speed until a balance point is reached. 

Because the WDO algorithm has only a few parameters that need to be controlled, and it is very easy 

to implement, it has received much attention by various scholars since it was put forward. In recent 

years, the WDO algorithm has also been applied in many fields, for instance, in satellite image 

segmentation for multilevel thresholding [11], cloud resource allocation scheme [12], collision 

avoidance for dynamic environments [13], design of two-channel filter bank [14], synthesis of linear array 

antenna [15], and so on. 

In the classical natural heuristic algorithm, the population an individual uses is the real number 

encoding or the binary encoding [16]. In the quantum-inspired algorithm, the individual is represented 

by a quantum bit. The probability amplitude of the qubit should be used for the individual, so that each 

individual can be represented by a superposition of multiple states [17]. As a result, quantum-inspired 
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algorithms have better population diversity, faster convergence speed, and better global optimization 

ability than traditional heuristic algorithms. 

It is easy for the WDO algorithm to fall into a local optimal solution in the early stage of solving an 

optimization problem, which will lead to the loss of diversity of population [10]. In order to overcome 

this shortcoming, we apply the quantum encoding theory to the WDO algorithm, and propose a new 

algorithm called quantum wind driven optimization (QWDO). 

To verify the feasibility and effectiveness of the QWDO algorithm, this paper uses the proposed 

algorithm to solve the problem of UCAV path planning. In this paper, two sets of test cases are utilized 

to test the performance of the algorithm, and a comparative analysis of the WDO algorithm and several 

common intelligent algorithms is carried out. The experimental results demonstrate that the QWDO 

algorithm is an effective and stable method for solving the UCAV path-planning problem, and has a 

better search performance than other algorithms. 

2. Mathematical Modeling for UCAV Path Planning 

2.1. Threat Resource Model in UCAV Path Planning 

Modeling of threat resources is key for solving the UCAV path-planning problem. In this model,  

S is defined as the starting point, and T is the target point (Figure 1) [18,19]. There are some threat 

resources in UCAV battlefield, for example, radars, missiles, and artillery, the effects of which all are 

shown in the form of a circle. The extent to which UCAV is threatened is proportional to the fourth 

power of the distance from the threat center. The flight task is to generate an optimal or suboptimal 

path, so that the UCAV can avoid the threat area from starting point S to the destination T. 
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Figure 1. Typical Unmanned combat air vehicle (UCAV) Battle Field Model. 

There are three main steps in the path planning. First, connect the starting point Sand the target 

point T into a line segment ST. Second, divide the line segment ST into D + 1 equal parts. At each 

segment point, draw the vertical line of ST, denoted as L1, L2,…,Lk,…LD. Third, take a discrete point in 

each vertical section Lk, these points constitute a collection of discrete points [19,20] 
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1 2{ , ( (1), (1)), ( (2), (2)), , ( ( ), ( )), ( ( ), ( )), }k DC S L x y L x y L x k y k L x D y D T= … … . Fourth, connect 

these discrete points in order to form a path. In this way, the path-planning problem is transformed into 

the optimal orthogonal coordinate system to achieve the optimization of the objective function. 

In order to speed up the search speed of the algorithm, we can take line segment ST as the x-axis 

and carry on the coordinate transformation on each discrete point (x(k),y(k)) according to Equation (1), 

where  is the angle between the original x-axis and the line segment ST, while (xs,ys) represents the 

coordinates of the original coordinate system. 

( )'( ) cos sin

'( ) sin cos ( )
s

s

x k xx k

y k y k y

−θ θ     
=     − θ θ −     

 (1)

Thus, the x coordinates of each discrete point can be calculated by a simple formula 

'( )
1

ST
x k k

D
= ⋅

+
. The set of discrete points C can be simplified to C′ = 

{0,L1(y)′(1)),L2(y′(2)),…,Lk(y′(k)),…LD(y′(D)),0}, which can greatly reduce the cost of computation. 

2.2. Evaluation Function 

Evaluation of path planning for UCAV mainly consists of the threat cost Jt and the fuel cost Jf, the 

formula for calculation is as follows: 

0

L

t tJ w dl=   (2)

0

L

f fJ w dl=   (3)

where wt is the threat cost of each point on the flight path, wf is the fuel cost for each point on the 

route, and L is the total length of the route. 

In order to improve the computational efficiency, a more accurate approximation strategy can be used. 

In this work, the threat cost of the route between two discrete points was calculated. It is 

approximately equal to the sum of the threat cost of five points, as shown in Figure 2 [18,19]. 

1 1(x , y )i i− −

(x , y )i i

 

Figure 2. Computation for Threat Cost. 
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If the i th edge is within the effect range, the calculation formula of the threat cost is as follows: 

, 4 4 4 4 4
1 0.1, , 0.3, , 0.5, , 0.7, , 0.9, ,

1 1 1 1 1
( )

5

t

i

N
i

t L k
k i k i k i k i k i k

L
w t

d d d d d=

= ⋅ ⋅ + + + +  (4)

where, Nt is the number of threatening areas, Li is the i th sub-path length, d0.1,i,k is the distance from 

the 1/10 point on the i th edge to the k th threat, and tk is the threat level of k th threat. 

Assuming the speed of a UCAV is a constant, the fuel cost Jf can be equivalent to the total length L 

of the flight path. 

Therefore, the total cost comes from a weighted sum of the threat and fuel cost. It can be defined  

as Equation (5). 

λ (1 λ)t fJ J J= + −  (5)

where λ is a variable between 0 and 1, which is the balance between safety and fuel performance.  

If flight security is highly important to this task, we will select a larger λ, while if the speed is vital to 

the flight task, we will choose a smaller λ. In this paper, λ is equal to 0.5. 

3. The Basic Wind Driven Optimization 

The inspiration of the proposed WDO derives from the atmosphere. In the atmosphere, wind blows 

from high-pressure areas to low-pressure areas until the air pressure is balanced. The beginning of 

WDO algorithm is Newton’s second law of motion [21,22]. 

ρ iF=
 
ω  (6)

where, ω


 is the acceleration, ρ  is the air density for an infinitesimal air parcel, and iF


 are all the 

forces acting on the air parcel. 

The cause of the air movement is due to the combination of many forces, mainly including 

gravitational force ( GF


), pressure gradient force ( PGF


), Coriolis force ( CF


) and friction force ( FF


). 

The physical equations of the abovementioned forces are as follows: 

ρδGF V g=
 

 (7)

δPGF P V= −∇


 (8)

2CF u= − Ω×
 

 (9)

ραFF u= −
 

 (10)

where δV is finite volume of the air, g


represents the gravitational acceleration, P∇ represents the 

pressure gradient, Ω is rotation of the earth, u


 represents the velocity vector of the wind and α is the 

friction coefficient. 

The forces mentioned above can be added to the Equation (6). The equation can be described as 

Equation (11): 

( ) ( ) ( ) ( )ρ ρδ δ 2 ρα
u

V g P V u u
t

Δ = + −∇ + − Ω× + −
Δ

   
 (11)
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where the acceleration α


 in Equation (11) is rewritten as u tα = Δ Δ
 

. For simplicity, set Δt = 1, for 

an infinitesimal air parcel and set δV = 1, which simplifies Equation (11) to 

( ) ( ) ( ) ( )ρ ρ 2 ραu g P u uΔ = + −∇ + − Ω× + −
   

 (12)

On the basis of the ideal gas law, Equation (13), the density ρ can be written in terms of the 

pressure, thus Equation (12) can be rewritten as 

ρP RT=  (13)

( )2
α

cur cur

RT uRT
u g P u

P P

   − Ω×Δ = + −∇ + + −  
   

  
 (14)

where, P is the pressure, R is the universal gas constant, T is the temperature, and Pcur is the pressure of 

current location. It is assumed in the WDO algorithm that velocity and position of the air parcel are 

changing at each iteration. Thus, uΔ


 can be written as new curu u uΔ = −
  

, where newu


represents the 

velocity in next iteration and curu


 is the velocity at the current iteration. g


 and P∇  are vectors, 

they can be broken down in direction and magnitude as ( )0 curg g x= −


, 

( )opt cur opt curP P P x x−∇ = − − ,  

Popt is the optimum pressure point that has been found so far, xopt is the optimum location that has been 

found so far, and xcur is the current location, thus updating Equation (14) with the new equations, so 

that Equation (14) can be rewritten as:  

( ) ( ) 2
1new cur cur opt cur opt cur

cur cur

RT uRT
u u gx P P x x

P P
α

   − Ω×= − − + − − +   
   

 
 (15)

Finally, there are three additional substitutions needed. First, the influence of the Coriolis force 

( )uΩ×


 is replaced by the velocity influence from another dimension 
dimother

curu


; second, all the 

coefficients are combined together, i.e., c = −2RT; and third, in some cases where the pressure is 

extremely large, the updated velocities are too large to become meaningless, the efficiency of the 

WDO algorithm will be reduced. Thus, the actual pressure value is replaced by rank among all air 

parcels based on their pressure values, the resulting equation of updating the velocity can be described 

as in Equation (16), and the equation of updating the location can be described as in Equation (17). 

( ) ( )
dim

1
1 1

other
cur

new cur cur opt cur

cu
u u gx RT x x

i i
α

    = − − + − − +      

 
 (16)

( )new cur newx x u t= + × Δ
  

 (17)

where i is the ranking among all air parcels, newx


 represents the new location for the next iteration. 

WDO is similar to other nature-inspired optimization algorithms, but compared to other 

optimization algorithms, the code of WDO is more simple and easy to implement, as it has less control 

variables that need to be adjusted. 
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4. Quantum Computing 

In quantum computing, the smallest information unit is a quantum bit, also called a qubit. It uses 

“0” and “1” to represent the two basic states. The difference between qubit and classical bit is that the 

qubit not only can be in a state of “0” or “1”, qubit can also be in a state between “0” and “1”. That is, 

“0” and “1” states exist in a certain probability. The state of a qubit can be described as [23]. 

α 0 β 1Ψ = +  (18)

where, α and β are a pair of complex numbers. They are called the probability amplitude of qubit. α2 

and β2 represent the probability that the quantum bits are in “0” and “1”, respectively, and satisfy the 

equation 2 2
α β 1+ = . x  represents a quantum state. 

An n-qubits representation can be defined as 

1 2

1 2

α αα α

β β β β
k n

k n

 
 
 

 
 

 (19)

5. Quantum Wind Driven Optimization 

This paper proposed a new quantum-inspired meta-heuristic algorithm, namely quantum wind 

driven optimization (QWDO). The QWDO uses probability amplitude of qubit to represent the 

particle’s position. The movement of position can be realized by the quantum rotation gate strategy. 

Position realizes the mutation using quantum non-gate strategy. This operation can improve the 

population diversity and avoid premature convergence. Because each qubit has two probability 

amplitudes, each particle can also represent the two positions of the optimization space. In the case of 

the same number of particles, the search process can be accelerated. 

5.1. Generate Initial Population 

Because the probability amplitude satisfies the equation 2 2
α β 1+ = , we let α cos(θ)= , and  

β sin(θ)=  [17]. Where,  is a rotation angle. The coding scheme is as following: 

1 2

1 2

cos(θ ) cos(θ ) cos(θ ) cos(θ )

sin(θ ) sin(θ ) sin(θ ) sin(θ )
i i ik in

i i ik in

P
 

=  
 

 
 

 (20)

where, ij = 2π × rand, rand is a random number between 0 and 1, i = 1,2,…,m; j = 1,2,…,n; m is the 

size of the population, and n is the space dimension. Each individual corresponds to the two position of 
the problem space. That is, the probability amplitude of quantum state 0  and 1 : 

1 2(cos(θ ),cos(θ ), ,cos(θ ))ic i i inP =   (21)

1 2(sin(θ ),sin(θ ), ,sin(θ ))is i i inP = …  (22)

where Pic is a cosine position and Pis is a sinusoidal position. 
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5.2. Transformation of the Solution Space 

In order to calculate the current position of the particle, there is a need to carry out the 

transformation of the space. We need to map the two positions of the particles from the unit space 

[ ]1,1
n

I = −  to the solution space of the optimization problem. The variables of solution space are as 

follows: 

max min

1
[ (1 α ) (1 α )]

2
j j j

ic i iX X X= + + −  (23)

max min

1
[ (1 β ) (1 β )]

2
j j j

is i iX X X= + + −  (24)

where, j
icX  is calculated by the probability amplitude j

iα  of quantum state 0  and j
isX  is 

calculated by the probability amplitude β j
i of quantum state 1 .  

5.3. Updating Process 

In order to prevent the algorithm from falling into local optimum, in this paper, two quantum gate 

strategies are applied. The movement of position can be realized by the quantum rotation gate strategy, 

and position realizes the mutation using quantum non-gate strategy. 

5.3.1. Updating Formulas of Phase Angle Increment and Phase Angle 

In quantum wind driven optimization (QWDO), updating formulas of phase angle increment and 

phase angle are as following: 

( ) ( )
( ) ( )( )

θ ( 1) 1 α θ ( ) cos θ ( )

θ ( )1
1 cos θ ( ) cos θ ( )

ij ij ij

rand
opt ij

t t g t

c t
RT t t

r r

Δ + = − ∗ Δ − ∗ Δ +

∗ Δ − ∗ Δ − Δ + 
 

 (25)

θ ( 1) θ ( ) θ ( 1)ij ij ijt t t+ = + Δ +  (26)

where, Δij and ij are the j th dimension of the i th phase angle increment and phase angle, respectively. 

5.3.2. Quantum Rotation Gate Strategy 

This paper uses quantum rotation gate strategy to update the probability amplitude. 

cos(θ ( 1)) cos( θ ( 1)) sin( θ ( 1)) cos(θ ( )) cos(θ ( ) θ ( 1))

sin(θ ( 1)) sin( θ ( 1)) cos( θ ( 1)) sin(θ ( )) sin(θ ( )) θ ( 1)

ij ij ij ij ij ij

ij ij ij ij ij ij

t t t t t t

t t t t t t

+ Δ + − Δ + +Δ +       
= =       + Δ + Δ + +Δ +              

 (27)

Two updated positions are as follows: 

 (cos(θ ( ) θ ( 1)), ,cos(θ ( ) θ ( 1)))ic ij ij ij ijP t t t t= + Δ + + Δ +  (28)

 (sin(θ ( )) θ ( 1), ,sin(θ ( )) θ ( 1))is ij ij ij ijP t t t t= + Δ + … + Δ +  (29)
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5.3.3. Quantum Non-Gate Strategy 

This paper uses quantum non-gate strategy to make the position mutation. This operation can 

increase the population diversity and avoid premature convergence. randi is a random number between 

0 and 1. If randi < Pm, where Pm is the mutation rate, it will exchange two probability amplitudes. The 

exchange formula is as follows: 

cos(θ )cos(θ ) sin(θ )0 1 2
1 0 sin(θ ) cos(θ )

sin(θ )
2

ij
ij ij

ij ij
ij

π

π

 +     
= =      

          +  

 (30)

5.4. The Flow Chart of QWDO 

Algorithm 1. Quantum Wind Driven Optimization (QWDO) Algorithm. 

Step 1. Initialize parameters. 

N (Population size); G (Max number of generations); RT (RT coefficient);  

α (The friction coefficient); g (Gravitational constant); c (Constant in the 

update equation);  

max V (Maximum allowed speed); Pm (Mutation scale factor). 

Step 2. Generate Initial Population. 

Step 3. Transform the solution space according to Equations (23) and (24). 

Step 4. Evaluate fitness of each air parcel. 

Step 5. Identify the best solution among all air parcels. 

Step 6. While stopping criterion is not satisfied 
Step 6.1. Update phase angle increment and phase angle by Equations (25) 
and (26) 
Step 6.2. Update the probability amplitude by using quantum rotation gate 
strategy according to Equation (27). 

Step 6.3. If rand  Pm then 
Implement quantum non-gate strategy by Equation (30). 
End if 
Step 6.4. Transform the solution space according to Equations (23) and 
(24). 
Step 6.5. Evaluate fitness of each air parcel. 
Step 6.6. Identify the best solution among all air parcels. 

Step 6.7. Increment the generation count G = G + 1. 

Step 7. End while 

5.5. The Flow Chart of QWDO for UCAV Path Planning 

Algorithm 2. QWDO for UCAV Path Planning Algorithm. 

Step 1. Initialize parameters. 

N (Population size); G (Max number of generations); RT (RT coefficient); 
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α (The friction coefficient); g (Gravitational constant); c (Constant in the 

update equation); 

Pm (Mutation scale factor). 

Step 2. Build the UCAV battlefield model. 

Step 3. Transform coordinate system according to Equation (1). 

Step 4. Generate Initial Population according to Equation (20). 

Step 5. Transform the solution space according to Equations (23) and (24). 

Step 6. Evaluate the cost of each flight path by Equation (5). 

Step 7. Get the best path. 

Step 8. While stopping criterion is not satisfied 

Step 8.1. Update phase angle increment and phase angle by Equation (25) 

and (26). 

Step 8.2. Update the probability amplitude by using quantum rotation gate 

strategy according to Equation (27). 

Step 8.3. If rand < Pm then 

Implement quantum non-gate strategy by Equation (30). 

End if 

Step 8.4. Transform the solution space according to Equations (23) and 

(24). 

Step 8.5. Evaluate the cost of each flight path by Equation (5). 

Step 8.6. Get the best path. 

Step 8.7. Increment the generation count G = G + 1. 

Step 9. End while 

6. Experimental Results 

6.1. Experimental Setup 

All algorithms are implemented in MATLAB R2012a (MathWorks, New York, USA, 2012), and 

experiments are performed on a Pentium 3.00 GHz Processor (Intel, New York, NY, USA, 2004), with 

4.0 GB of memory, Windows 7 operating system. 

6.2. Parameters Setting 

In this section, the parameters setting are presented. Tables 1–7 represent the necessary parameters 

used for QWDO, QBA, QPSO, WDO, BA, PSO and DE algorithms, respectively. Bayraktar et al. did 

a lot of research for the parameters setting of WDO algorithm [10]. The parameters for the set of 

quantum algorithms are the same as the original algorithm. The parameters set for some algorithms are 

based on the practical experience to take the appropriate value. In all trials, the population size is 30 

(Popsize = 30). 
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Table 1. The parameters setting of quantum wind driven optimization (QWDO). 

Parameters Value 

RT coefficient 1 
Constants in the update equation 0.8 

Maximum allowed speed 0.3 
Gravitational constant 0.6 

Coriolis effect 0.7 
The range of phase angle [−π,π] 

Table 2. The parameters setting of quantum bat algorithm (QBA). 

Parameters Value 

Pulse frequency range [0,2] 
Maximum pulse emission 0.5 
The maximum loudness 0.5 

Attenuation coefficient of loudness 0.95 
Increasing coefficient of pulse 

emission 
0.05 

The range of phase angle [−π,π] 

Table 3. The parameters setting of quantum particle swarm optimization (QPSO). 

Parameters Value 

Constant inertia 0.7298 
The first acceleration coefficients 1.4962 

The second Acceleration coefficients 1.4962 
The range of phase angle [−π,π] 

Table 4. The parameters setting of wind driven optimization (WDO). 

Parameters Value 

RT coefficient 1 
Constants in the update equation 0.8 

Maximum allowed speed 0.3 
Gravitational constant 0.6 

Coriolis effect 0.7 

Table 5. The parameters setting of bat algorithm (BA). 

Parameters Value 

Pulse frequency range [0,2] 
Maximum pulse emission 0.5 
The maximum loudness 0.5 

Attenuation coefficient of loudness 0.95 
Increasing coefficient of pulse emission 0.05 
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Table 6. The parameters setting of particle swarm optimization (PSO). 

Parameters Value 

Constant inertia 0.7298 
The first acceleration coefficients 1.4962 

The second Acceleration coefficients 1.4962 

Table 7. The parameters setting of difference evolution (DE). 

Parameters Value 

Mutation scale factor 0.2 
Crossover probability 0.03 

6.3. Experimental Results 

This section is mainly to test the performance of the QWDO algorithm for solving the problem of 

UCAV path planning. In this section, a total of two test instances were carried out. In the simulation 
experiment, the dimension D and the maximum number of iterations Maxgen are used as the two control 

variables. We look at the performance of QWDO algorithm as compared with other optimization 

algorithms, for instance, quantum bat algorithm (QBA) [24], quantum particle swarm optimization (QPSO) 

[25], wind driven optimization (WDO), bat algorithm (BA), particle swarm optimization (PSO), and 

differential evolution (DE). All of the test cases are carried out with 50 independent experiments. 

We use the battlefield environment parameters described in [5]. UCAV starts at (10,10) and the 

destination is (55,100). In this battlefield environment, there are five threat centers. Table 8 presents 

information about known threats for the first test instance. 

Table 8. Information about known threats for the first test instance. 

Threat Center (km) (45,50) (12,40) (32,68) (36,26) (55,80) 

Threat radius (km) 10 10 8 12 9 
Threat grade 2 10 1 2 3 

Unmanned combat air vehicle (UCAV) path planning aims to calculate the optimal or suboptimal 

flight path. When the dimension of the algorithm is not the same, the results will be different. Table 9 

shows the mean results, the best fitness value and the worst fitness value between the algorithms of  

50 independent runs. In the following tables, bold results indicate that the algorithm performed the 

best. 

From Table 9, we see that the mean normalized optimization results of DE algorithm performed the 

best in D = 5 and D = 10. In the rest of the cases, the mean normalized optimization results of QWDO 

algorithm performed best. We can see that the best-normalized optimization results of DE algorithm 

performed the best in D = 5, and in the rest of the cases, the best normalized optimization results of 

QWDO algorithm performed best. As can be seen in Table 9, the worst normalized optimization 

results of QWDO algorithm is the best, except in D = 15 and D = 25. In summary, the performance of 

QWDO algorithm is better than other optimization algorithms. 
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Table 9. Experimental results for the first test instance in different D.  

Popsize Maxgen D Result DE PSO BA WDO QPSO QBA QWDO 

30 200 5 

Mean 59.47631887 69.69789792 79.69109684 71.34530853 63.43087561 68.98614459 68.96129066 

Best 53.50706462 53.78972474 53.65716479 69.87539134 53.51528812 53.71340066 57.98320586 

Worst 69.41083451 122.5251479 153.561503 74.74310818 69.65781726 69.70146844 69.34914343 

30 200 10 

Mean 51.65071551 51.46197291 51.63995084 52.22163684 51.09958359 51.09603877 50.7143172 

Best 50.71342237 50.76572646 50.75929951 51.70051826 50.73093318 50.74767855 50.7133255 

Worst 56.58333938 54.59093708 63.46628192 52.82754363 53.39086949 53.84706658 50.7210475 

30 200 15 

Mean 50.66037482 51.5051898 51.87380989 52.44224824 50.76853918 50.89080424 50.58231653 

Best 50.44414089 50.71382405 50.50789696 51.60523312 50.48866711 50.49293993 50.44266169 

Worst 53.13768683 55.0444921 60.46255447 53.11065178 53.31076469 53.69423022 54.54535767 

30 200 20 

Mean 50.72261529 51.45672198 53.35967758 52.97445056 51.07754398 51.0110708 50.99002665 

Best 50.44379211 50.80930764 50.63331206 52.06541936 50.48490215 50.54761522 50.39488366 

Worst 53.01708277 53.35679952 62.1522776 54.06882944 53.41618848 53.19280513 52.87373122 

30 200 25 

Mean 51.28794992 51.7891286 53.92302186 53.73746145 52.16273619 52.02298198 50.91502774 

Best 50.48966734 50.99255379 50.80805259 51.49756894 50.92275235 50.67574917 50.38774681 

Worst 57.87611595 54.01746732 58.78868887 54.84758084 54.91448413 54.12956224 55.70310267 

DE: difference evolution; PSO: particle swarm optimization; BA: bat algorithm; WDO: wind driven optimization; QPSO: quantum particle swarm optimization;  

QBA: quantum bat algorithm; QWDO: quantum wind driven optimization. 
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Figures 3–7 show the UCAV flight path obtained by the QWDO algorithm testing the first test 

instance on different D. We can find that the flight path is composed of D equal parts. For all cases in 

the first instance, the QWDO algorithm can find the flight path that avoids the threat areas with the 

smallest threat cost. 
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Figure 3. Result of the first instance for D = 5. 
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Figure 4. Result of the first instance for D = 10. 
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Figure 5. Result of the first instance for D = 15. 
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Figure 6. Result of the first instance for D = 20. 
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Figure 7. Result of the first instance for D = 25. 

Meanwhile, Figures 8–12 have shown evolutionary process of fitness value on different D.  

In Figure 8–12, we can see that QWDO algorithm has a faster global convergence speed and higher 

convergence precision, except D = 5 and D = 20. 

When the maximum number of iterations is not the same, the results will also be different. Table 10 

shows the mean results, the best fitness value and the worst fitness value between the algorithms of 50 

independent runs. In the following tables, bold results indicate that the algorithm performed the best. 
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Figure 8. Fitness of the first instance for D = 5. 
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Figure 9. Fitness of the first instance for D = 10. 

0 20 40 60 80 100 120 140 160 180 200
50

51

52

53

54

55

56

57

58

59

60

Iteration

F
itn

es
s

 

 

QWDO

QBA

QPSO

WDO
BA

PSO

DE

 

Figure 10. Fitness of the first instance for D = 15. 

In Table 10, we can see that the mean normalized optimization results of QWDO algorithm on 

UCAV path planning problem performs the best, except in Maxgen = 250. We can see in Table 10, in 

all different Maxgen, the best-normalized optimization results of QWDO algorithm on UCAV path 

planning problem are the best. As can be seen in the Table 10, although the worst normalized 

optimization results of QWDO algorithm in Maxgen = 50 and Maxgen = 100 is not the best, in the rest 

of the cases, QWDO algorithm performed best. Through the above data we can find QWDO algorithm is 

very efficient in solving the UCAV path-planning problem. The performance of QWDO is better than 

other optimization algorithms. 

The experimental results of the first test instance show that the QWDO algorithm has fast 

convergence rate, high convergence precision, and it is an effective and feasible solution in solving the 

UCAV path-planning problem. 
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Figure 11. Fitness of the first instance for D = 20. 
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Figure 12. Fitness of the first instance for D = 25. 

In order to verify the performance of the QWDO algorithm for solving the problem of UCAV path 

planning more fully, in this section, all the algorithms are applied to the second test instance. Similarly, 

the dimension D and the maximum number of iterations Maxgen are used as the two control variables. 

We look at the performance of QWDO algorithm as compared with other optimization algorithms, 

such as, quantum bat algorithm (QBA), quantum particle swarm optimization (QPSO), wind driven 

optimization (WDO), bat algorithm (BA), particle swarm optimization (PSO), and differential  

evolution (DE). 

In the second test instance, UCAV starts at (10,15) and finishes at (80,75). In this battlefield 

environment, there are eight threat centers. Table 11 shows information about known threats for the 

second test instance. 
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Table 10. Experimental results for the first test instance in different Maxgen. 

Popsize Maxgen D Result DE PSO BA WDO QPSO QBA QWDO 

30 50 20 

Mean 51.55066072 57.49611763 55.52925757 53.37244656 55.06247744 53.26816353 51.0384824 

Best 50.86230831 52.4021891 50.8335776 51.63208235 52.87505334 51.2628276 50.56417883 

Worst 52.97970342 67.05488964 63.29522516 54.20131962 61.773734 58.6281585 53.31025066 

30 100 20 

Mean 51.51743739 52.44222368 53.18924498 53.40007277 52.13986363 51.53347574 51.04911419 

Best 50.98301911 50.68878829 51.00545315 51.88063479 51.22499096 50.67123961 50.39932388 

Worst 52.51570068 59.61227827 58.92518468 54.23101102 54.12993175 55.38455421 52.93418088 

30 150 20 

Mean 51.93773208 50.91881032 53.00666682 53.14375161 51.37913337 51.48087993 50.76428055 

Best 50.76460097 50.41768377 50.6384468 51.90565475 50.63851986 50.61691071 50.39664491 

Worst 59.1205155 53.27343125 61.22625354 54.01364469 55.1714668 54.98546674 52.91230338 

30 200 20 

Mean 50.73461503 51.67395413 53.26005394 53.15550115 51.39219052 51.02583378 50.58751325 

Best 50.4160651 50.91067104 50.62680554 52.15259159 50.51985597 50.5578439 50.39570371 

Worst 53.33085477 54.17616743 61.10842324 54.17028213 53.93215589 53.50379863 52.86341706 

30 250 20 

Mean 51.46928513 50.7031705 52.63088516 52.89985245 50.88980761 51.34376512 50.91479454 

Best 50.78648292 50.42161575 50.5392192 51.96380792 50.49328732 50.49715669 50.39447178 

Worst 54.08790265 53.06705989 60.68415725 53.67059243 53.42973728 57.02850459 52.8744808 

Table 11. Information about known threats for the second test instance. 

Threat Center (59,52) (55,80) (27,58) (24,33) (12,48) (70,65) (70,34) (30,70)

Threat radius 10 9 9 9 12 7 12 10 
Threat level 9 7 3 12 1 5 13 2 
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First, the performance of each algorithm is tested in different D. The mean results, the best fitness 

value and the worst fitness value between the algorithms of 50 independent runs are shown in  

Table 12. In the following table, bold results indicate that the algorithm performed the best. 

According to Table 12, we can see that the mean normalized optimization results of QPSO 

algorithm on UCAV path planning problem is the best in D = 5 and D = 10. However, in the rest of the 

cases, QWDO algorithm performed best. We can see that the best-normalized optimization results of 

QWDO algorithm on UCAV path planning problem are all the best. What is more, the worst 

normalized optimization results of QWDO algorithm are all the best. As we can see from Table 12, in 

all cases, the presented global optimization algorithm QWDO algorithm is better than the original 

WDO algorithm. It shows that the QWDO algorithm is effective in improving the WDO algorithm. 

When the maximum number of iterations is different, the results will also be different. Second, the 

performance of each algorithm is tested in different Maxgen, and the results of the simulation 

experiment are shown in Table 13. In the following table, bold results indicate that the algorithm 

performed the best. 

From Table 13, we can see that the mean normalized optimization results of QWDO algorithm on 

the UCAV path-planning problem is always the best. In all different Maxgen cases, the 

best-normalized optimization results of QWDO algorithm on the UCAV path-planning problem are 

also the best. As can be seen in Table 13, the worst normalized optimization results of QWDO algorithm 

also performed best. Through the above data we can find QWDO algorithm is better than other intelligent 

algorithms in global search and local search. QWDO algorithm is very efficient in solving the UCAV 

path-planning problem. 

Figures 13–17 show the UCAV flight path obtained by the QWDO algorithm testing the second test 

instance on different Maxgen. For all cases in the second test instance, the QWDO algorithm can find 

the flight path that avoids the threat areas with the smallest threat cost. 

Figures 18–22 show the evolutionary process of fitness value on different Maxgen. As can be seen 

in Figures 18–22, QWDO algorithm has the fastest convergence speed and the highest convergence 

precision in all of these tests. It shows the QWDO algorithm has a strong ability to find the  

optimal solutions. 
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Figure 13. Result of the second instance for Maxgen = 50. 



Appl. Sci. 2015, 5 1476 
 

 

Table 12. Experimental results for the second test instance in different D. 

Popsize Maxgen D Result DE PSO BA WDO QPSO QBA QWDO 

30 200 5

Mean 108.4500391 76.32274731 217.8576809 158.6365421 58.55026343 224.8713213 86.06651884 

Best 51.51154424 51.51285958 51.62725599 53.3969487 51.52283974 51.56102341 51.51142514 

Worst 257.7693771 259.3727002 262.6262155 779.1292284 258.96214051 263.0166854 257.7692998 

30 200 10

Mean 51.69531753 59.62698855 56.56107653 66.95686144 51.28710941 56.49182092 52.58309128 

Best 48.21839521 48.60012275 48.31096493 51.14078655 48.2522368 48.30357221 48.21752061 

Worst 60.65282489 71.23964789 63.92306031 102.9043651 61.60174489 66.80983521 60.56959953 

30 200 15

Mean 50.073766 53.86901522 50.86134423 66.95568288 49.52489924 50.95870139 49.50373784 

Best 47.93535622 50.43482837 48.06959155 57.01360885 48.01888001 48.13432924 47.86853465 

Worst 51.57555205 59.96256435 52.76505672 74.82060029 51.6348462 56.00698594 50.82801702 

30 200 20

Mean 49.84233544 51.48149235 50.90193378 66.66824246 49.67928022 50.07122862 48.81483482 

Best 48.12672661 49.24653359 48.16350755 58.430756 48.39737111 48.33316163 47.80715661 

Worst 52.11021304 54.24689277 67.44172011 75.96794054 51.30798995 53.42378109 49.74939729 

30 200 25

Mean 50.66805474 50.95517305 51.34776811 71.70637996 50.83847029 50.60934221 48.59295541 

Best 48.70720514 49.54338148 48.79658763 59.14948465 48.75545861 48.39299019 47.83424938 

Worst 55.79533973 53.49953637 64.50598736 80.26246808 53.58558572 53.91518696 49.45543938 
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Table 13. Experimental results for the second test instance in different Maxgen. 

Popsize Maxgen D Result DE PSO BA WDO QPSO QBA QWDO 

30 50 20 

Mean 60.11210553 52.10944247 54.69506882 75.33956531 54.98617763 53.48694368 50.04535423 

Best 54.63302708 49.63615429 49.15087344 64.96697732 51.63957205 49.77944089 48.06638554 

Worst 68.85463056 55.49586702 68.94866149 96.58202587 61.59178853 57.49410513 54.18169722 

30 100 20 

Mean 53.83836816 51.36653616 53.14143773 70.57187552 51.38397481 50.46414355 49.02122905 

Best 48.33976811 49.07513681 48.69510082 57.67068514 48.99505905 48.42088512 47.86003025 

Worst 60.13601866 53.46121189 75.25004292 83.08842351 55.59578695 54.24391665 50.15146747 

30 150 20 

Mean 51.05336892 51.57677078 50.84575891 70.54479972 50.45391734 50.39693696 48.72957492 

Best 49.40096571 49.67670378 48.62648502 62.80958025 48.41389406 48.52347097 47.82128972 

Worst 55.88497818 54.28141398 61.23851396 76.00858334 52.69768873 53.3014373 49.54581499 

30 200 20 

Mean 49.9035051 51.5013683 50.16504165 69.76739786 49.73289806 49.82207652 48.67284272 

Best 48.39387138 49.74179751 48.44930632 62.87834457 48.17837129 48.31338872 47.80987825 

Worst 50.94635705 54.31102253 61.2292916 76.48909998 51.56006612 52.70993366 49.85033671 

30 250 20 

Mean 49.6679397 51.96561739 50.3002217 67.90792328 49.25710679 49.76274007 48.78279719 

Best 47.94541607 50.42009286 48.23889332 60.92844125 48.12683235 48.16417909 47.80721825 

Worst 52.17249675 55.53271834 61.53309025 77.23621705 50.74799695 52.16236524 49.51742143 
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Figure 14. Result of the second instance for Maxgen = 100. 
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Figure 15. Result of the second instance for Maxgen = 150. 
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Figure 16. Result of the second instance for Maxgen = 200. 
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Figure 17. Result of the second instance for Maxgen = 250. 
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Figure 18. Fitness of the second instance for Maxgen = 50. 
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Figure 19. Fitness of the second instance for Maxgen = 100. 
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Figure 20. Fitness of the second instance for Maxgen = 150. 
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Figure 21. Fitness of the second instance for Maxgen = 200. 
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Figure 22. Fitness of the second instance for Maxgen = 250. 
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7. Conclusion and Future Research 

In this paper, we present a new global optimization algorithm called quantum wind driven 

optimization (QWDO), which is based on the wind driven optimization (WDO) and quantum behavior 

for solving optimization problems. In order to evaluate the performance of the QWDO algorithm for 

solving the UCAV path-planning problem, we choose two test instances for testing. The simulation 

results show that the QWDO algorithm has a faster convergence rate and higher convergence precision 

in most cases. In comparison with QBA, QPSO, WDO, BA, PSO and DE algorithms, the QWDO 

algorithm is more effective in finding better solutions. QWDO is a reliable and feasible solution in 

solving the UCAV path-planning problem. 

In this paper, the proposed QWDO algorithm was only implemented for the UCAV path-planning 

problem in two-dimensional space. Thus, our future work will concentrate on applying the QWDO 

algorithm in solving the UCAV path-planning problem in three-dimensional space. In the field of 

optimization, there are still many aspects worthy of study. In the future, we want to apply this algorithm 

to practical applications in other fields. 
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