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Abstract: The paper analyzes the effects of round-off noise on Multiplicative Finite 

Impulse Response (MFIR) filters used to approximate the behavior of pole filters. General 

expressions to calculate the signal to round-off noise ratio of a cascade structure of Finite 

Impulse Response (FIR) filters are obtained and applied on the special case of MFIR 

filters. The analysis is based on fixed-point implementations, which are most common in 

digital signal processing algorithms implemented in Field-Programmable Gate-Array 

(FPGA) technology. Three well known scaling methods, i.e., L2 bound; infinity bound and 

absolute bound scaling are considered and compared. The paper shows that the ordering of 

the MFIR stages, in combination with the scaling methods, have an important impact on 

the round-off noise. An optimal ordering of the stages for a chosen scaling method can 

improve the round-off noise performance by 20 dB. 

Keywords: MFIR; FIR-filters; linear phase filters; FPGA; fixed point digital signal 

processing DSP; round-off noise; filter cascade structure 

 

1. Introduction 

Multiplicative Finite Impulse Response (MFIR) filters are a class of filter structures that were 

originally introduced by Fam in the early 1980s [1]. It was shown that MFIR filters can be used to 
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replace recursive Infinite Impulse Response (IIR) filters with FIR equivalents requiring significantly 

less hardware than classical FIR architectures that fulfill the same specifications [2]. The replacement 

of a pole that is implemented in a recursive structure, by a non-recursive FIR, has the advantage that it 

will always be stable. This is particularly interesting when the original pole is situated close to the unit 

circle. The MFIR filters are able to realize low-pass, high-pass, band-pass, and notch filters. Although 

the MFIR structures require approximately the same number of delay elements as the classical FIR 

implementations, they require, logarithmically, fewer adders and multipliers [1,2]. 

MFIR filters are based on the identity [3]: 
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This identity can be used to approximate both real pole and conjugate pole pair filters. In case Hr(z) is 

the transfer function of a stable IIR filter with a real pole, the cascade MFIR filter approximation using 

Equation (1) yields: 
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with the obvious definitions for Mi(z) and M(z). In this correspondence, every single Mi(z) will be 

called a “stage” of the MFIR filter. It has been shown in [1,2] that even for the approximation of poles 

extremely close to the unit circle, maximum 10 stages (P = 10) are required when a deviation smaller 

than |0.01| dB in the magnitude response between the IIR filter and the MFIR approximation is allowed. 

The efficiency of the MFIR approximation is immediately clear from Equation (2). Only P multipliers 

and adders are required for the MFIR filter while the direct form requires 2P multipliers and adders. 

An IIR filter with a transfer function Hc(z) having a conjugate pole pair λ = re+jθ and λ* = re−jθ with 

|r| < 1, can be approximated with a cascade MFIR structure [1,2]: 
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MFIR filters with a linear phase and a desired magnitude response ( )njH e ω  (Here ωn is the 

normalized angular frequency: ωn = ωTS, and TS is the sampling period.) can also be realized using the 

following procedure [1,4].  

1. Design an IIR filter that approximates ( ) 1 2
njH e ω . 

2. Approximate the poles of the IIR filter with the MFIR structure. 

3. Cascade to every zero in the resulting MFIR filter its reciprocal with respect to the unit circle. 
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Consequently, the linear phase approximation of a stable IIR filter Hr(z) with a real pole at λ, can be 

designed by determining ( ) ( ) 1 2
' n nj j

r rH e H eω ω=  and approximating the real pole λ' of Hr'(z) with: 
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The linear phase approximation of a stable IIR filter Hc(z) with a complex-conjugate pole pair λ = re+jθ 

and λ* = re−jθ, can be designed by determining ( ) ( ) 1 2
' n nj j

c cH e H eω ω= and approximating the poles  

λ' = r'e+jθ'and λ'* = r'e−jθ' of Hc'(z) with: 
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Despite the advantage of the logarithmically more efficient use of multipliers and adders, MFIR 

filters have not been popular. Indeed, the large number of delay elements required to approximate the 

behavior of an IIR filter was considered prohibitively expensive. This made them impractical for 

implementation on standard DSP platforms with fixed memory maps. Advances in Very Large Scale 

Integration VLSI technology in general, and Field-Programmable Gate-Array (FPGA) architectures in 

particular, make it necessary to re-evaluate MFIR filters and the technical barriers to their widespread 

use. Several applications and implementations of MFIR filters in modern FPGA fabrics [4–6], have 

shown that FPGAs are an ideal target platform for implementing efficient MFIR filters that are 

competitive to standard FIR and IIR equivalents implemented on the same fabric. The effects of 

coefficient-quantization have been studied and have shown that MFIR filter structures are less 

coefficient-quantization susceptible than the IIR filter they approximate [7]. 

It is clear from Equations (2–5) that MFIR filters are basically a cascade of simple sparse FIR 

filters. An example of a cascade of three MFIR stages realizing an MFIR filter approximating a real 

pole is given in Figure 1. 

Figure 1. General architecture of an MFIR filter approximating a real pole (three stages). 

 

Every stage in an MFIR filter has the same structure as the other stages but the number of delay 

elements differs. Therefore, it is obvious to design an optimized component that implements a general 

MFIR stage per MFIR filter approximation, i.e., a real pole approximation, a complex-conjugate pole 

pair approximation and their respective linear phase types. 
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As floating-point arithmetic is only recently available in FPGAs, only fixed-point arithmetic is 

taken into consideration. Unfortunately, every fixed-point addition or multiplication requires a 

widening of the bus width, which has to be avoided; this implies that rounding must be applied to keep 

the data path widths manageable and implementable. 

In this text, rounding is defined as the process whereby the width of the data path after a 

multiplication or an addition is reduced to the original width of the data path before the multiplication 

or addition. This is done by taking the most significant bits, conventional rounding of the result, and 

using saturation if necessary. 

Scaling is defined as the process that changes the filter coefficients in order to increase the  

SNR based on the fulfillment of a specified criterion (as will be defined in Section 3) at the output of 

the filter. 

In order to create general MFIR stage components, the data path bit-width at the input and at the 

output of each stage are kept constant. Inside the stage, the bit width is appropriately incremented to 

avoid accumulation of round-off errors. Consequently, in practice at the end of each stage, a rounding 

block will bring the output bit width back to the original input bit-width. It is, however, not excluded 

that a change in bus width between the stages would yield better results. However, there are so many 

possible combinations that it is almost impossible to investigate the behavior of all these  

possible implementations. 

In this correspondence, the Signal to Noise Ratio SNR degradation effect of the consecutive 

roundings and scalings in the cascaded MFIR structures is analyzed and conclusions on optimal 

ordering of the stages are drawn. In Section 2, the round-off model and the different transfer functions 

are defined. Section 3 discusses the scaling methods as defined in [8]. Section 4 introduces a general 

theory for round-off noise determination in filter cascade structures, implying the theory developed in 

this section is general and is applicable on any filter having a cascade structure. In the fifth section, the 

developed general theory is applied on the MFIR structure. The paper ends with a conclusion and 

suggestions for future work. 

Although it will not always be explicitly mentioned, in this correspondence, SNR refers to the 

Signal to round-off Noise Ratio, i.e., noise due to rounding errors is considered and other noise sources 

are not taken into account. 

2. The Round-Off Noise Model 

2.1. Introduction  

In order to avoid overflow of the signal data due to the successive multiplications of the signal with 

the filter coefficients, rounding (as defined above) will have to be performed. Rounding can be seen as 

a quantization action on the signal. Each rounding action is treated as a random process with uniform 

probability density function, producing white noise that is uncorrelated with the signal and other 

quantization sources in the filter. As in this correspondence the implementation of the MFIR filters is 

investigated for fixed-point implementation, the rounding process is of vital importance.  

A. Fam developed, in [1], the “pure multiplicity property” which forms the basis of the 

investigation of the relationship between the noise variance at the output (relative to the round-off 
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noise variance) and the ordering of the different stages of the MFIR filter. This is done for an 

implementation without scaling (which is not very realistic for fixed point implementations) and an 

implementation with L2 scaling. The analysis in [1] is performed for MFIR structures that approximate 

a real pole or a conjugate pole pair using the forward lattice structure. The approximation of a 

conjugate pole pair in cascade is not analyzed as “it does not have the pure multiplicity property” [1]. 

However, in the present research, the forward lattice MFIR implementation is not considered because 

of its (unpractical) large hardware impact [2]. Consequently, the study of the noise behavior of the 

complex-conjugate pole pair cascade MFIR implementation and the linear phase MFIR 

implementations are completely new. 

Moreover, it is suggested in [1] that the analysis of the round-off noise for the MFIR structures that 

do not have the “pure multiplicity property” should be done in the style of [8] or [9]. In this text, the 

method of [8] will be used for the real pole approximation as well as for the complex-conjugate pole 

pair cascade approximation. All three well known scaling methods (L2 bound, infinity bound and 

absolute bound) [8] will be considered. The noise performance is evaluated by first calculating the 

noise variance at the output due to the noise variance of the round-off error sources. However, a good 

evaluation of the round-off noise performance can only be made when the actual signal to round-off 

noise ratio (SNR) is considered [10]. With scaling, the output signal is also scaled, implying the actual 

signal to noise ratio at the output and not only the noise variance is considered for all possible  

scaling cases.  

The objective of the paper is to determine how much the SNR of a signal is deteriorated by the 

noise (due to round-off errors) in the overall MFIR structure. Although the round-off noise performance of 

FIR and IIR cascade structures has been studied intensively over the past decades, [8–18] no directly 

applicable expression of the SNR degradation in cascade structures could be found. Therefore, the 

theory will first be developed in a general manner. More precisely, the stages in the cascade will not be 
considered as MFIR stages with transfer function ( )iM z , but as general filter stages with transfer 

function ( )kH z . The index k will be used as an index for the general stages in the cascade. Note that k 

is not the same as the index i that is used to indicate the stages of the MFIR structure and the power of 

the multiplier coefficients of the MFIR stages (as in Equations (2) and (3)). 

It will be shown that the ordering has a large impact on the SNR. However, P stages of an MFIR 

structure can be ordered in P! possible orderings, making an exhaustive search for the optimal ordering 

unpractical. Unlike typical cascade structures studied in [15–18], the transfer functions of the stages of 

the MFIR structure are fixed by the expressions given in Equations (2–5), i.e., in every stage the 

grouping of the zeros is fixed by the MFIR approach. This implies that the optimization of the SNR 

performance can only focus on the ordering of the stages. 

2.2. The Round-Off Noise Model  

The study is based on the following assumptions. Each multiply and accumulate action in a stage is 

modeled as an infinite precision multiplier, followed by a summation node. After the summation node, 

rounding is performed and consequently round-off noise is added to the system. In the present paper, it 

is assumed that the rounding process uses conventional rounding and saturation. For the real pole 
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approximation, the conjugate pole pair cascade approximation and their respective linear phase 

approximations, each stage has one single noise source at the output of the stage. It is assumed that  

• every sample of the noise source is uncorrelated with the previous sample, 

• all noise sources are uncorrelated, 

• the noise sources are uncorrelated with the input signal, 

• every noise source is a time discrete stationary zero mean white random process with output 

variance q2/12. Here, q is the smallest quantization step (q = 2−b where b is the number of bits 

(without the sign bit) used to quantize the signal). 

2.3. Symbol Conventions and Transfer Functions  

The following definitions are used throughout the text. 

Every stage without rounding or scaling is indicated by Hk(z) or Hk(e
jωn) or in short form Hk. The 

total filter transfer function is written as H(z) or H(ejωn). A (general) stage with rounding and scaling is 

indicated by 	ܪ௞ሺݖ)തതതതതതതത, ܪ௞ሺ݁௝ఠ೙)  or in short form ܪ௞. The respective scaling factors per stage are 

indicated by Sk. The time samples of the round-off noise source are indicated by ek(n) (where n is the 
discrete time index) or in short form ek. The noise variance of a noise source is given by 2

eσ . 

A number of transfer functions are defined in Figure 2. ( )kF z  is the transfer function from the filter 

input to the output of the stage with transfer function Hk(z) (without rounding). ( )kG z is the  

transfer function from the output of the stage with transfer function Hk(z) to the output of the filter 

(without rounding). 

Figure 2. The filter cascade without rounding or scaling and its transfer functions. 

 

For the round-off noise analysis, it is assumed there is a round-off noise source at the output of each 

stage. The transfer function from the filter input to the output of the stage with transfer function 	ܪ௞ሺݖ)തതതതതതതത 
(noise source of stage k not included, as shown in Figures 3 and 4) is indicated by 	ܨ௞ሺݖ)തതതതതതതത. 

The transfer function from the output of the stage with transfer function 	ܪ௞ሺݖ)തതതതതതതത (noise source of 

stage k included, as shown in Figure 4) to the output of the total scaled filter is indicated by 	ܩ௞ሺݖ)തതതതതതതത. 
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Figure 3. The rounded and scaled filter cascade and its transfer functions. 

 

Figure 4. The “worked out” rounded and scaled filter cascade and its transfer functions. 
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3. The General Scaling Methods  

In analogy to [1] and [8], the considered scaling methods, are defined in this section. A scaling 

factor is used to multiply the filter stage coefficients in order to obtain a specific criterion at the output 

of the stage as defined in [8]. 

• For L2 bound scaling, the scaling factors are determined by: 
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Here, fk(n) are the impulse response samples of the filter given by the transfer function 
( )kF z . The recursive version of Equation (10) can be used to calculate the scale factor per 

stage. It is given by: 
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The following holds when L2 bound scaling is used: if the RMS value (over ωn) of the input 

signal is bounded by unity, the RMS value (over ωn) of the signal at each stage output will 

be bounded by unity. 

• For infinity bound scaling, L∞, the scaling factors are determined by: 
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The recursive version of Equation (13) can be used to calculate the scale factor per stage. It 

is given by: 
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(14)

The L∞ bound scaling sets the maximum of the frequency responses of all respective Fk(e
jωn) 

at 0 dB. 

• For absolute bound scaling, the scaling factors are determined by: 
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where fk(n) are the impulse response samples of the filter given by the transfer function 

Fk(z). pk is the length of the impulse response. Equation (15) in recursive form yields: 
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Absolute bound scaling is based on the reasoning that if the peak value of the input signal is 

bounded by unity, the peak absolute value of the signal at each stage output will be bounded 

by unity when absolute bound scaling is used. The absolute bound scaling criterion is 

avoiding overflow in all cases. 

Contrary to the absolute bound scaling approach, when using infinity bound scaling or L2 bound 

scaling, overflow is still possible. Although all scaling methods prevent overflow according to a 

certain criterion, none of them will force all multiplier coefficients to be smaller than (or equal to) one. 

This implies that in a practical implementation it can happen that the bits used to represent a multiplier 

coefficient are not sufficient. The problem can be solved in several ways [19].  

The present paper uses a method that has minimum impact on the overall accuracy. More precisely, 

the multiplier values of the stages where the coefficients are larger than 1 are divided by a power of 2 

(using shifting) to force all coefficients of this stage to be smaller than 1. This division by the power of 

2 is undone in the output signal of the stage, i.e., by shifting the result.  

4. The Ordering of the Stages  

As the sequential ordering of the stages has a large impact on the scaling factors and the noise 

performance of the filter, the round-off output noise variance as a function of the ordering must be 

calculated and a method to determine the optimal sequential ordering must be found. 

4.1. The Round-Off Output Noise Variance 

The round-off output noise variance is the summation of the noise sources inside the filter cascade, 

with suitable weightings and filtering. This variance is affected by the ordering of the stages of the 
filter structure. The variance of the noise of each rounding operation equals 2

eσ . The input signal of the 

filter has an amplitude in the interval (−1, +1). In case b + 1 bits (b bits + a sign bit) are used to 

represent the signal in two’s complement, the variance of the noise generated by one round-off noise 

source is (under the assumptions of Section 2.2) given by: 
2

2 .
12e

qσ =  (17)

Here, q = 2−b. In general, the variance of the round-off noise source is also given by:  
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π
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π
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−
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where: Pee(ωn) is the Power Spectral Density (PSD) of the noise source. 
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 me is the mean value of the noise source. 

Under the assumptions given in Section 2.2, the mean me = 0 and the PSD of the round-off noise 

source is independent of the frequency, implying: 

( )2 .e ee nPσ ω=  (19)

The PSD of the noise generated at the output of the total filter structure, by the noise source of a 

(scaled and rounded) stage k is given by: 
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The variance of this noise is given by: 
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As the noise source has a zero mean value and the stages are linear, mv = 0. The PSD of the noise 

generated at the output of the filter structure, by all round-off noise sources is given by: 
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The output noise variance due to the round-off noise sources of all stages is thus given by (using 

Equation (11)): 
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As can be seen in Equation (23), the contribution of a noise source of any stage k to the output noise 

variance only, depends on the transfer function from this noise source to the output. As this is valid for 

a general stage k, it is valid for all stages. From this reasoning, it is obvious to order the stages from 

high power amplification to low power amplification in order to keep all ( )
2

2

nj
kG e ω  (for any k) as small 

as possible. This approach minimizes the output round-off noise variance. However, in Equation (23), the 

transfer function from a noise source k to the output is scaled, implying that the optimal ordering must be 

derived from the scaled stage equations, which is rather inconvenient. Therefore, Equation (23) will be 

further worked out. It is clear from Figure 3 and Equation (7) that Equation (22) can be written as: 

( ) ( )( )
212
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nn n e m m
k m k

P S H e ωω σ
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= = +

 
= +  ∏ 

 
 (24)

Independent of the stage ordering, the following holds for infinity bound and L2 bound scaling: 
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H eS
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α
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−

−
=

= +

=

∏
= =∏

∏
 (25)

where, α = ∞ or α = 2 respectively. 

Using Equations (7) and (25) in Equation (24) yields: 
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 (26)

and by applying Equation (11): 
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 (27)

In Equations (26) and (27), the scaling is taken into account and the un-scaled stage equations can 

now be used in Fk(e
jωn) and Gk(e

jωn) to determine the optimal ordering for minimal output round-off 

noise variance. It is clear that every Fk(e
jωn) and Gk(e

jωn) contribute to the output noise. For a given 

filter, the output noise variance is minimal when ( ) ( )2 22

20

P
j jn n

k k
k

F e G eω ω

α

−

=

   
 

 is minimal, i.e., an 

optimal ordering must be found to minimize this sum. 

• In case of L2 bound scaling (α = 2), ( ) 2

2

j n
kF e ω  and ( ) 2

2

j n
kG e ω  in every sum term will 

have the same contribution, implying that the ordering of the stages has no importance. 

(I.e., in case of ordering from i = 0 to i = P − 1 and using L2 bound scaling, Equation (27) 

yields: ( )2 2 2 22 2
0 1 2 3 0 1 2 32 2 2 2 22

2

1
1 ... ... ... .n eL

H H H H H H H H
H

σ σ
 
 = + + +
  

In case of 

ordering from i = P − 1 to i = 0 and using L2 bound scaling, Equation (27) yields: 

( )2 2 2 22 2
1 2 3 0 2 3 0 12 2 2 2 22

2

1
1 ... ... ... .n eL

H H H H H H H H
H

σ σ
 
 = + + +
  

Two identical 

equations are obtained.)  

• If infinity bound scaling, L∞, is considered (α = ∞), the optimal ordering will be 

determined by the ratio: 

( )
( )

2

2

2

j n
k

j n
k

F e

G e

ω

ω

∞
 (28)

for every { }0,1,..., 2k P∈ − . 

In case this ratio is significantly larger than 1 for every k value, it is best to order the 

stages from small peak gain to large peak gain. In case this ratio is not significantly larger 

than 1, the optimal ordering should be determined exhaustively.  
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• In case of absolute bound scaling the equivalent of Equation (25) is given by: 
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Here h(n) are the impulse response (having a length p) samples of the filter given by the transfer 
function ( )H z . Applying Equation (29) on Equation (22) and using Equation (7) yields: 
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 (30)

and by applying Equation (11): 
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 (31)

As for infinity bound scaling, the optimal ordering to obtain a minimal output round-off noise 

variance is determined by the ratio: 

( )

( )

2
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2

,

pk

k
n

j n
k

f n

G e ω

=

  
   (32)

for every { }0,1,..., 2k P∈ − . 

In case this ratio is significantly larger than 1 for every k value, it is best to order the stages in 

increasing coefficient magnitude, i.e., the stage with the largest coefficient(s) at the end. In case the 

ratio is not significantly larger than 1, the optimal ordering should be determined exhaustively. 

4.2. The Signal to Round-off Noise Ratio 

The round-off noise performance of a filter may not be correctly evaluated by only analyzing the 

round-off noise. A more reliable result is obtained by calculating the Signal to round-off noise  

ratio (SNR). The signal to noise ratios (when using the previously discussed scaling methods) are 

investigated in this section. 

The discrete input signal of the filter is indicated by x(n) and the discrete output signal by y(n). The 
variance of the discrete input signal x(n) is indicated by 2

inσ . The variance of the discrete output signal 

y(n) of the filter will be indicated by 2
outσ . All calculations presented in this section are based on the 

conditions that the input signal x(n) is zero mean and has a constant, frequency independent, 

Probability Density Function (PDF).  
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In case the input signal is a wide sense stationary random signal with uniform PDF and variance  
2
inσ , the output signal variance of the filter is given by: 

( )
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=    (33)

( )
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nj
out in H e ωσ σ=   (34)

( )
2

2 2
out in

n

h nσ σ=    (35)

where ( )
2

n

h n  is the sum of the squared impulse response samples of the (scaled and rounded) 

filter. 

• In case of L2 or L∞ bound scaling, Equation (34) can be written as (using Equation (10) or 

Equation (13) as appropriate): 

( )
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2 ,

j n
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ω

ω

α

σ σ=  (36)

where α = 2 or α = ∞, respectively. Combining Equations (36) and (27) yields. 
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 (37)

• In case of absolute bound scaling, the SNR is given by: 
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(38)

In Equations (37) and (38) 2
eσ  is dependent on the type of rounding used and the number of bits 

that are used to quantize the signal in the filter structure. 2
inσ  depends on the input signal. Quantization 

and input signal independent factors are given by:  
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(39)
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(41)

In general for an arbitrary A(ω) [8]: 

( )1 2
... ,

n
A A A a n

∞
≤ ≤ ≤ ≤   (42)

which implies that:  

( ) ( ) ( )
22 2

2 0
.

p
j jn n

n
H e H e h nω ω

=∞

 ≤ ≤  
 

 (43)

Note that Equation (43) is independent of the ordering of the stages. 

As mentioned in Section 4.1, in case of L2 bound scaling, ( ) ( )2 22

2 20

P
j jn n

k k
k

F e G eω ω−

=

   
 

 in  

Equation (39) is independent of the stage ordering, implying that the stage ordering has no impact on 

the SNR. For a given ordering of the stages, it is clear from Equations (39–41) and (43) that  

2 2 2

2 2 2

2

. . . .e e e

in in inL L abs

SNR SNR SNR
σ σ σ
σ σ σ
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     
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 (44)

Even in case of an optimized ordering for infinity bound scaling or absolute bound scaling, L2 

bound scaling will always have the best SNR. Note that SNR in this text is signal to round-off noise 

ratio and not the overall SNR of the filter. However, an optimized ordering for absolute bound scaling 

can have a better SNR than a non-optimized ordering for infinity bound scaling and vice versa. In case 

of L∞ bound scaling, the optimal SNR must be determined by finding an ordering that minimizes  

( ) ( )2 22

20

P
j jn n

k k
k

F e G eω ω−

∞=

   
  .

 (45)

In case of absolute bound scaling the optimal SNR must be determined by finding an ordering  

that minimizes 

( ) ( )
2

22

20 0
.

pP k j n
k k

k n
f n G e ω−

= =
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 (46)

Comparing these requirements with those of the output noise variance (formulated in Section 4.1), it 

can be concluded that the optimization of the SNR, by finding the optimal ordering, uses the same 

criteria as the minimization of the output round-off noise as discussed in Section 4.1. 
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Notice that the equations derived in this section are generally valid for any filter cascade (with one 

noise source at the output of each filter stage) and not only for MFIR structures. 

5. The SNR of MFIR Filters 

In this section, the general theory developed in Section 4 will be applied to the MFIR filter structures. 

5.1. The Transfer Functions 

In case MFIR filters are considered, the stages are indicated by Mi (z) or Mi(e jωn) or in short form 

Mi. The total filter transfer function is written as M (z), M (e jωn) or M. A scaled stage is indicated by ܯపሺݖ)തതതതതതത,  .పതതതܯ పሺ݁ఫఠ೙)തതതതതതതതതതതത orܯ	
The ordering where the first stage is stage i = 0, the second is i = 1 and so on, will be called the 

forward (sequential) ordering. Consequently, in case of MFIR structures and forward ordering: 
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Notice that FP−1 (e jωn) = M (e jωn)  and  GP−1 (e jωn) = 1 (see Figures 2 and 3). 

Figure 5. The unscaled and scaled MFIR filter cascade transfer functions for reverse ordering. 
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The ordering where stage i = P − 1 is the first stage, i = P − 2 is the second stage and so on, is called 

the reverse (sequential) ordering. In case of reverse ordering of MFIR stages, the transfer functions are 

shown in Figure 5 and are defined by: 
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Notice that in case of reverse ordering F0(e
jωn) = M(ejωn) and G0(e

jωn) = 1. 

Although there are P! Possible ordering combinations of the MFIR stages, experiments have shown 

that choosing the best option between forward and reverse sequential ordering is usually satisfactory. 

5.2. The Scaling Factors 

The equations derived in Section 3 adapted to MFIR structures are given in Table 1. 

Table 1. Scaling factors for Multiplicative Finite Impulse Response (MFIR) structures. 
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Table 2. Length of the impulse responses of the partial MFIR transfer functions. 

Forward ordering ( )if n  or ( )if n   

Real pole 0  pi = 12 1i+ −  

Real pole linear phase 0  pi = 22 2i+ −  

Complex-conjugate pole pair 0  pi = 22 2i+ −  

Complex-conjugate pole pair linear phase 0  pi = 32 4i+ −  

Reverse ordering ( )if n  or ( )if n  

Real pole 0  pi = 2 2P i−  

Real pole linear phase 0  pi = 1 12 2P i+ +−  

Complex-conjugate pole pair 0  pi = 1 12 2P i+ +−  

Complex-conjugate pole pair linear phase 0  pi = 2 22 2P i+ +−  
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In case of absolute bound scaling, the length pi of the impulse response fi(n) must be known. As this 

length is filter dependent, Table 2 gives an overview of the impulse response lengths for forward and 

reverse ordering of MFIR stages [2,19]. 

It is shown in [19] that in case of a real pole approximation, the scaling factors only depend on the 

stage on which they are applied, i.e., not on any of the previous or next stages. 

5.3. The SNR and Optimal Ordering for MFIR Filters 

5.3.1. General MFIR SNR Expressions 

In case of forward ordering, Equations (39–41) become: 
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(57)

Here, ( )j n
iG e ω  and ( )j n

iF e ω  are given by Equations (47) and (49) respectively. The value of pi is 

given in Table 2 for forward ordering. m(n) are the impulse response samples of the total MFIR filter. 

The value p in ( )
2

0

p

n
m n

=

  
 

in Equation (57) is the length of the total MFIR filter impulse response and 

can be found by setting i = P − 1 in Table 2 for forward ordering.  

In case of reverse ordering, Equations (39–41) become: 
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Here, ( )j n
iG e ω  and ( )j n

iF e ω  are given by Equations (50) and (53) respectively. The value of pi is 

given in Table 2 for reverse ordering. The value p in ( )
2

0

p

n
m n

=

  
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 in Equation (60) is the length of the 

total MFIR filter impulse response and can be found by setting i = 0 in Table 2 for reverse ordering.  

In order to keep the text more readable, the figures of the several calculation results of  

Equations (55–60) are grouped together at the end of the section. Table 3 gives an overview of  

the results.  

Table 3. Overview of the figures of the SNR calculations. 

Approximation of Scaling type Ordering Range Figure 

Real pole L2 Forward and Reverse |ߣ| ∈ [0.1, 1) Figure 6 

Real Pole Abs and Inf. Forward and Reverse |ߣ| ∈ [0.1, 1) Figure 7 

Real Pole  

Linear Phase 
L2 Forward and Reverse |ߣ| ∈ [0.1, 1) Figure 8 

Real Pole  

Linear Phase 
Abs and Inf. Forward and Reverse |ߣ| ∈ [0.1, 1) Figure 9 

Compl. Conj.  

Pole pair 
L2 Forward and Reverse

r = 0.9  ߠ ∈ [0,  Figure 10 (ߨ

Compl. Conj.  

Pole pair 
Inf Forward and Reverse

r = 0.9  ߠ ∈ [0,  Figure 11 (ߨ

Compl. Conj.  

Pole pair 
Abs Forward and Reverse

r = 0.9  ߠ ∈ [0,  Figure 12 (ߨ

Compl. Conj.  

Pole pair 
Inf Reverse 

r = 0.8; 0.85; 0.9; 0.95 	ߠ ∈ [0,  Figure 13 (ߨ

Compl. Conj.  

Pole pair 
L2, Inf, Abs Forward and Reverse

r = 0.9  ߠ ∈ [0,  Figure 14 (ߨ

Compl. Conj. Pole 

pair, Lin Phase 
L2, Inf, Abs Forward 

r = 0.9  ߠ ∈ [0,  Figure 15 (ߨ

Compl. Conj. Pole 

pair, Lin Phase 
L2, Inf, Abs Reverse 

r = 0.9  ߠ ∈ [0,  Figure 16 (ߨ

Compl. Conj. Pole 

pair, Lin Phase 
Inf Reverse 

r = 0.8; 0.85; 0.9; 0.95 	ߠ ∈ [0,  Figure 17 (ߨ
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5.3.2. SNR Performance of an MFIR Filter Approximating a Real Pole Filter 

Figures 6 and 7 show the ( )2 2
e in SNRσ σ  values for real poles |λ| in the interval [0.1, 1). In case of 

the MFIR approximation, for each |λ| value, the required number of stages, P, is determined to obtain a 

maximum difference of |0.01| dB between the MFIR magnitude response and the magnitude response 

of the approximated IIR filter. The edges in the curves indicate where an extra MFIR stage is added to 

fulfill this requirement. The IIR filter results are based on ([10], Equation 12.148): 

2
2

2
e

in

SNR S
σ
σ
 

= 
 

 (61)

Here, S is the scaling factor of the IIR filter. 

Figure 6. ( )2 2
e in SNRσ σ for real poles |λ| in the interval [0.1, 1) in case of L2 bound scaling. 

(The MFIR forward and MFIR reverse results are superimposed). 

 

Figure 7. ( )2 2
e in SNRσ σ

 
for real poles |λ| in the interval [0.1, 1) in case of absolute or 

infinity bound scaling.  
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Figure 8. ( )2 2
e in SNRσ σ

 
of MFIR filters approximating the squared magnitude response of 

real poles |λ| in the interval [0.1, 1) in case of L2 bound scaling. (The MFIR forward and 

MFIR reverse results are superimposed). 

 

Figure 9. ( )2 2
e in SNRσ σ

 
of MFIR filters approximating the squared magnitude response of 

real poles |λ| in the interval [0.1, 1) in case of absolute and/ or infinity bound scaling. 
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Figure 10. ( )2 2
e in SNRσ σ

 
for complex-conjugate pole pairs with magnitude 0.9 and L2 

bound scaling; The MFIR approximation uses P = 7 stages. (The MFIR forward and MFIR 

reverse results are superimposed). 

 

Figure 11. ( )2 2
e in SNRσ σ  for complex-conjugate pole pairs with magnitude 0.9 and 

infinity bound scaling; The MFIR approximation uses P = 7 stages.  
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Figure 12. ( )2 2
e in SNRσ σ  for complex-conjugate pole pairs with magnitude 0.9 and 

absolute bound scaling; The MFIR approximation uses P = 7 stages. 

 

Figure 13. ( )2 2
e in SNRσ σ  in function of pole magnitude r and pole angle θ, in case of 

infinity bound scaling and reverse ordering. (surface = MFIR; discrete curves = IIR filter). 
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Figure 14. ( )2 2
e in SNRσ σ  of an MFIR filter approximating a complex-conjugate pole pair 

with magnitude 0.9, and P = 7. 

 

Figure 15. ( )2 2
e in SNRσ σ  of a linear phase MFIR filter approximating the squared 

magnitude response of a complex-conjugate pole pair with magnitude 0.9 and P = 7 in 

forward ordering. 
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Figure 16. ( )2 2
e in SNRσ σ  of a linear phase MFIR filter approximating the squared 

magnitude response of a complex-conjugate pole pair with magnitude 0.9 and P = 7 in 

reverse ordering. 

 

Figure 17. ( )2 2
e in SNRσ σ  of a linear phase MFIR filter in function of the pole angle and 

magnitude in case of infinity bound scaling and reverse ordering. 
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As explained in Section 4.2, the ordering has no impact on the noise performance when L2 bound 

scaling is used. Absolute bound scaling and infinity bound scaling yield the same noise performance 

and reverse ordering is better (max. 4 dB) than forward ordering. L2 bound scaling always yields a 

better noise performance than absolute and infinity bound scaling. 

In case of absolute or infinity bound scaling, the MFIR filter has a better signal to noise 

performance than the approximated real pole filter for |λ| ≥ 0.861. For L2 bound scaling, only for  

|λ| ≥ 0.925 the MFIR filter has a better performance than the approximated IIR filter. 

In case |λ| < 0.9, the worst-case differences between the MFIR filter and the IIR filter are 3.6 dB for 

absolute (and infinity) bound scaling and 5 dB for L2 bound scaling. This is, however, not dramatic 

because in the range of interest (|λ| > 0.9), in general the MFIR filter has a better signal to noise 

performance than its corresponding IIR filter (except for the small region between |λ| = 0.9 and  

|λ| = 0.925 for L2 bound scaling where the difference is maximum 1.2 dB in favor of the IIR filter). 

The more |λ| approaches the unit circle, the better the noise performance of the MFIR filter 

compared to the IIR filter. For example, for |λ| = 0.999, the MFIR approximation is 27 dB better for 

absolute (and infinity) bound scaling, for L2 bound scaling the MFIR filter is 17 dB better than the 

approximated IIR filter. 

5.3.3. SNR Performance of a Linear Phase MFIR Filter Approximating the Squared Magnitude 

Response of a Real Pole Filter 

Figures 8 and 9 show the SNR performance of linear phase MFIR filters approximating the squared 

magnitude response of real pole filters with |λ| in the interval [0.1, 1). For each |λ| value, the number of 

stages, P, is kept the same as in Section 5.3.2. 

There is no objective comparison possible between this MFIR approximation and the IIR filter, 

since the IIR filter is not a linear phase filter and the MFIR filter approximates the squared magnitude 

response of the pole indicated on the horizontal axis. However, it is clear that the round-off noise 

performance is comparable with the real pole non-linear phase MFIR approximations. 

The ordering has no impact when L2 bound scaling is used and the noise performance with L2 

bound scaling is always better than absolute and infinity bound scaling. Infinity bound scaling  

and absolute bound scaling have the same performance. Reverse ordering yields again better results 

than forward ordering. However, the maximum difference between the two orderings is rather small 

(3.3 dB). 

Compared to the non-linear phase approximation, the difference between L2 bound scaling and the 

other scaling methods are somewhat larger.  

5.3.4. SNR Performance of an MFIR Filter Approximating a Complex-Conjugate Pole Pair  

Filter in Cascade 

Figure 10 shows the ( )2 2
e in SNRσ σ  values when realizing pole pairs with a magnitude r = 0.9 and 

angles θ in the interval [0, π) in case of L2 bound scaling. Figures 11 and 12 show the results in case of 
infinity bound scaling and absolute bound scaling respectively. In Figure 13 the ( )2 2

e in SNRσ σ values 

are calculated for the pole magnitudes: 0.8, 0.85, 0.9 and 0.95 approximated with P = 5, 6, 7, and 7 
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stages respectively in case of infinity bound scaling and reverse ordering. The surface plots are the 

( )2 2
e in SNRσ σ  values for the MFIR filters. The half circle shaped curves are the ( )2 2

e in SNRσ σ  values 

for the corresponding IIR filters. Figure 14 compares the noise performances of the approximation of 

the complex-conjugate pole pair with a magnitude r = 0.9 and any angle between  

0 and π, for several scaling methods and orderings. 

All pole magnitudes between |0.8| and |0.99| in steps of 0.01 have been calculated but are not all 

shown here. The results shown in the figures are however representative for all combinations of 

scaling methods, pole magnitudes and angles that were calculated. 

After extensive analysis of the data, the following conclusions can be drawn for the MFIR 

approximation of a complex-conjugate pole pair filter realized using the cascade structure. The  

round-off noise performance of an MFIR filter approximating a complex-conjugate pole pair filter 

• is significantly better (up to 20 dB) than the noise performance of its corresponding IIR filter 

when the approximated poles are situated in the neighborhood of the real axis; 

• is far less pole angle θ dependent in comparison with the corresponding IIR filter; 

• is up to 2.5 dB better for infinity bound scaling than for absolute bound scaling (using  

reverse ordering); 

• is always better for L2 bound scaling than for the other scaling methods (obeys Equation (44)); 

• is pole magnitude dependent, but not that much as the corresponding IIR filter; 

• is fairly insensitive to an extra MFIR filter stage (typically 1 dB); 

• is very sensitive to the stage ordering for absolute and infinity bound scaling; 

• is ordering independent in case of L2 bound scaling; 

• is in general better in reverse ordering than in forward ordering, except for pole angles in the 

neighborhood of π/2; 

• is for pole angles in the neighborhood of π/2, for absolute and infinity bound scaling, better in 

forward ordering than in reverse ordering (It was already remarked in Section 4.2, from a 

theoretical point of view, that this situation could occur.); 

• can be up to 6 dB worse than the corresponding IIR filter for pole angles in the neighborhood 

of π/2. The width of this region and the magnitude of the difference decreases however with 

increasing pole magnitude ; 

In the normal range of pole magnitudes that are considered for MFIR approximations  

(|r| > 0.9), the noise performance is in general (depending on the pole angle) better than for the 

corresponding IIR filter. 

5.3.5. SNR Performance of a Linear Phase MFIR filter Approximating the Squared Magnitude 

Response of a Complex-Conjugate Pole Pair Filter 

Figure 15 shows the ( )2 2
e in SNRσ σ  values for pole pairs with magnitude r = 0.9 and angles θ in the 

interval [0, π) for forward ordering. Figure 16 shows the values for reverse ordering. In Figure 17, the 

( )2 2
e in SNRσ σ  in case of reverse ordering and infinity bound scaling for the pole magnitudes 0.8, 0.85, 

0.9 and 0.95 approximated with P = 5, 6, 7 and 7 stages respectively, is shown. 
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Compared with the non-linear phase approximation, the ( )2 2
e in S N Rσ σ  is more pole angle 

dependent. The dips at the pole angles π/4, π/2 and 3π/4 are also deeper. The figures show that the 

ordering of the stages has no effect when L2 bound scaling is used. In case of absolute or infinity 

bound scaling, reverse ordering performs better than forward ordering except in the regions where  

θ = π/4, π/2, and 3π/4. However, the width of these regions is pole magnitude dependent. 

Consequently, in practice both orderings will have to be considered when poles with angles in these 

regions are to be approximated. 

Unfortunately in the neighborhood of the pole angles θ = π/4, π/2 and 3π/4 the linear phase 

approximation clearly performs worse than the non-linear phase approximation. The non-optimal 

performance for pole angles θ = π/4, π/2 and 3π/4 can be explained by using an example. In case  

r = 0.9, θ = π/2 and P = 9, M0(z) is given by (using Equation (5)): 

( ) 2 4
0 1 2.045M z z z− −= + +  (62)

and M8(z) is given by: 

( ) 12 256 23 512 12 768 1024
8 1 1.035*10 2.678*10 1.035*10 .M z z z z z− − − −= + + + +  (63)

In Section 4.1 it is shown that in case of infinity bound scaling, the stages with the largest peak 

gains (in the frequency domain), should fall most often in Gk(z) to reduce the output round-off noise 

variance. In case of absolute bound scaling, the stages with the largest coefficients should fall most 

often in Gk(z) to reduce the output round-off noise variance.  

It is clear from Equations (62) and (63) that forward ordering (M8(z) most often in Gk(z) ) is in this 

case much better than reverse ordering. There is a combined effect involved in the linear phase 

approximation of complex-conjugate pole pairs with angles in the neighborhood of π/4, π/2 and 3π/4: 

• 21 /
i

r  factors in Equation (5) can have very large values when i is large, 

• ( )cos 2iθ  factors in Equation (5) are for most stages close to unity implying the coefficients 

are not reduced by the cosine functions. 

Even in case of forward ordering, the SNR performance for these angles is not good. Indeed the  

stages with larger i values, still have very large coefficients implying that Equation (45) or  

Equation (46) will never be very small. 

6. Conclusions 

An approach to model round-off noise in general cascade filter structures has been studied. This 

round-off noise depends on the used scaling method and on the ordering of the stages. These general 

results are used to study and optimize the round-off noise behavior of MFIR filters. 

It has been shown that the round-off noise performances of the MFIR pole approximations indeed 

depend on the used scaling method. L2 bound scaling results in the best performance, followed by 

infinity and absolute bound scaling. 

In general, it can be concluded that in the region of interest (approximating pole behaviors with 

magnitudes r > 0.9) the MFIR approximations perform better than the approximated IIR filters. Even 
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outside the region of interest, the performance generally does not differ too much from the 

corresponding IIR filters (max 6 dB). 

The analysis presented in [1] suggests forward ordering as an optimal ordering in case no scaling is 

applied. In case of L2 bound scaling the ordering has no impact on the round-off noise performance. 

The analysis presented here, extends these results to other practical scaling methods and concludes that 

in these cases, reverse ordering performs better than forward ordering for most pole approximations. 

However, it should be noted that special attention to the stage ordering is required 

• when approximating a complex-conjugate pole pair having a pole angle in the neighborhood of 

π/2 and the cascade structure has been used; 

• when approximating the squared magnitude response of a complex-conjugate pole pair filter in 

case the pole angles are situated in the neighborhood of π/4, π/2 and 3π/4 and the linear phase 

cascade structure has been used. 

Further research is required to determine if alternative orderings can be found which would yield a 

better noise performance. Note that the orderings considered here are not the only possible orderings. 

For best performance, one must determine the “declining amplification” order for every pole pair that 

is approximated. At the moment, no systematic approach has been found, so trial and error is required. 

Research will have to prove if an optimal ordering can be calculated. If not, a heuristic approach as  

in [8] for the pole zero pairing or an iterative optimization algorithm [17] or another near optimal 

ordering technique [16] could also be interesting. 
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