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Abstract: A photovoltaic cell defect polarization imaging small target detection method based
on improved YOLOv7 is proposed to address the problem of low detection accuracy caused by
insufficient feature extraction ability in the process of small target defect detection. Firstly, polarization
imaging technology is introduced, using polarization degree images as inputs to enhance the edge
contour information of YOLOv7 for detecting small targets; then, the COT self-attention mechanism
is added to reconstruct the SPPCSPC module to improve YOLOv7’s ability to capture and fuse
small target features in complex backgrounds; next, the normalized Wasserstein distance (NWD) is
used to replace the traditional loss function based on intersection over union (IoU) metric, reducing
the boundary offset between the prior box and the closest real target box in the prediction process
of the object detection model and reducing the sensitivity of the YOLOv7 network to small object
position deviations; finally, by constructing a shortwave infrared polarization imaging system to
obtain polarization images of photovoltaic cells and detect small targets with scratch defects in
photovoltaic cells, the applicability and effectiveness of the proposed method are verified. The results
show that the proposed method has good recognition ability for small target defects in photovoltaic
cells. By applying the constructed dataset, the detection accuracy reaches 98.08%, the recall rate
reaches 95.06% and the mAP reaches 98.83%.

Keywords: photovoltaic cells; object detection; YOLOv7; polarization imaging

1. Introduction

Photovoltaic cells have high requirements for both conversion efficiency and working
life, with even small defects having significant impacts. In addition, defects in these cells
can generate excessive heat during the power generation process, potentially leading to
cell module burnout due to overheating. This can result in fires within photovoltaic power
plants, causing considerable economic losses [1]. An automatic defect detection method
based on computer vision can identify and locate defects well, so it has a wide range of
applications in the process of photovoltaic cell production and power plant operation and
maintenance. Nevertheless, in practical applications, the accuracy of automatic detection
is often limited by the small scale and subtle characteristics of defects. Therefore, how
to achieve real-time and accurate detection of small defect targets is a practical problem
that needs to be solved in the current operation and maintenance process of photovoltaic
power stations, which has important practical significance for improving the performance
of photovoltaic modules, extending the life of photovoltaic cells and reducing power
generation costs [2].

Conventional photovoltaic cell defect detection techniques mainly include infrared
thermal imaging, photoluminescence imaging and electroluminescence imaging. Among
these, infrared thermal imaging technology [3] is a method of applying reverse bias to
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photovoltaic modules to photograph infrared rays emitted by the surface of solar cells
after local heating. However, this method suffers from low detection efficiency, ignores
the distribution property of series resistance and incurs high costs. Photoluminescence
imaging technology [4] is a non-contact and non-destructive imaging method that excites
fluorescence from the silicon layer of photovoltaic modules under specific light sources,
without the need for electricity. However, this method has a high economic cost [5].
Electroluminescence imaging [6] technology applies reverse voltage to both ends of the
photovoltaic module, so that the silicon material of the battery will glow due to the current
passing through. This method has high imaging quality and moderate cost and is currently
the mainstream solar cell image acquisition method in the photovoltaic field. Nevertheless,
the acquisition of electroluminescent images is susceptible to environmental stray light and
camera imaging characteristics, leading to background interference, random noise, image
blur and overall quality degradation [7]. Additionally, the subtle difference in luminous
intensity between the defect edge and the normal part poses challenges in achieving
satisfactory detection results.

Polarization is one of the essential characteristics of light radiation electromagnetic
waves, less affected by the environment, so the use of polarization characteristics of imag-
ing to obtain target information can improve the contrast between the target and the
background and enhance the clarity of the target in the image. At present, polarization
imaging target detection technology has been applied in many fields. Wang et al. [8] demon-
strated through experiments that polarization imaging can emphasize the contour edges
and texture details of photovoltaic cell defect images. Additionally, the Laplace pyramid
is employed to decompose the captured light-intensity images and polarization degree
images, fusing high- and low-frequency information. A defect detection method for crys-
talline silicon photovoltaic cells based on electroluminescence polarization image fusion
is proposed, effectively highlighting the defect characteristics of photovoltaic cells. Zhu
et al. [9] proposed an improved YOLOv5 method for detecting small targets in polarization
imaging by inputting polarization degree images at the input end, reducing C3 modules
and incorporating coordinate attention mechanisms. This method enhances the feature
extraction ability and detection accuracy of small target images. Han et al. [10] proposed
a target detection method with enhanced polarization information, which can improve
the accuracy of common target recognition results in road scenes under haze weather
conditions. Zhao et al. [11] proposed an object detection method based on local contrast
of polarization weights, which can detect objects directly on infrared polarized mosaic
images. Amer et al. [12] studied a method based on polarization imaging optical systems
and a dark channel prior optimization version to improve the quality of underwater images
collected in turbid environments, reducing the impact of diffusion on image acquisition
and improving the image quality for automatic detection and recognition of underwater
objects. Katletz et al. [13] designed a device based on circularly polarized terahertz waves
and polarization-sensitive detectors, using the spectral information contained in broadband
terahertz pulses, which allows for the study of birefringence and optic-axis orientation
of glass fibers in polymers with a single measurement. Mazen et al. [14] proposed an
electroluminescence defect detection method for PV cells based on improved YOLOv5 in
order to maintain and inspect the cells of PV modules more efficiently and quickly, and the
improved YOLOv5 algorithm achieved an average accuracy of 76.3%, which is 2.5% higher
than the standard YOLOv5 algorithm.

With the rapid development of deep learning, convolutional neural networks (CNNs) [15]
have received widespread attention in defect detection of photovoltaic modules due to
their powerful feature extraction and data processing capabilities. In practical applications,
this method is usually divided into two categories. One is a two-stage object detection
algorithm based on candidate boxes represented by R-CNN networks, which has high
detection accuracy but a slow running speed; another is a single-stage object detection
algorithm represented by the YOLO model which has a fast running speed but slightly
lower recognition accuracy than two-stage networks. Meng et al. [16] proposed a YOLO-PV
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target detection algorithm by reducing the extraction of deep trunk information, increasing
the extraction of low-level defect information and using a PAN network to fusion target
features. The algorithm achieved 94.55% AP on the photovoltaic module EL image data
set. Jamming speed exceeds 35 fps. Li et al. [17] introduced a bottleneck CSP module,
added a tiny target detection prediction head in YOLOv5 to mitigate tiny defect missing,
utilized Ghost convolution to improve the model inference speed and reduce the number
of parameters and proposed a PV panel defect detection method based on the bottleneck
CSP’s Ghost convolution and the tiny target prediction head (GBH-YOLOv5) based on
YOLOv5, which raises the mAP performance index to 27.8%.

In summary, the YOLO series network has shown good performance in defect detec-
tion, but there are still many difficulties in detecting small defect targets in photovoltaic
cells, mainly manifesting as follows: (1) Traditional electroluminescence detection obtains
grayscale images of photovoltaic cells, where small defect targets account for a small
proportion of the entire image and the edges are blurred, making them susceptible to back-
ground interference. (2) With the continuous training and downsampling of the YOLOv7
network, many small defect features gradually disappear. (3) The bounding box loss of
object detection algorithms is mostly based on the IoU metric, but it is not a good metric
for small targets.

To address the aforementioned issues, this paper proposes a small target detection
method for photovoltaic cell defect polarization imaging based on improved YOLOv7. This
method can more accurately identify and detect small defects in photovoltaic cells. The
main contributions of this article can be summarized as follows:

1. Introduce polarization imaging in electroluminescence to obtain polarization images
of small defects in photovoltaic cells and analyze the polarization degree image as in-
put to the YOLOv7 network. Polarization can remove certain background information
interference and increase the contrast between defects and the background.

2. Add the contextual self-attention mechanism to reconstruct the relevant pyramid
pooling structure module, increase the available target information in the image and
improve the YOLOv7 network’s ability to capture the features of small defects in
photovoltaic cells.

3. The normalized Wasserstein distance is used to replace the traditional loss metric
function based on the intersection of concatenation, to reduce the boundary offset
between the a priori frame and the closest real target frame in the prediction process
of the target detection model, to reduce the sensitivity of the YOLOv7 network to the
positional deviation of the small defects of the PV cells and to increase the model’s
detection accuracy.

2. Relevant Theoretical Basis
2.1. Principles of Polarization Imaging in Electroluminescence

Crystal silicon solar photovoltaic cells typically exhibit an N+P homojunction structure,
characterized by the addition of a heavily doped N-type semiconductor layer atop a P-type
silicon substrate. In this configuration, the cell’s reverse side functions as the positive
electrode, while the front side serves as the negative electrode. The outermost layer of the
cell is an anti-reflective coating, designed to minimize energy losses resulting from light
reflection during operational conditions.

According to the composition of the photovoltaic cell depicted in Figure 1, it can be
discerned as a PN junction structure. When a forward voltage bias is applied to photo-
voltaic cells, the electrons and holes in the P-N junction within the cell undergo radiative
recombination, emitting near-infrared light. Should there be defects such as impurities, de-
position or dislocations present in the silicon material, electrons and holes will preferentially
recombine at these sites, consequently reducing or preventing near-infrared light emission.
Similarly, if there are issues with the fabrication process of photovoltaic cells, such as silicon
wafer fractures or other detrimental conditions, these may lead to problems with electrical
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injection, subsequently diminishing the electroluminescence intensity of the affected areas.
In the electroluminescence image, these areas will manifest as darker regions.
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Figure 1. Structure of photovoltaic cells.

Light is a transverse wave whose vibration plane is perpendicular to its propagation
direction. It exhibits several characteristics, including propagation direction, intensity and
wavelength. Moreover, it possesses polarization characteristics. Polarized light can be
categorized into fully polarized and partially polarized varieties, with fully polarized light
further subdivided into circular and linear polarization types. Figure 2 shows the difference
between unpolarized natural light and linearly polarized light: the light emanating from the
source in the figure exhibits arbitrary vibration directions, thus classifying it as unpolarized
light. Upon passage through a polarization filter, since only light oscillating along a specific
direction is permitted to transmit, light with other vibration orientations is either absorbed
or reflected. Consequently, the transmitted light becomes completely linearly polarized.
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Figure 2. Polarized light imaging schematic diagram.

The Stokes vector is usually used to describe the polarization of light. It is assumed
that the Stokes vector of the optical signal entering the imaging observation system with
the polarization azimuth of 0◦, 45◦, 90◦ and 135◦ is S [18]. Then there is:

S =


S0
S1
S2
S3

 =


I0 + I45
I0 − I90

I45 − I135
0

 =


I90 + I135
I0 − I90

I45 − I135
0

 (1)
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In the formula, S0 represents the total intensity of light, S1 represents the intensity of
horizontal polarized light, S2 represents the intensity of diagonal polarized light, and S3 rep-
resents the intensity of circular polarized light. In general, the circular polarization com-
ponent is very small and can be ignored. I0, I45, I90, and I135 represent the intensity of the
light detected by a polarization observation system with a polarization azimuth of 0◦, 45◦,
90◦, or 135◦, respectively.

According to Formula (1), the polarization degree of the incident light can be deter-
mined as [18]:

DOP =
√

S2
1 + S2

2/S2
0 (2)

Figure 3 presents the intensity and polarization degree images obtained through
electro-luminescence polarization imaging analysis of scratch defects on photovoltaic
cells. As is evident from Figure 2, the surface of photovoltaic cells and the surface with
scratch defects exhibit marked disparities in polarization images, primarily due to the
fact that the surface of non-defective photovoltaic cells is relatively smooth, whereas the
surface of scratched defective cells is comparatively rough. Hence, polarization imaging
is employed to enhance the contrast of small defective targets within cell surface images,
resulting in enhanced texture details and edge contours of the surface image of such small
defect targets.
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2.2. YOLOv7 Algorithm

YOLOv7 [19] is the basic model in the YOLO series, which exceeds the speed and
accuracy of most existing target detectors in the range of 5–160 frames/s [20]. The structure
of YOLOv7 consists of four main parts: the input, the backbone feature extraction network,
the enhanced feature extraction network and the head prediction portion.

In general, YOLOv7 initially resizes the input image to 640 × 640, subsequently feed-
ing it into the backbone network. The backbone of YOLOv7 primarily incorporates a
CBS module, ELAN module, MPConv module and SPPCSPC module. The CBS module
comprises a Conv layer, BN layer and SiLU activation function. ELAN modules effectively
facilitate learning and convergence by controlling gradient paths, whereas deeper networks
employ MPConv modules for downsampling. SPPCSPC utilizes both spatial pyramid
pooling (SPP) and CSP structures to achieve richer gradient combinations. The enhanced
feature extraction network implements multi-scale feature fusion and adaptive convolu-
tional operations, enabling YOLOv7 to attain a significantly faster detection speed while
maintaining high detection accuracy and meeting real-time requirements. Subsequently,
the header network outputs three layers of feature maps of varying sizes, and the prediction
results are ultimately generated via RepConv. The network structure of YOLOv7 is shown
in Figure 4.
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3. Improvement of Defect Detection Algorithm

Based on YOLOv7’s network, corresponding improvements have been made to the
characteristics of small target polarization images. A contextual (COT) self-attention
mechanism has been added to the SPPCSPC module, which can increase the information
between the target and the background and replace the union intersection (IOU) metric
with the normalized Wasserstein distance (NWD) metric to optimize the loss function and
reduce the sensitivity of the YOLOv7 network to position deviations of small target objects.

3.1. COT Self Attention Mechanism

In polarization-degree images, extracting discriminative features proves challenging
due to the small size of objects and the limited visualization information. In the YOLOv7
network, as convolutional layers deepen, the high contrast of small and medium targets
in polarization degree images against the background tends to be diminished, further
obscuring the boundary between the target and the background, thereby compromising
the model’s recognition accuracy and detection output. Hence, it is imperative to maximize
the information dimension and depth accessible to the defect small targets. Typically, in
acquired digital images, an inherent coexistence relationship exists between “target and
scene” and “target and target” and leveraging this coexistence can significantly enhance
the algorithm’s detection performance for small defective targets [21]. From a research
perspective [22], appropriately modeling contextual information can boost target detection
performance, particularly when the network’s depth increases, as it can more effectively
demonstrate the enhancing effect of the attention mechanism. Grounded in this under-
standing, this paper incorporates the COT self-attention mechanism into YOLOv7 [23].

The COT structure is depicted in Figure 5. In contrast to a traditional self-attention
mechanism, where all pairs of query key relationships are learned in isolation without
considering the rich context between them, the COT structure overcomes this limitation. It
efficiently leverages the contextual information between input keys to inform the learning of
a dynamic attention matrix, thereby enhancing the visual representation with information
beneficial to small target detection and yielding improved model performance.

In COT, set the input feature map X ∈ RH×W×C. The key, query and value are
defined as K = X, Q = X and V = XWv. First use the k × k group convolution spa-
tially for all adjacent keys within the k × k grid to represent each key in context. The
learned context key K1 ∈ RH×W×C naturally reflects the static context information be-
tween local adjacent keys and K1 is represented as the static context of input X. The
context key K1 and the query Q are cascaded and the attention matrix [23] is implemented
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by two successive 1 × 1 convolution (Wθ with ReLU activation function and Wδ without
activation function).

A =
[
K1, Q

]
WθWδ (3)

For each header, the local attention matrix at each spatial location of A is learned based
on query features and key features of the context, rather than isolated query keyword pairs.
This approach enhances self-attention learning with the additional guidance of the mined
static context K1. Next, the focus feature graph K2 [23] is calculated by aggregating all
values V based on the context’s attention matrix A,

K2 = V ⊗ A (4)

Given the concern that feature graph K2 captures dynamic feature interactions between
inputs, K2 is named the dynamic context of the inputs. The final output feature graph Y is
the fusion of static K1 and dynamic context K2.

COT can simultaneously capture the above two spatial context relationships in the
input key, increase the effective information in the feature map and improve the effective
extraction of small scratch features on the surface of the photovoltaic module. Therefore,
in this paper, a COT self-attention mechanism is added to SPPCSPC module, which can
improve accuracy and does not produce a large amount of calculation. The improved
SPPCSPC module is shown in Figure 6.
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improve accuracy and does not produce a large amount of calculation. The improved 
SPPCSPC module is shown in Figure 6. 
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3.2. Loss Function Based on NWD

Due to the limited area occupied by the small target in the polarization degree image,
even a slight offset of one pixel in the bounding box prediction can lead to significant errors
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in the prediction process. However, the YOLOv7 network lacks a bounding box regression
function specifically designed for small targets, resulting in low regression accuracy when
dealing with them. Therefore, we need to choose a loss function that is more tailored to
small targets. Based on this, the regression loss of normalized Wasserstein distance (NWD)
is chosen as the target loss function in YOLOv7.

The traditional loss function, which is based on the intersection over union (IoU)
measure, has limited sensitivity to small targets due to the discreteness of boundary frame
position changes. This sensitivity can lead to small position deviations, resulting in cases
where the IoU between the true frame and any anchor falls below the minimum positive
threshold. Consequently, a detection network trained on small targets lacks sufficient
monitoring information, significantly reducing detection performance. On the other hand,
NWD calculates the similarity between the small target prediction box and the ground
truth box by normalizing the corresponding two-dimensional Gaussian distributions.
This approach smooths out position deviations and can measure the similarity between
boundary boxes that do not overlap or contain each other [24]. Furthermore, NWD is not
sensitive to objects of different scales, which can improve the detection accuracy of the
network model for small target objects.

In the bounding box, the target pixel and the background pixel are concentrated in
the center and border of the bounding box respectively [25]. Therefore, modeling the
bounding box as a two-dimensional (2D) Gaussian distribution, where the center pixel
has the highest weight and the importance of pixels gradually decreases from the center
towards the boundary, can better describe the weights of different pixels in the bounding
box. Specifically, for bounding boxes R = (cx, cy, w, h), where

(
cx, cy

)
, w and h represent

center coordinates, width and height, respectively. The equation of its intrinsic ellipse can
be expressed as

(x − µx)
2

σ2
x

+
(y − µy)

2

σ2
y

= 1 (5)

where (µx, µy) are the central coordinates of the ellipse and σx and σy are the lengths of the
semi-axes along the x and y axes. Therefore, µx = cx, µy = cy, σx = w/2, σy = h/2.

The probability density function of a 2D Gaussian distribution is given by the following
equation:

f (x|µ, Σ) =
exp(− 1

2 (x − µ)TΣ−1(x − µ))

2π|Σ|
1
2

(6)

The similarity between boundary boxes A and B can be converted to the distribu-
tion distance between two Gaussian distributions, which is calculated using the Wasser-
stein distance from optimal transport theory. For two two-dimensional Gaussian dis-
tributions µ1 = N(m1, Σ1) and µ2 = N(m2, Σ2), the second-order Wasserstein distance
between µ1 and µ2 is defined as [26]:

W2
2 (µ1, µ2) = ∥m1 − m2∥2

2 + Tr(Σ1 + Σ2 − 2(Σ1/2
2 Σ1Σ1/2

2 )
1/2

) (7)

which can be simplified as:

W2
2 (µ1, µ2) = ∥m1 − m2∥2

2 + ∥Σ1/2
1 − Σ1/2

2 ∥2
F (8)

Based on the Gaussian distributions Na and Nb modeled in boundary boxes
A = (cxa, cya, wa, ha) and B = (cxb, cyb, wb, hb), Equation (8) can be further simplified as

W2
2 (Na, Nb) =

∥∥∥([cxa, cya,
wa

2
,

ha

2

]T
,
[

cxb, cyb,
wb
2

,
hb
2

]T
)∥∥∥2

2

(9)
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However, W2
2 (Na, Nb) is a distance measure and cannot be used directly as a similarity

measure (i.e., a value between 0 and 1 as an IoU). Therefore, we use its exponential form to
normalize and obtain a new metric called normalized Wasserstein distance (NWD):

NWD(Na, Nb) = exp

−

√
W2

2 (Na, Nb)

C

 (10)

where C is a constant that is closely related to the data set.
We designed the NWD metric as a loss function in the following way:

LossNWD = 1 − NWD(Np, Ng) (11)

where Np is the Gaussian distribution model of the prediction box and Ng is the Gaussian
distribution model of the truth box.

NWD can be used as a better metric to measure the similarity between two bounding
boxes, overcoming the sensitivity of IOU to the position deviation of small target objects
and becoming embedded in the target loss function to improve the detection of small
targets by the YOLOv7 network.

4. Experiment and Result Analysis
4.1. Experimental Platform and Dataset Construction

A time-multiplexed polarization imaging system was selected to capture the polariza-
tion images of small scratches on the surface of photovoltaic cells, as shown in Figure 7.
Images of polarized light intensity in different directions were obtained by placing a ro-
tatable polarizer in front of the imaging detector. The whole system is mainly composed
of three parts: a shortwave camera, DC power supply, polarizer turntable and laptop
computer with polarizing image acquisition software. The shortwave infrared camera
model is Owl 640 S, featuring a response wavelength ranging from 900 nm to 1700 nm and
an internal InGaAs sensor. The polarizer is a precision line grid polarizer, model 20LP-NIR,
with an extinction ratio of 1000:1. The excitation power supply is a Goodyear 3030DD DC
power supply, capable of providing a constant current output within a voltage range of
0–30 V and a current range of 0–3 A. The experimental object is a monocrystalline silicon
solar cell sheet, measuring 156.6 mm × 156.6 mm with a thickness of approximately 0.1
mm. The scratches on the cell have a maximum length of 9 mm and a width of 1 mm. The
positive and negative poles of the cell are led out with leads to facilitate connection to the
DC regulated power supply.
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The experiment was conducted in a dark room, with the photovoltaic cell positioned
perpendicular to the surface of the mobile platform. The distance between the camera lens
and the center of the photovoltaic cell was maintained at 60 cm, and the DC power output
was set at 1V-3A to make the photovoltaic cell positive. Multiple images of the photovoltaic
cell were captured at different observation angles, corresponding to polarization azimuths
of 0◦, 45◦, 90◦ and 120◦. The Stokes parameters and polarization degree images were
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obtained by means of Equations (1) and (2). The DOP images obtained by analysis are
marked with marking software, and the marking information is exported in txt form.

The key parameters of the deep learning platform in this experiment are as follows:
Operating system: Ubuntu 18.04; graphics card model: NVIDIA RTXA 2080Ti with 11 GB
memory. CPU model: Intel(R) Xeon(R) Platinum 8255C CPU@2.50 GHz. Deep learning
framework Pytorch1.7.0; CUDA version 11.0. The defect data set was randomly divided
into training set, test set and verification set according to the ratio of 7:2:1, with 309, 87 and
35 pictures, respectively.

4.2. Definition of Evaluation Indicators

In the stage of data analysis, six indexes were used to evaluate the model effect,
including accuracy rate (P), recall rate (R), mAP_0.5, mAP_0.5:0.95, training time and
single image test time. Accuracy rate, recall rate and mAP (mean average precision) are all
metrics that assess the accuracy of the model’s detections and their formulas are shown
below. Training time serves as a measure of the detection model’s training efficiency, while
single image test time represents a measure of the speed of image processing by the object
detection network.

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

AP =
∫ 1

0
P(R) (14)

mAP =
1
c

c

∑
j=1

APj (15)

Here are the definitions: P represents accuracy, R stands for recall rate, TP is the
number of true positives (positive samples correctly determined), FP is the number of
false positives (samples incorrectly judged as positive), FN is the number of false negatives
(samples incorrectly judged as negative), AP represents the average accuracy across all
classes, and c denotes the total number of classifications.

4.3. Result Analysis

In the training process, Figure 8 compares the training loss and mAP_0.5 curves of
both the original and improved YOLOv7 algorithms. The horizontal axis represents the
training times, while the vertical axis in Figure 8a corresponds to the loss value and in
Figure 8b to the mAP_0.5 value. Figure 8a demonstrates that the improved YOLOv7
algorithm converges faster and achieves a lower final loss value compared to the original
algorithm. In Figure 8b, it is evident that the improved YOLOv7 algorithm exhibits less
jittery and more stable mAP performance, resulting in a higher final value.
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4.3.1. Contrast Experiment

In order to objectively demonstrate the improved effect of the proposed algorithm,
the improved model was compared and analyzed with official models such as YOLOv7,
YOLOv7-Tiny and YOLOv7x. The analyzed results of various indicators are shown in Ta-
ble 1, and the parameters used by the model were the same. The experimental results show
that, compared with the original YOLOv7 algorithm, the improved YOLOv7 algorithm
sacrifices a detection speed of 0.001s but achieves the best performance in terms of accuracy,
recall rate and mAP scores, including mAP_0.5 and mAP_0.5:0.95. It also outperforms
other official YOLOv7 models across all four metrics. This demonstrates that the model
exhibits excellent performance in terms of mean average accuracy and detection speed after
loss function optimization and attention mechanism feature enhancement.

Table 1. Performance comparison of various models.

Model Accuracy
Rate/%

Recall
Rate/% mAP_0.5/% mAP_0.5:0.95/% Training

Time/h Test Time/s

YOLOv7 95.54 93.21 97.82 49 0.116 0.106
YOLOv7-Tiny 92.02 93.21 95.5 43.14 0.079 0.056

YOLOv7x 88.68 91.9 94.31 42.78 0.170 0.110
Improvement YOLOv7 98.08 95.06 98.83 50.34 0.117 0.107

4.3.2. Test Results

In order to verify the performance of the proposed algorithm in practical applications,
pictures of three scenarios were extracted from the data test set and the proposed algorithm
and the original YOLOv7 algorithm were respectively used for testing, as shown in Figure 9.

The results of Figure 9 show that in group (a), there are noise interference points in
the background of photovoltaic cells; both models show good adaptability and no false
detection occurs, but the original YOLOv7 algorithm fails to detect defect points and the
proposed algorithm has higher confidence. In the (b) group of pictures, the grayscale
between the photovoltaic cell defects and the background is relatively close and the original
YOLOv7 algorithm also fails to detect points, which shows that the detection effect of the
proposed algorithm on small targets has been improved. The scenario of group (c) is more
complex, and small targets overlap. The original YOLOv7 detected one defect, but the
algorithm in this paper could identify two defects, indicating that the model has strong
recognition ability.

Figure 10 is a comparison between the middle feature map of the YOLOv7 model and
the improved model. It can be seen from the figure that the edge outline of defects in the
feature map becomes clearer after the COT self-attention mechanism module is added. The
contrast between the defect and the background photovoltaic cell in the feature map is
obviously improved.
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5. Conclusions

This paper proposes a small target detection method based on improved YOLOv7
polarization imaging of photovoltaic cell defects. First, the polarization camera is used to
collect small defects of photovoltaic modules and the analyzed DOP image information is
used as network input to make the edge of the small target prominent, increase the available
information of images and increase the detection accuracy of the model. Secondly, a COT
attention mechanism module is added to increase the accessible information of small targets
by using the context of small targets and improve the detection accuracy of small targets.
Finally, by improving the target loss function and replacing the IOU measure with the
NWD measure, the sensitivity of IOU to the position deviation of small target objects can
be overcome, the prior box regression effect can be improved, and the detection accuracy
of small target can be further improved. Therefore, the mAP has obvious improvements.

The experimental and research results show that the proposed method is 1.01 percent-
age points higher than the mAP of the original YOLOv7 algorithm. Subsequent research
work will involve more comparative experiments in the field of PV cell defect detection
and verify the applicability of the method proposed in this paper under different types of
defect conditions. Attention will also be paid to the lightweighting of the model so that it
can be run in mobile devices while maintaining accuracy.
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