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Abstract: The analysis of odds ratio curves is a valuable tool in understanding the relationship
between continuous predictors and binary outcomes. Traditional parametric regression approaches
often assume specific functional forms, limiting their flexibility and applicability to complex data. To
address this limitation and introduce more flexibility, several smoothing methods may be applied, and
approaches based on splines are the most frequently considered in this context. To better understand
the effects that each continuous covariate has on the outcome, results can be expressed in terms of
splines-based odds ratio (OR) curves, taking a specific covariate value as reference. In this paper,
we introduce an R package, flexOR, which provides a comprehensive framework for pointwise
nonparametric estimation of odds ratio curves for continuous predictors. The package can be used to
estimate odds ratio curves without imposing rigid assumptions about their underlying functional
form while considering a reference value for the continuous covariate. The package offers various
options for automatically choosing the degrees of freedom in multivariable models. It also includes
visualization functions to aid in the interpretation and presentation of the estimated odds ratio curves.
flexOR offers a user-friendly interface, making it accessible to researchers and practitioners without
extensive statistical backgrounds.

Keywords: logistic models; generalized additive models; odds ratio; reference value; smoothing
splines

1. Introduction

Logistic regression models [1] serve as powerful tools in statistical analysis, particu-
larly when the outcome variable is binary. In contrast to linear regression, which is tailored
for continuous dependent variables, logistic regression is specifically crafted for predicting
the probability of an event, making it particularly applicable to scenarios like estimating the
likelihood of a patient developing coronary disease or experiencing a specific medical out-
come. Within logistic regression, addressing the nonlinear effects of continuous predictors
is a pivotal challenge, as conventional models may lead to substantial errors. To address
this issue, two conventional approaches have historically been employed: (i) categorizing
predictors, creating dummy variables, and calculating the effects considering an appro-
priate reference category; or (ii) the incorporation of these predictors into a polynomial
model. The categorical approach provides averaged effects for each category, posing the
challenge of determining the optimal number of categories and the appropriate placement
of their cutpoints [2]. As we delve into the existing literature, numerous methods for
determining appropriate cutpoints have been proposed [3,4]. These approaches aim to
mitigate the subjectivity associated with cutpoint selection, offering a systematic means
for investigators. However, it becomes evident that this strategy falls short of resolving
two critical issues: the potential loss of statistical power and the reliance on averaged risks
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within predefined categories when estimating relative risks or odds ratios. Consequently,
there arises a need for innovative approaches that not only address the nonlinearity in
continuous predictors but also tackle the inherent challenges of cutpoint determination,
power loss, and the impact on risk estimation.

The utilization of polynomial regression has been a common practice to address the
challenges posed by nonlinear effects in continuous predictors. Polynomial regression
allows for the inclusion of higher-order terms, providing a flexible framework to cap-
ture complex nonlinear patterns in the data. However, despite its versatility, polynomial
regression has limitations, including susceptibility to overfitting and difficulties in inter-
pretation. In response to these challenges, generalized additive models (GAMs) [5,6] offer
an alternative solution that take in consideration the incorporation of nonlinear forms
for the explanatory variables. GAMs, particularly those employing spline regression and
smoothing splines, enhance the capacity to model nonlinear effects more effectively. Splines
provide a flexible way to represent nonlinear relationships by dividing the predictor space
into smaller intervals and fitting separate polynomials to each segment, mitigating the risk
of overfitting associated with high-order polynomials.

Smoothing splines are a popular technique for fitting a smooth curve to data while
balancing between goodness-of-fit and smoothness. Let f (x) be the function we aim to
estimate, and let yi be the observed response corresponding to predictor variable xi. The
goal is to find the function f (x) that minimizes the following penalized residual sum of
squares (RSS):

RSS( f , λ) =
n

∑
i=1

(yi − f (xi))
2 + λ

∫
[ f ′′(t)]2dt

where λ is a fixed smoothing parameter controlling the trade-off between fit and smooth-
ness. The first term measures the discrepancy between the observed and estimated values.
The second term penalizes the roughness of the curve, where f ′′(x) is the second derivative
of f (x).

The minimization problem can be solved by expressing f (x) as a piecewise polynomial
function with knots at predetermined points. Within each interval between knots, f (x)
is represented by a polynomial of degree d, resulting in a set of equations. To ensure
smoothness at knot points, additional constraints are imposed on the derivatives of adjacent
polynomials.

The final estimated function is a smooth curve that passes through the data points
while minimizing roughness. By adjusting λ and the placement of knots, the degree of
smoothing can be controlled, allowing flexibility in capturing complex relationships in the
data. For further insights, additional details can be found in [5] or [7].

A drawback associated with employing splines or smoothing splines to model the
effect of a continuous covariate lies in the challenge of selecting the number and placement
of knots that define the smooth line. The arbitrary determination of these parameters may
inadvertently obscure crucial features in the dataset. Striking the right balance is essential,
as an excessive number of knots can result in oversmoothing, while too few can lead to
undersmoothing. Some implementations, such as the gam package in R, automatically
select the number and position of knots based on the data and the specified degrees of
freedom for the smoother. Various methods have been proposed to address this issue,
with one approach relying on minimizing Akaike’s Information Criterion (AIC, [8]), and
an alternative based on minimizing a corrected version thereof (AICc, [9]). While these
criteria are straightforward to minimize in a univariate context, their application becomes
more intricate in multivariable settings. The Bayesian Information Criterion (BIC), initially
proposed by [10] presents another viable option in this context.

In response to these challenges, we introduce the flexOR package, accessible on
the Comprehensive R Archive Network at https://CRAN.R-project.org/package=flexOR
(accessed on 27 April 2024). This package offers a methodological advancement by incor-
porating robust nonparametric methods that improve the modeling and interpretation of
odds ratios (ORs) within logistic regression frameworks.

https://CRAN.R-project.org/package=flexOR
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The conceptual foundations of this approach draw inspiration from the work
of [11,12], who introduced a versatile method for constructing hazard ratio curves with
confidence limits. This methodology, rooted in clinical survival studies, leverages an ad-
ditive Cox model where the nonlinear effects of continuous predictors on log hazards are
elegantly modeled using P-splines. In our context, our objective is to estimate the odds
ratios (OR) and their associated confidence intervals through a nonparametric approach.
However, as in [11,12] we aim to estimate these curves while considering a reference value.
Capitalizing on the asymptotic normality of the logarithm of the odds ratio, we employ
a new approximation for the covariance matrix of the log-odds ratio to construct these
confidence intervals.

One of the cornerstones of flexOR is the dfgam function, which determines the optimal
number of degrees of freedom for smoothing in multivariable additive logistic models. The
optimal degree of smoothing is ascertained by minimizing any of the following criteria: AIC,
AICc, or BIC. The AIC is a measure of the relative quality of statistical models, balancing
goodness of fit and model complexity. The AICc is a corrected version of AIC, particularly
useful in situations with a limited sample size to prevent overfitting. Researchers often
use these criteria to guide model selection, and in the context of smoothing parameters,
they provide a systematic way to balance model fit and complexity. In addition, dfgam
also incorporates the restricted maximum likelihood method (REML) and generalized
cross-validation (GCV) into the implemented methods with a particular emphasis on the
GCV.Cp criterion, as implemented in the famous mgcv package [6]. The use of these
methods is particularly relevant in models involving multiple covariates with nonlinear
effects, ensuring that the selected model is optimally adjusted without being overfitted
or underfitted.

The practical implications of flexOR are important, particularly in fields where precise
modeling of continuous variables is crucial, such as epidemiology and biomedical research.
By providing more accurate and interpretable models, this package aids in the clear un-
derstanding of risk factors and their interactions. Additionally, flexOR offers detailed
graphical and numerical outputs, including adjusted OR curves and confidence intervals
while considering a reference value, enhancing the interpretability of logistic regression
results in research and clinical settings.

The remainder of this paper is organized as follows: Section 2 discusses the theoretical
background and the statistical methods underlying the flexOR package. Section 3 details
the software implementation and functionality, followed by Section 4, which presents a
case study demonstrating the application of flexOR. Finally, Section 5 concludes with a
discussion of the results and potential future directions for this research.

2. The Additive Model

Logistic regression is a widely used statistical method for modeling the probability
of a binary outcome. The logistic regression model is based on the logistic function, and
it expresses the log-odds of an event as a linear combination of predictor variables. The
logistic function is defined as

p(x) =
eβ0+β1x1+β2x2+...+βpxp

1 + eβ0+β1x1+β2x2+...+βpxp
(1)

where p(x) = p(Y = 1|X = x) is the probability of the event, β0 is the intercept term, and
βi, 1 ≤ i ≤ p are the coefficients of the predictor variables Xi.

The log-odds (logit) of the event is given by

ln
(

p(x)
1 − p(x)

)
= β0 + β1x1 + β2x2 + . . . + βpxp (2)
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The odds ratio (OR) in logistic regression is a crucial measure of association between
a predictor variable and the outcome. The adjusted OR for a subject with (continuous)
covariate value Xi = xi compared with a subject with covariate value xi,re f is given by

OR(xi, xi,re f ) = exp (βi(xi − xi,re f )) (3)

In its additive form, the logistic additive model expresses the log-odds of an event
that can be written as

ln
(

p(x)
1 − p(x)

)
= β0 +

q

∑
i=1

βixi +
p

∑
i=q+1

fi(xi) (4)

where the first q covariates are introduced parametrically in the model and the remaining
ones are introduced nonlinearly through (unknown) smooth functions, fi.

Model (4) stands out as particularly well-suited for various applications due to its
ability to accommodate nonlinear, smooth effects for continuous predictors, thereby pro-
viding a substantial increase in flexibility. These effects can be effectively modeled using
regression splines [13] or smoothing splines [5]. Assuming (4), the adjusted odds ratio for a
subject with covariate value Xi = xi, i > q compared with a subject with covariate value
xi,re f is given by

OR(xi, xi,re f ) =
exp ( fi(xi))

exp ( fi(xi,re f ))
= exp ( fi(xi)− f (xi,re f )) (5)

A critical decision in estimating the function f (x) is the selection of the smoothing
level, which directly influences the smoothness of the estimated function f̂ (x). The Akaike
Information Criterion (AIC), introduced by Akaike [8], and the Bayesian Information
Criterion (BIC), proposed by Schwarz [10], stand out as widely utilized criteria for model
selection in a given dataset. Grounded in log-likelihood (LogLik), these criteria can assist
in determining the optimal model. For additive logistic models, selecting the appropriate
level of smoothing is achieved by comparing models with varying degrees of freedom and
opting for the one with the lowest AIC or BIC scores. The AIC, AICc, and BIC scores are
calculated as follows:

AIC = −2 × LogLik + 2 × k

BIC = −2 × LogLik + log(n)× k

AICc = AIC + 2 × k(k + 2)/(n − k − 1)

where LogLik is the log-likelihood of the fitted model, k represents the equivalent degrees
of freedom of the model, and n is the number of observations in a given dataset.

The implementation of AIC, BIC, and AICc criteria to determine the degree of smooth-
ing for the corresponding continuous variable is straightforward for the case of a model
with a single covariate with a nonlinear effect, using one of these approaches. However,
it will entail fitting and comparing a large number of models. If we aim to fit a larger
number of covariates, this approach is no longer as simple. Later on, we illustrate the
application of these methods to real data, where we apply them to three covariates, for
which we propose using the dfgam function developed by us. This function utilizes an
iterative process, starting from an initial value for the smoothing degree, and through three
or more steps, we arrive at a value for the smoothing degree in the covariates adjusted in
the model.

Within the mgcv R package for GAMs, the estimation of smoothing parameters is
achieved by maximizing the Restricted Maximum Likelihood (REML) score. The REML
score is intricately connected to the model likelihood augmented by a penalty term. The
likelihood term is contingent upon the distributional assumption of the response variable,
such as binomial for binary responses. On the other hand, the penalty term encompasses
the smoothing parameters associated with the smooth terms embedded in the model.
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The method “GCV.Cp” in package mgcv uses GCV for unknown scale parameters and
Mallows’ Cp/UBRE/AIC for known scale. The GCV formula for a GAM is the following:

GCV =
1
n

n

∑
i=1

(
yi − f̂ (xi)

1 − trace(S(λ))/n

)2

where λ is the smoothing parameter that controls the amount of smoothing, n is the number
of observations, yi is the observed response for the i-th observation, f̂ (xi) is the predicted
value for the i-th observation and S(λ) is the smoother matrix associated with the penalty
parameter λ.

The GCV criterion seeks to balance model fit and complexity by penalizing the model
for the number of parameters estimated. REML and GCV.Cp are optimization problems.
We utilize the mgcv package, which, in turn, employs numerical optimization techniques
to determine optimal values for smoothing parameters. These values are obtained by either
maximizing the REML score or minimizing the GCV.Cp criterion. The REML may exhibit a
higher susceptibility to oversmoothing, and the choice among these methods depends on
the specific characteristics and requirements of the data and modeling context.

The criteria, implemented in the package, encompass Restricted Maximum Likelihood
(REML) and a method known as GCV.Cp. GCV.Cp employs Generalized Cross-Validation
(GCV) when dealing with an unknown scale parameter or an UnBiased Risk Estimator
(UBRE) for a known scale parameter. UBRE essentially corresponds to a scaled AIC in the
generalized case or Mallows’ Cp in the additive model case. The REML approach aims to
maximize the restricted likelihood of the model given the data, while GCV.Cp strives to
strike a balance between the goodness of fit and the complexity of the model.

It is important to note that, in our case, the confidence bands for the odds ratio
(ÔR(xi, xi,re f )) are obtained considering a reference value that always needs to be defined
by the user, unless predefined values such as minimum or maximum are used. Therefore,
the graphical representations obtained will be different from those provided by other tools
currently available, such as those found in the gam or mgcv libraries of the R software
(version 4.4.0).

The asymptotic variance of LnÔR(xi, xi,re f ) can be expressed in terms of the covari-
ance matrix of the smoother f̂i(xi): Var(LnÔR(xi, xi,re f )) = Var( f̂i(xi)) + Var( f̂i(xi,re f ))−
2Cov( f̂i(xi), f̂i(xi,re f )).

Following Hastie and Tibshirani [5,14], the estimate f̂i(xi) can be given by f̂i(xi) =
S · z(xi) = (H + G) · z(xi) = H · z(xi) + G · z(xi) = θ̂xi + ĝ(xi) In our context, the matrix S
represents the (weighted) smoother matrix applied to the working response z(xi), which
is obtained from the Fisher Scoring fit. Specifically, the S matrix we typically consider is
based on cubic smoothing splines. This matrix S is orthogonally decomposed into a sum
of two matrices: H and G. Here, H serves as the projection operator matrix, providing an
estimate of the corresponding parametric part of fi(xi), while G acts as the non-projection
operator matrix, responsible for smoothing gi(xi) using cubic smoothing splines.

From this, we can rewrite the corresponding asymptotic variance as follows:

Var(LnÔR(xi, xi,re f )) = ϕ̂(xi − xi,re f )
2Var(θ̂) + Var(ĝi(xi)) + Var(ĝi(xi,re f ))

− 2Cov(ĝi(xi), ĝi(xi,re f ))

where ϕ̂ is the estimated dispersion parameter ϕ of the model, and Cov(ĝi) represents the
asymptotic covariance matrix of the purely nonparametric smoother function ĝi(xi).

Given that the two components, θ̂xi and ĝi(xi), of the smoother f̂i(xi) are shown
to follow asymptotically a normal distribution, we finally have that LnÔR(xi, xi,re f ) ∼
N(LnOR(xi, xi,re f )), Var(LnÔR(xi, xi,re f )).
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3. Software Description

The flexOR R package is designed to generate pointwise estimates of OR curves
for continuous predictors along with their corresponding confidence limits. Integrated
seamlessly with the R statistical environment [15], this package includes a suite of functions
that support both numerical analysis and graphical representation. Table 1 provides a
summary of the available functions. Detailed guidance on using these functions can be
found in the respective help pages.

Table 1. Summary of functions in the flexOR package.

Function Description

AICc Calculates AICc, the Akaike Information Criterion corrected for small sample
sizes, for Generalized Additive Models.

floor_to Takes a numeric value or vector and rounds it down to the nearest multiple of a
specified base.

dfgam Calculates the degrees of freedom for specified non-linear predictors in a GAM
model.

flexOR Computes odds ratios and CIs for predictors in GAM models.

plot.OR Plots smooth odds ratios along with confidence intervals for a specified predic-
tor. For an object of class OR.

predict.OR Predicts values using a fitted OR model.

Managing the level of smoothing in additive models is particularly challenging, espe-
cially in multivariable contexts. To address this, we introduce the dfgam function, which
allows flexible control over the degree of smoothing by providing various methodological
options for optimization. In its current implementation, the dfgam function exclusively
supports the “s” option for the smoother parameter, which indicates the use of smoothing
splines for modeling nonlinear effects of predictors.

dfgam(
response,
nl.predictors,
other.predictors = NULL,
smoother = "s",
method = "AIC",
data,
step = NULL

)

This function requires continuous predictors that need to be introduced nonlin-
early to be specified in the nl.predictors argument (as a vector), using smoothing
splines (smoother = “s”), while other predictors (continuous or not) are included un-
der other.predictors. This function generates a list containing the degrees of freedom for
the spline smoothing terms, determined by the minimization of specific criteria based
on the selected method. These criteria include (a) the Akaike Information Criterion
(AIC) when method=“AIC”, (b) a variant of the corrected AIC, adapted from [9], when
method=“AICc”, (c) the Bayesian Information Criterion (BIC) when method=“BIC”, (d) the
restricted maximum likelihood (REML) score when method=“REML”, and (e) the Generalized
Cross-Validation Criterion plus a penalty (GCV.Cp) when method=“GCV.Cp”.

The flexOR function, the cornerstone of the package, requires data, a response variable,
and a formula to compute the odds ratios:
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flexOR(
data,
response,
formula

)

The plot function can then visualize flexible odds ratio curves, accommodating
nonlinear relationships between continuous predictors and the response variable:

plot(
x,
predictor,
prob = NULL,
ref.value = NULL,
conf.level = 0.95,
round.x = NULL,
ref.label = NULL,
col,
main,
xlab,
ylab,
lty,
xlim,
ylim,
xx,
ylog = TRUE,
...

)

The reference value is set using the ref.value argument or determined automatically
to represent either the minimum or maximum of the odds ratio curve, depending on the
setting of the prob argument.

Users are encouraged to utilize the output of flexOR with additional R packages such
as plotly for creating more interactive and dynamic visualizations. This integration not
only enhances the interpretative value of the statistical analysis but also provides a more
engaging way to explore the data visually. Details on generating interactive plots using the
plotly R package and the application of these advanced functions will be demonstrated in
subsequent sections, using two real datasets.

4. Examples of Application

This section demonstrates the application of the flexOR package integrated with the
R statistical program [15]. Here, we illustrate the functionality of the package through
analyses conducted on two real datasets. The first dataset involves a reanalysis of data
from 811 patients admitted with acute coronary syndrome (ACS) to the Santiago University
Teaching Hospital between September 2003 and March 2007. A primary objective of this
study is to evaluate the predictive power of fasting blood glucose levels alongside other
variables within this dataset.

The second dataset considered is collected by the US National Institute of Diabetes and
Digestive and Kidney Diseases, focusing on a cohort of women aged 21 and above, of Pima
Indian heritage, residing near Phoenix, Arizona. This dataset, available in the mlbench
package of R, is commonly used to predict the likelihood of diabetes based on specific
diagnostic measurements. It comprises 768 observations and includes variables such as
age, plasma blood glucose, diastolic blood pressure, and body mass index, among others.
Researchers utilize this dataset extensively to explore and develop predictive models for
diabetes, leveraging the rich array of variables it offers.
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4.1. Acute Coronary Syndrome Data

This study aims to assess and compare the predictive efficacy of fasting glucose in
forecasting mortality among patients with acute coronary syndrome (ACS). The analysis
involves modeling the intricate, nonlinear relationships between glucose levels and the risk
of death, utilizing smoothing splines within the framework of additive logistic regression.

To explore the intricate dynamics of mortality prediction, a Generalized Additive
Model (GAM) was employed. This model considered the binary response variable “exitus”
(death) and incorporated key predictors, including age, creatinine, fasting blood glucose
levels, anemia, sex, and smoking status (nonsmoker, smoker, and ex-smoker).

Specifically, nonlinear relationships for age (years), creatinine, and fasting glucose
levels were modeled using smoothing splines. The degrees of freedom for the smooth
terms were determined using the dfgam function, minimizing the AIC criterion. The
resulting degrees of freedom were 8.9 for age, 1.8 for creatinine, and 4.6 for fasting. In this
case, to obtain the degrees of freedom for the three covariates, the dfgam function started
with an initial value provided by the REML method, and through a recursive three-step
process (default value, step = 3), it obtained the respective degrees of freedom for the
three covariates.

All selected predictors—age, creatinine, and fasting—demonstrated statistically signif-
icant effects, with their respective smooth terms exhibiting significant F-values. The model,
fitted using the gam function from the gam R library, also captured the influence of anemia,
sex, and smoking status, the first and the last showing significant effects.

The overall model fit was evaluated through the analysis of deviance, indicating a
strong fit to the data. These findings underscore the crucial role of the specified predictors
in predicting the binary response outcome (death).

> library ("flexOR")
> df1 <- dfgam(response="exitus",

nl.predictors=c("age","creatinine","fasting"),
other.predictors=c("anemia","sex","smoking"),
smoother="s",
method="AIC",
data = heart2)

> df1$df
df

age 8.9
creatinine 1.8
fasting 4.6
> m1 <- gam(exitus ~ s(age, 8.9) + s(creatinine, 1.8) + s(fasting, 4.6) +

anemia + sex + factor(smoking),
data=heart2,
family=binomial())

> summary(m1)
Anova for Parametric Effects

Df Sum Sq Mean Sq F value Pr(>F)
s(age, 8.9) 1.0 43.44 43.444 49.9012 3.548e-12 ***
s(creatinine, 1.8) 1.0 16.08 16.077 18.4669 1.944e-05 ***
s(fasting, 4.6) 1.0 10.71 10.709 12.3004 0.0004784 ***
anemia 1.0 15.69 15.693 18.0257 2.438e-05 ***
sex 1.0 2.71 2.713 3.1165 0.0778910 .
factor(smoking) 2.0 7.44 3.720 4.2725 0.0142708 *
Residuals 790.7 688.38 0.871
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Anova for Nonparametric Effects
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Npar Df Npar Chisq P(Chi)
(Intercept)
s(age, 8.9) 7.9 21.6053 0.005358 **
s(creatinine, 1.8) 0.8 3.2991 0.050784 .
s(fasting, 4.6) 3.6 9.3431 0.040178 *
anemia
sex
factor(smoking)

The most effective means of interpreting the nonlinear effects is through the analysis
of the corresponding plot. Below, we present the input commands to generate the log-odds
ratio curve illustrating the relationship between the odds of death and fasting glucose
among ACS patients. The resulting plot is showcased in Figure 1. The figure illustrates a
spoon-shaped dependence of the mortality odds ratio on fasting glucose, with the lowest
odds observed at 114 mg/dL (6.3 mmol/L; to convert mg/dL of glucose to mmol/L, divide
by 18). The log-odds ratio (LnOR) is visually represented, accompanied by 80% (depicted
in gray) and 95% (light gray) confidence bands, utilizing a reference value of 100 for fasting
blood glucose. Users have the option to choose a single confidence level, although two are
also feasible, as demonstrated in the input command below. Additionally, the argument
“ylog” provides the flexibility to generate a plot that is not on the log scale.

0
1

2
3

 

Fasting blood glucose levels

Lo
g 

O
dd

s 
R

at
io

 (
Ln

 O
R

)

60 100 158 255 352 450

Ref. value = 100

Figure 1. Relation between fasting blood glucose level and log-odds of death among ACS patients.
The log-odds ratio (LnOR) is depicted by a solid line, while the 80% and 95% confidence bands are
represented by dashed lines. These visualizations are provided for a reference value of 100 for fasting
blood glucose level.

> or1 <- flexOR(data = heart2, response = "exitus",
formula = ~s(age, 8.9) + s(creatinine, 1.8) + s(fasting, 4.6) +
anemia + sex + factor(smoking))

> plot(
x = or1,
predictor = "fasting",
ref.value = 100,
ref.label = "Ref. value",
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col.area = c("grey75", "grey90"),
main = " ",
xlab = "Fasting blood glucose levels",
ylab = "Log Odds Ratio (Ln OR)",
lty = c(1,2,2,3,3),
ylog = TRUE,
round.x = 1,
conf.level = c(0.8, 0.95)

)

Plotly’s R graphing library offers a powerful tool for creating interactive, publication-
quality graphs that enhance data visualization experiences. The library’s versatility allows
users to go beyond static representations and delve into dynamic visualizations, enabling
a more engaging exploration of the data. In the example provided, the input commands
showcase the library’s capability to generate a smoothed log-odds curve with two confi-
dence bands. The interactive nature of these plots facilitates a deeper understanding of
the underlying patterns by allowing users to zoom in, pan, and hover over data points for
detailed insights. This interactivity not only enhances the overall user experience but also
promotes a more nuanced and insightful interpretation of the graphed information. Below
are the input commands, along with the corresponding Figure 2.

> library(plotly)

> p <- plot(
x = or1,
predictor = "fasting",
ref.value = 100,
ref.label = "Reference Label",
main = "Smooth odds ratio for Fasting blood glucose",
xlab = "Fasting blood glucose levels",
ylab = "Log Odds Ratio (Ln OR)",
lty = c(1,2,2,3,3),
xlim = c(60, 450),
round.x = 1,
conf.level = c(0.8, 0.95)

)

> tmat <- p$estimates
> xref <- p$xref
> mdata <- or1$dataset
> jj <- match(sort(unique(mdata$fasting)), mdata$fasting)

# Plotly to get shaded (two-levels) confidence bands
> fig <- plot_ly(x=mdata$fasting[jj], y=tmat[jj,5],

type = ’scatter’, mode = ’lines’,
line = list(color = ’transparent’),
showlegend = FALSE, name = ’80%UCI’)

> fig <- fig %>% add_trace(y = ~tmat[jj,3], type = ’scatter’,
mode = ’lines’,

fill = ’tonexty’, fillcolor = ’rgba(0,100,80,0.3)’,
line = list(color = ’transparent’),
showlegend = FALSE, name = ’95%UCI’)

> fig <- fig %>% add_trace(y = ~tmat[jj,2], type = ’scatter’,
mode = ’lines’,

fill = ’tonexty’, fillcolor=’rgba(0,100,80,0.3)’,
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line = list(color = ’transparent’),
showlegend = FALSE, name = ’95%LCI’)

> fig <- fig %>% add_trace(y = ~tmat[jj,4], type = ’scatter’,
mode = ’lines’,

fill = ’tonexty’, fillcolor=’rgba(0,100,80,0.3)’,
line = list(color = ’transparent’),
showlegend = FALSE, name = ’80%LCI’)

> fig <- fig %>% add_trace(y = ~tmat[jj,1], type = ’scatter’,
mode = ’lines’,

line = list(color=’rgb(0,100,80)’),
showlegend = FALSE, name = ’LnOR’)

> fig <- fig %>% add_annotations( x = xref,
y = floor_to(min(tmat[jj,]), to=0.5),
xref = "x", yref = "y",
axref = "x", ayref = "y",
text = paste("Ref. value =",xref),
showarrow = T,
ax = xref,
ay = max(tmat[jj,])/2)

> fig <- fig %>% layout(#title = "",
plot_bgcolor=’rgb(229,229,229)’,
xaxis = list(title = "Fasting glucose levels",

gridcolor = ’rgb(255,255,255)’,
showgrid = TRUE,
showline = FALSE,
showticklabels = TRUE,
tickcolor = ’rgb(127,127,127)’,
ticks = ’outside’,
zeroline = FALSE),

yaxis = list(title = "Log Odds Ratio (Ln OR)",
gridcolor = ’rgb(255,255,255)’,
showgrid = TRUE,
showline = FALSE,
showticklabels = TRUE,
tickcolor = ’rgb(127,127,127)’,
ticks = ’outside’,
#range = c(-0.5,3.5),
zeroline = FALSE))

> fig

Figures 1 and 2 illuminate the intricate relationship between fasting blood glucose
levels and the odds of death among Acute Coronary Syndrome (ACS) patients. The log-
odds ratio (LnOR) is presented alongside 80% and 95% confidence bands, all referenced to
a reference value of 100 for fasting blood glucose levels.

It is imperative to note that normal fasting blood glucose concentrations typically
fall within the range of 70 mg/dL (3.9 mmol/L) to 100 mg/dL (5.6 mmol/L). Notably,
individuals with fasting blood glucose concentrations near 114 mg/dL exhibit a lower
odds of death. The log-odds of death, as depicted in the figures, exhibits a distinctive
spoon-shaped pattern, with a rapid escalation beyond this threshold until reaching a value
of 200 mg/dL.

These findings shed light on the critical interplay between fasting blood glucose
levels and mortality odds among ACS patients, emphasizing the nuanced nature of this
relationship and its implications for clinical understanding and management.
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Figure 2. Interactive plot illustrating the relation between fasting blood glucose level and log-odds
of death among ACS patients. The log-odds ratio (LnOR), depicted by a solid line, is accompanied
by 80% and 95% confidence bands represented by dashed lines. These visuals are presented for a
reference value of 100 for fasting blood glucose level.

Furthermore, it is important to highlight that both Figures 1 and 2 present the same
estimates while employing different plotting techniques. Figure 1 utilizes the conventional
plotting method, while Figure 2 leverages the plotly R package.

The utilization of the plotly R package in Figure 2 introduces notable advantages,
particularly its dynamic and interactive visualization capabilities. Plotly enables real-time
interactivity, allowing users to explore the data in loco—providing a more immersive
and detailed understanding of the fasting blood glucose level and its association with the
odds of death among ACS patients. The incorporation of such interactivity improves the
interpretability and utility of the presented findings in a practical and user-friendly manner.

It is important to note that while the functional form of the odds ratio (OR) for a
particular predictor remains consistent regardless of the chosen reference point, the actual
values of the odds ratio can be influenced by the selection of this reference point. This
consideration must be taken into account when interpreting OR values.

The flexOR package also enables users to generate predictions based on the object
or1 obtained from the flexOR function. The output provides predicted values along with
confidence intervals for the log-odds ratio at different levels of the predictor variable fasting.
The reference value is set at 100, and the confidence level is specified as 95%. The resulting
table displays the reference value, log-odds ratios, and corresponding lower and upper
bounds for the given prediction values.

> pdval <- c (70, 80, 90, 100, 110, 120, 140, 180, 250, 400)
> predict(or1, predictor = "fasting", ref.value = 100, conf.level = 0.95,
prediction.values = pdval, ref.label = "Ref.")

Ref. LnOR lower .95 upper .95
70 0.48905582 0.3837869 0.59432470
80 0.31326688 0.2430876 0.38344614
90 0.14227425 0.1071846 0.17736388

100 0.00000000 0.0000000 0.00000000
110 -0.07323341 -0.1083230 -0.03814378
120 -0.06143541 -0.1316147 0.00874384
140 0.16943030 0.0290718 0.30978881
180 0.81032300 0.5296060 1.09104001



Appl. Sci. 2024, 14, 3897 13 of 17

250 1.07569430 0.5493499 1.60203870
400 1.89278576 0.8400970 2.94547454

Table 2 presents the degrees of freedom obtained for the multivariable logistic model
incorporating smoothing splines for fasting, creatinine, and age, using data from acute
coronary syndrome. Additional predictors in the model include anemia, sex, and smoking.
The results indicate that the AIC-based method yields a higher number of degrees of
freedom compared with GCV.Cp, particularly when compared with the REML method.
Similar results were observed for AICc and BIC. The observed discrepancy between AIC
and REML was anticipated, as the REML method may tend to oversmooth in certain
instances. This disparity underscores the significance of choosing an appropriate method
for determining degrees of freedom in additive logistic regression models. It has been
confirmed that the scores obtained for the AIC criteria are lower for the logistic additive
model with degrees of freedom derived through the AIC method.

Table 2. Degrees of freedom (df) for the multivariable logistic model with smoothing splines for age,
creatinine, and fasting. The remaining variables were anemia, sex, and smoking. Acute coronary syndrome.

Covariates AIC GCV.Cp REML

Age 8.9 6.97 3.34
Creatinine 1.8 1.79 2.06

Fasting 4.6 4.37 3.47

4.2. Pima Indians Diabetes Database

In this Section 4.2 we use the Pima Indians Diabetes Database, a well-known dataset in
the field of machine learning and statistics. The dataset originates from a study conducted
by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) in the
1990s, focusing on the Pima Indian population in Arizona, USA.

The dataset includes various demographic, clinical, and diagnostic measurements for
individuals, along with an indication of whether or not each person developed diabetes.
Researchers and data scientists often use this dataset to develop and test predictive models
for diabetes based on features like age (years), BMI (Body Mass Index), blood pressure,
diabetes pedigree function, and other health-related variables. The dataset is available as
part of the mlbench R package.

After identifying the variables to be included in the model and determining those
requiring a nonlinear effect through smoothing splines, we utilized the dfgam function.
This function enabled us to obtain optimal degrees of freedom, minimizing the AIC of the
model. The resulting degrees of freedom for the nonlinear predictors, namely age and body
mass index (mass), were determined to be 3.3 and 4.1, respectively. Subsequently, these
optimal degrees of freedom were incorporated into the generalized additive model (GAM)
using the gam function of the gam R package:

> data(PimaIndiansDiabetes2, package="mlbench")
> df2 <- dfgam(response="diabetes",

nl.predictors=c("age","mass"),
other.predictors=c("pedigree"),
smoother="s",
method="AIC",
data = PimaIndiansDiabetes2)

> df2$df
df

age 3.3
mass 4.1
> m2 <- gam(diabetes ~ s(age, df=3.3) + s(mass, df=4.1) + pedigree,

data=PimaIndiansDiabetes2, family=binomial)
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Next, we can leverage the primary function of the flexOR package, which, in turn,
is employed to generate a plot illustrating the smooth log-odds ratio curve. This curve,
shown in Figure 3, provides insight into the relationship between the risk of diabetes and
body mass index within the Pima Indian population in Arizona, USA. The log-odds ratio
(LnOR) is visually represented, accompanied by 80% (depicted in gray) and 95% (light
gray) confidence bands, using a reference value of 40 for BMI.

The input commands to generate the plot shown in Figure 3 are given below.

> or2 <- flexOR(data = PimaIndiansDiabetes2,
response = "diabetes",
formula = ~s(age, 3.3) + s(mass, 4.1) + pedigree)

> plot(
x = or2,
predictor = "mass",
ref.value = 40,
ref.label = "Ref. value",
col.area = c("grey75", "grey90"),
main = " ",
xlab = "Body mass index",
ylab = "Log Odds Ratio (Ln OR)",
lty = c(1,2,2,3,3),
round.x = 1,
conf.level = c(0.8, 0.95)

)

It is important to note that normal BMI values typically fall within the range of 19 to
25. In our context, individuals with a BMI lower than 40 manifest lower odds of diabetes.
The log-odds of diabetes, as depicted in Figure 3, follows a distinctive pattern: there is a
rapid increase until a BMI value of 30, followed by a relatively stable period between 30
and 40. However, beyond a BMI of 40, there is a notable and accelerated rise in the odds
of diabetes.

Finally, the following input commands and results provide predicted values along
with confidence intervals for the log-odds ratio at different levels of the predictor variable
body mass index when a reference value is set at 40.

> pdval <- c (20, 25, 30, 35, 40, 45, 50, 55, 60, 65)
> predict(or2, predictor = "mass", ref.value = 40, conf.level = 0.95,

prediction.values = pdval, ref.label = "Ref.")

Ref. LnOR lower .95 upper .95
20 -3.20826636 -3.7680373 -2.64849542
25 -1.61356211 -2.0333903 -1.19373390
30 -0.40263002 -0.6825155 -0.12274455
35 -0.07505977 -0.2150025 0.06488297
40 0.00000000 0.0000000 0.00000000
45 0.45600760 0.3160649 0.59595034
50 1.05087046 0.7709850 1.33075593
55 1.63284725 1.2130190 2.05267546
60 2.21353442 1.6537635 2.77330536
65 2.83405429 2.1343406 3.53376797
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Figure 3. Relation between body mass index (BMI) and log-odds of diabetes on the Pima Indian
population in Arizona, USA. The log-odds ratio (LnOR) is depicted by a solid line, while the 80%
and 95% confidence bands are represented by dashed lines. These visualizations are provided for a
reference value of 40 for BMI.

Table 3 presents the degrees of freedom for the logistic model with smoothing splines
for age and mass, and with pedigree as the additional predictor. In this case, the results
show that all the methods provide similar results for the degrees of freedom.

Table 3. Degrees of freedom (df) for the multivariable logistic model with smoothing splines for age
and mass. Pedigree was the remaining variable. Pima Indians diabetes.

Covariates AIC GCV.Cp REML

Age 3.30 3.30 3.44
Mass 4.10 3.96 4.17

5. Discussion

This paper provides a comprehensive overview of the flexOR package, showcasing its
capabilities for computing pointwise estimates of odds ratio (OR) curves and corresponding
confidence limits. Specifically designed for continuous predictors introduced nonlinearly
in an additive multivariable logistic regression model, the flexOR package offers both
numerical and graphical outputs, utilizing smoothing splines as the underlying technique.

It is noteworthy to mention the absence of available R libraries for generalized additive
models (GAM) with binary response variables that offer the functionality provided by
our library. While it is true that we can obtain smooth effects of continuous covariates
using libraries like gam or mgcv, they do not consider the reference value nor provide
graphs with confidence bands adjusted to account for the reference value. Our library
fills this gap by offering comprehensive tools for modeling GAMs with binary response
variables, including the incorporation of reference values and the provision of graphical
representations with adjusted confidence bands.

To illustrate the practical application of the flexOR package, we employed two real
datasets—namely, the Acute Coronary Syndrome (ACS) dataset and the Pima Indian
dataset. These examples serve to demonstrate the efficacy and versatility of the proposed
methods in the context of real-world data. The insights gained from these applications not
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only contribute to a better understanding of the flexOR package but also provide valuable
considerations for researchers and practitioners utilizing nonlinear logistic regression
models in their analyses. The integration of these techniques into statistical software
opens avenues for enhanced modeling and interpretation of complex relationships in
diverse datasets.

The application of the proposed methods enabled the identification of prognostic
factors exhibiting nonlinear associations with the risk of death among Acute Coronary
Syndrome (ACS) patients. Specifically, age (years), creatinine, and fasting blood glucose
levels demonstrated intricate nonlinear relationships. Similarly, in the context of the Pima
Indian diabetes dataset, age (years) and BMI exhibited nonlinear associations with the risk
of diabetes. Notably, this study showcases the distinct functional forms characterizing
these associations, providing a detailed understanding of the nuanced relationships within
each dataset.

A key consideration highlighted in this exploration is the importance of judiciously
selecting the optimal amount of smoothing when employing smoothing splines. The flexOR
software (version 1.0.0) addresses this concern by offering the flexibility to obtain degrees
of freedom through various methods, including the AIC criterion, its corrected version
proposed by Hurvich et al., and the BIC criterion by Volinsky and Raftery. Moreover, users
can leverage the functionality to obtain degrees of freedom based on other criteria available
in the well-established mgcv R package by Simon Wood.

In light of the observed patterns in our two datasets, a noteworthy recommendation
emerges for the use of the AIC method when determining degrees of freedom for smoothing
splines. In both datasets, AIC, AICc, BIC, and the GCV.Cp method consistently provide very
similar results, indicating a robust and consistent measure of model complexity. However,
it is crucial to note that the REML method yields considerably lower degrees of freedom for
the first dataset, suggesting an oversmoothing tendency. This underscores the importance
of carefully considering the choice of criterion, and based on the observed patterns, the
AIC method emerges as a reliable choice for achieving a balanced and interpretable model
complexity in the context of smoothing splines.

Finally, it is important to highlight that while the methodology outlined in this paper is
primarily tailored for continuous predictors, it can be adjusted to accommodate structures
involving "factor-by-curve" interactions. This adaptation becomes relevant when there is
interest in computing odds ratio (OR) curves for a continuous predictor that may exhibit
variation across different levels of a categorical covariate. Although delving into this as-
pect is outside the current paper’s scope, it signifies a crucial avenue for future research
deserving further exploration. Additionally, an intriguing avenue for future investiga-
tion lies in extending the method to handle bivariate splines. In other words, exploring
whether it can effectively accommodate the smooth effects of two variables analyzed jointly
presents an intriguing opportunity for methodological expansion. Furthermore, we aim to
expand the capabilities of the library by incorporating other smoothers beyond the current
implementation of smoothing splines.
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