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Abstract: Speech is a crucial source of personal information, and the risk of attackers using such
information increases day by day. Speaker privacy protection is crucial, and various approaches have
been proposed to hide the speaker’s identity. One approach is voice anonymization, which aims
to safeguard speaker identity while maintaining speech content through techniques such as voice
conversion or spectral feature alteration. The significance of voice anonymization has grown due to
the necessity to protect personal information in applications such as voice assistants, authentication,
and customer support. Building upon the S3PRL-VC toolkit and on pre-trained speech and speaker
representation models, this paper introduces a feature disentanglement approach to improve the
de-identification performance of the state-of-the-art anonymization approaches based on voice
conversion. The proposed approach achieves state-of-the-art speaker de-identification and causes
minimal impact on the intelligibility of the signal after conversion.

Keywords: privacy protection; anonymization; voice conversion; voice cloning

1. Introduction

An enormous amount of voice data is being produced by the widespread adoption of
voice technologies in our daily lives. Besides the use of speech biometrics for authentica-
tion [1], voice instructions to virtual assistants, and voice communications across multiple
industries, social media is also causing an exponential increase in the amount of speech
data available online [2]. This trend raises some serious issues, most notably those pertain-
ing to security and privacy [3]. Voice recordings have the potential to disclose personal
information such as age, gender, ethnic origin, and religious beliefs [4]. Modern voice bio-
metrics have the capability to derive a variety of the aforementioned private and sensitive
data from a speech signal. Given these concerns, and also as voice assistants and voice
recognition technologies become more ubiquitous, protecting user identities within voice
data is becoming increasingly vital.

This has led to an increased interest in privacy preservation solutions for speech
technology that, following the General Data Protection Regulation (GDPR) introduced by
the European Union [5], aim to protect personal speech data. One popular approach to
mitigate these issues is to develop privacy by design solutions, which perform the data
processing on the edge devices and are close to where the data are generated. This solution
avoids transferring or storing sensitive information on cloud infrastructures. However,
the limited computational resources of edge nodes typically require the compression of
AI models in order to reduce their memory and computation requirements [6–8]. In
addition, this approach often requires the design of tailored solutions, which may not
always be possible.

Alternative approaches are based on encryption [9,10]. Similarly, implementing jam-
ming mechanisms on speech signals may obfuscate the user’s identity [11,12]. There are
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two main limitations of encryption: (1) the computational cost and (2) that the cloud entity
processing the data, in any case, has access to the raw signals.

Recently, techniques for voice conversion (VC), which enable the alteration of one’s
voice into another, have become a viable means of accomplishing privacy preservation
via speech anonymization [13–16]. Speaker anonymization is a user-centric voice privacy
solution that aims to remove speaker information from a speech utterance while leaving
the other acoustic attributes unaltered. In this way, it is possible to conceal a speaker’s
identity without compromising intelligibility and naturalness. Voice anonymization offers
a transparent solution for the following speech processing strategies and does not have
to be tailored or adapted to a specific privacy-preservation method. Figure 1 graphically
shows these two strategies: privacy by design and voice anonymization.

(a) Privacy-by-design approach. (b) Audio anonymization by voice conversion.

Figure 1. Preserving privacy strategies in cloud-based speech applications (from [17]).

The VoicePrivacy Challenge [18] in 2020 and 2022 accelerated advancements in speaker
anonymization techniques. Most approaches in the VoicePrivacy Challenge can be cat-
egorized into signal-processing-based voice transformation and voice conversion based
on speaker embeddings [14,19–25]. Signal anonymization based on processing does not
require training data and directly alters speech characteristics like the time scale, the pitch,
or the spectral envelope. As the range of physical shifts in voice signals is limited, attackers
may be able to recover the original speech after a certain number of tries. Therefore, many
modern anonymization systems are based on the process of separating the speaker-related
representation from the raw speech signal using neural paradigms. These methods reduce
speaker-specific characteristics by averaging or changing the speaker embeddings, which
are often achieved using representations retrieved from a pre-trained automated speaker
verification model. The final result is the disentanglement between the speech content and
the speaker information [26–28].

In spite of the success of these latter methods, there are still a great deal of areas that
might be improved, such as making anonymized speech more distinctive and handling
more potent assault scenarios [13,29–32]. Notably, the forthcoming VoicePrivacy Challenge
will focus on developing attack models against speaker anonymization systems (https:
//www.voiceprivacychallenge.org/ (accessed on 1 March 2024)). A further limitation of
the current approaches is the trade-off between the amount of anonymization and the
quality of the processed speech. As a matter of fact, if the speech embeddings carry a great
deal of acoustic information to allow for high-quality speech synthesis, they inevitably
include information about the speaker. Refs. [33–35] discussed some of the aspects related
to the residual speaker information preserved in anonymization mechanisms.

As a follow up to our prior effort, as presented in [17], this work proposes a novel
strategy for anonymization via voice conversion, which, instead of manipulating the x-
vectors, leverages the approach of ContentVec [36] to obtain speaker-independent speech
representations and starts from pre-trained models within the S3PRL toolkit [37]. The
proposed strategy is evaluated on a public dataset and compared against a variety of neural
and signal-processing-based voice conversion methods.

Significance of Speaker Anonymization

There are many contexts where speaker anonymization plays a crucial role:

https://www.voiceprivacychallenge.org/
https://www.voiceprivacychallenge.org/
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• Privacy Protection and Ethical Data Use The preservation of personal privacy is
critical in a time when personal data are increasingly being stored digitally. If voice
recordings are not sufficiently anonymized, they can be used for malicious activities
such as identity theft and spying. Voice anonymization techniques allow voice data to
be used while hiding the speaker’s identity.

• Legal Compliance Organizations handling voice data are required to abide by the
increasingly strict data protection regulations being introduced by governments and
regulatory bodies. In order to guarantee that sensitive voice data are handled in a way
that complies with legal requirements, voice anonymization can be a crucial part of
compliance strategies.

• Enhanced Security Malicious actors may use exposed voice data to commit fraud
or identity theft. The risks of data breaches and unauthorized access are reduced by
anonymizing voice recordings.

• Versatile Applications In addition to protecting one’s privacy, voice anonymization
makes it possible to use voice data for a variety of purposes without sacrificing the
data’s security or confidentiality. This covers everything from enhancing call center
and voice assistant functionality to supporting law enforcement organizations in
protecting the privacy of their witnesses.

In summary, removing voice prints from recorded audio data is crucial from a variety
of technological and ethical points of view. Nevertheless, voice anonymization presents
important ethical challenges. For instance, one key concern is the potential misuse of these
techniques, such as in deepfake scenarios where malicious actors may use voice conversion
to impersonate others. Striking a balance between the legitimate use of voice anonymization
and preventing unethical use is a complex ethical dilemma. Furthermore, the issue of
informed consent is paramount. When voice data are collected, individuals should be
informed about how it will be used, including whether or not speaker anonymization will
be applied.

2. State-of-the-Art Techniques

As mentioned above, privacy preservation for speech can be achieved through several
techniques: obfuscation, encryption, distributed learning, or anonymization. Obfuscation
suppresses or modifies speech signals [38], while encryption supports computation in
encrypted data but increases computational complexity. Decentralized learning trains
models from distributed data without directly accessing it [39]. However, information about
original data may be leaked [40], unless further security mechanisms are applied [41,42].

The basic techniques for voice anonymization rely on signal-processing methods [43],
which modify instantaneous speech characteristics such as pitch [44], spectral envelope [45],
and time scaling [46]. For example, [45] utilized McAdams coefficients to randomize the
formants of speech signals. A similar but more articulated approach is presented in [38],
which explored vocal anonymization in urban sound recordings, thereby aiming to obscure
speech content and de-identify the speaker while preserving the rest of the acoustic scene.
The approach, inspired by face blurring in images, separates the audio signal into voice
and background components, and it selectively distorts the voice signal before mixing it
back with the background.

Current anonymization approaches mainly focus on learning specialized latent rep-
resentations, which decompose speech into content, speaker identity, and prosody. The
speaker identity is a statistical time-invariant representation throughout an utterance, while
content and prosodic information vary over time. The speaker’s identity representation car-
ries most of the private information, so generated speech using original content, prosodic,
and anonymized speaker representations can suppress the original identity information
while maintaining intelligibility and naturalness.

A representative technique is discussed in [19], where a bottle-neck feature extractor
is combined with a sequence-to-sequence synthesis module that maps the spectral features
from the bottle-neck features under an additional constraint that governs the resulting
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speaker representations. A general framework in this direction involves the following:
(i) fine-grained disentangled representation extraction from original speech, (ii) speaker
representation anonymization, and (iii) anonymized speech synthesis. The selection-based
speaker anonymizer is the most significant performance bottle neck for the current main-
stream approach, as it depends on the distribution of the external pool of speakers and how
pseudo-speakers are selected. This pipeline has been widely used in recent works [47,48],
but it does not prevent speaker-related information and linguistic features from leaking
into the anonymized waveform during vocoding. In general, a trade-off has to be found be-
tween the quality of the reconstructed speech and the degree of leaked speaker information.
Ref. [49] proposed a new synthesis pipeline to avoid the leakage of information between
different speech components. Ref. [50] proposed the use of very high-level semantic tokens
and acoustic tokens, which can be decoded to resynthesize an audio signal. Differential pri-
vacy [26] and feature quantization have been explored to sanitize the speaker information
from linguistic features. Alternatively, some methods operate at the speaker-embedding
level. Ref. [51] proposed an x-vector anonymization method, based on autoencoders and
adversarial training, which transforms the original x-vector into a new one with suppressed
speaker characteristics. Analogously, the speaker anonymization system in [52] generates
distinctive anonymized speaker vectors that can protect privacy under all attack scenarios,
and it can successfully adapt to unseen-language speaker anonymization without severe
language mismatch.

More recently, several approaches have focused on the use of pre-trained speech
representations (e.g., HuBERT, Wav2vec 2.0, and WavLM). For example, Ref. [53] investi-
gated a vector-matching- and latent-transformation-based type of speaker anonymization,
which is inspired by a voice conversion model based on the K-nearest neighbors algorithm
(kNN-VC) [54]. This method randomly samples multiple speakers and interpolates them
to achieve speaker anonymization. Similarly, Ref. [55] presented an anonymization method
based on reprogramming large self-supervised learning (SSL) models to effectively hide
speaker identity.

In contrast, a completely different approach was presented in [56], where adversarial
examples were used to trick a speaker verification system while inducing imperceptible
differences to the human auditory system.

Finally, Ref. [57] proposed a two-step procedure, where the anonymization model
described in the Voice Privacy Challenge 2022 was complemented with a zero-shot voice
conversion block, thereby demonstrating strong privacy properties combined with strong
pitch information preservation.

3. The Proposed Approach: Disentanglement of Pre-Trained Speech Embeddings

Our approach is built upon the work of [58] (S2VC) for voice conversion, in which
the speech content of an input audio signal, expressed as bottle neck features related to
an Automatic Speech Recognition (ASR) task, was learned and represented. An x-vector
representation of the target speaker was then used to re-synthesize the audio waveforms.
Building upon that concept, we improve S2VC, specifically for speaker anonymization, in
two directions:

1. Instead of using posteriorgrams features, as proposed in the original architecture,
pre-trained speech and speaker representations are employed.

2. We introduce the use of disentanglement techniques, following a similar direction as
ContentVec [36], on pre-trained speech representation.

Figure 2 depicts the voice conversion scheme of the present work. For the speech
embeddings, WavLM learns universal speech representations from massive unlabeled
speech data and effectively adapts them across various speech processing tasks [59]. As for
the speaker feature, a strong representation is provided by the TitaNet model proposed
by NVIDIA [60]; it features 1D depth-wise separable convolutions with Squeeze-and-
Excitation layers, with the global context followed by a channel-attention-based statis-
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tics pooling layer (https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/
titanet_large (accessed on 1 March 2024)).

Figure 2. Voice conversion scheme: the input signal is encoded with a self-supervised learning
(SSL) pre-trained model (i.e., WavLM); the conversion model generates a converted representation
using this content representation along with a different speaker embedding; and, finally, the vocoder
synthesizes the converted waveform.

Based on our comprehensive analysis, as reported in [17], it was observed that al-
though these speech embeddings produce higher-quality anonymized signals, they still
carry residual information about the speaker. Therefore, we introduced the use of dis-
entanglement techniques on the pre-trained speech representation, following a similar
direction as ContentVec (https://github.com/auspicious3000/contentvec (accessed on 1
March 2024)) [36], which has been developed to improve ASR performance by focusing all
the embedding information on the speech content rather than on the speaker characteristics.

The idea of feature disentanglement is explored in various works [61–64], and it
has been aimed at encoding only the specific properties of an incoming speech signal
(e.g., for altering prosody and expressivity); in the presented scenario, we investigate the
possibility of minimizing the speaker information provided by popular SSL representations.
We, therefore, summarize the investigated approach in the anonymization domain. The
disentanglement modifies the entire hidden-state representation, thereby learning a suitable
transformation that minimizes the differences due to speaker characteristics.

Figure 3 depicts the disentanglement mechanism of the present work. In order to
modify only the speaker identity of the utterance, the signals are altered using the modi-
fications described in [36]. The proposed learning mechanism adds an additional cosine
similarity loss in the fine-tuning procedure. This forces the ASR model to generate similar
embeddings when applied to the original signal and to its altered version. In this way, the
model equipped with this additional similarity loss learns to minimize, in the resulting
embedding, the information associated to pitch or formants, and—in turn—to speaker
characteristics, as illustrated by the results reported in Section 5. As shown in Figure 3, the
Connectionist Temporal Classification (CTC) loss on an ASR downstream task (i.e., Lib-
rispeech) is also used to preserve the speech content representation capabilities of WavLM
while the speaker information is removed.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/titanet_large
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/titanet_large
https://github.com/auspicious3000/contentvec
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Figure 3. Scheme for the disentanglement mechanism: the original signal and a modified version
(with pitch and formant shifts) are used as pairs for training the downstream task (e.g., Automatic
Speech Recognition). Aside from the original Connectionist Temporal Classification (CTC) loss, an
additional loss based on a cosine similarity on the signal pair induces an additional constraint in the
resulting representations, which forces the two representations to be similar and hence progressively
reduce the information associated with the speaker characteristics.

Let us denote the input waveform as x. After applying a set of random signal-based
transformations Ts, we obtain a modified waveform with the same spoken content and
prosody but different speaker characteristics as follows:

x̂ = Ts(x). (1)

Specifically, Ts(·) randomly alters the formant frequencies and pitch, as discussed
in [65], as follows:

• the pitch is altered by a random shift in range [1/1.4 − 1.4] and by a random scale in
the range [1/1.5 − 1.5];

• similarly, the formants are shift by a random value in the range [1/1.4 − 1.4].

As in the original paper, we used the ParselMouth Python library (https://parselmouth.
readthedocs.io/en/stable/ (accessed on 1 March 2024)).

Given the encoder part Enc(·) of the pre-trained WavLM model, we denote the latent
representations of the original and modified waveform as Xe = Enc(x) and X̂e = Enc(x̂),
respectively. These two representations share the same content but exhibit two different
speaker identities. Therefore, the model is fine-tuned using a contrastive loss that penalizes
the dissimilarity between Xe and X̂e as follows:

Lcosine(Xe, X̂e) =
XeX̂e

∥Xe∥∥X̂e∥
. (2)

The cosine loss above is then combined in the fine-tuning process with the traditional
CTC loss, which is computed on both versions on the input waverform as follows:

L = αLcosine(Xe, X̂e) + (1 − α)[LCTC(y, ŷ) + LCTC(y, ŷe)], (3)

where y are the ground-truth tokens, while ŷ and ŷe are the predicted tokens obtained from
the original and modified waveforms, respectively.

Once the disentanglement model is trained, the resulting speech representation is used
as an upstream model in the S3PRL-VC toolkit [66]. The S3PRL-VC toolkit was proposed
to help compare the SSL model performance against the SUPERB-SG [67,68] standard
framework. Specifically, it allows us to evaluate the generative capabilities of pre-trained
models, as well as the generalizability of the resulting conversion model.

https://parselmouth.readthedocs.io/en/stable/
https://parselmouth.readthedocs.io/en/stable/
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The resulting anonymization task was mainly derived from the setup proposed in [37]
for voice conversion. The speech embeddings were computed using the introduced disen-
tanglement mechanism on the WavLM features in the present work. The anonymization
model was then trained after the preliminary fine tuning of a pre-trained WavLM model to
a recognition task (i.e., with the usual CTC loss), and it was augmented with an illustrated
contrastive loss that penalizes the dissimilarities between the signal pairs due to speaker
characteristics (see Figure 3).

4. Experimental Settings

Three popular public corpora were selected for our experimental analysis: Lib-
riSpeech [69], LibriTTS [70], and the voice cloning toolkit dataset (VCTK) [71]. LibriSpeech
contains ≈1000 h of read audiobooks, which were partitioned into ≈960 h for training and
≈20 h for evaluation. LibriTTS is a corpus of ≈585 h of read English speech, specifically
designed for TTS and derived from LibriSpeech. The VCTK corpus includes read speech by
110 native English speakers, with each of them providing about 400 sentences. The models
were fine-tuned using the LibriTTS train-clean sets and the whole VCTK dataset. The
LibriSpeech test-clean and test-other sets (which comprise 4 and 33 speakers, respectively)
were used for evaluation. An overview of the dataset partitioning for the training and
evaluating of the models is included in Table 1.

Table 1. Statistics of the datasets used for training and evaluation. The present work considers
LibriSpeech [69], LibriTTS [70], and the voice cloning toolkit dataset (VCTK) [71].

Corpus LibriTTS LibriSpeech VCTK
Set Train Dev-Clean Test-Clean Test-Other Train
Speakers 2311 40 40 33 109
Utterances 354,780 5736 2620 2939 44,242
Size 555 h 9 h 5.4 h 5.3 h 44 h

Diverse attack scenarios are discussed in [72], thereby showing the impact of an
attacker’s knowledge of the achievable protection. Specifically, the strongest attack model
(“informed”) assumed a complete understanding of the speaker anonymization method by
the adversary. However, this type of analysis is beyond the scope of the present work. The
current work focuses on the simple (“ignorant”) setup, where the attacker is not aware of
the anonymization processing.

Differently from [26], our ASR setup is based on a Kaldi-based (fixed) model trained
on the original LibriSpeech clean signals; although the resulting ASR may exhibit lower
performance, the decision to avoid training on anonymized speech was supported by
a more equitable comparison across the analyzed conversion techniques, whereby the
methods that exhibited a lower acoustic mismatch with respect to the original audio
were favored.

4.1. Implementation Details

The disentangled SSL model was trained for three epochs with a learning rate equal
to 5 × 10−5 and α = 0.99, as shown in Equation (3). The conversion model was then
trained using the standard procedure described in [66] i.e., 50,000 iterations with a learning
rate equal to 1 × 10−4. The synthesizer model was the Taco2-AR, which is derived from
Tacotron 2 [73].

4.2. Metrics

As already proposed in earlier works, the primary objective metrics used were related
to privacy and utility [18,74]. As such, for the speaker identification/verification, the Equal
Error Rate (EER) is used as the classic metric, which is defined as the error rate correspond-
ing to a certain threshold for which the false alarm rate is equal to the the false miss rate.
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For privacy preservation purposes, higher values indicates better anonymization. The EER
is measured by employing the NVIDIA speaker recognition baseline using TitaNet [60].

Similarly, for utility, the classic Word Error Rate (WER) was adopted. In this case,
lower values are preferred as they would indicate there are lower speech distortions
introduced in the generated waveforms. As the present work aims to measure the differ-
ences in performance, a Kaldi standard recipe was used as the back-end for ASR (https:
//kaldi-asr.org/models/m13 (accessed on 1 March 2024)). Decoding was performed with
the conventional factorized time delay neural network (TDNN) acoustic model and the
associated (small) trigram language model [69].

Other measures can be used to evaluate the perceptual quality of the generated speech
such as, for example, the Perceptual Evaluation of Speech Quality (PESQ) metric [75] or
the Short-Time Objective Intelligibility (STOI) metric [76]. However, these metrics often do
not correlate well with ASR performance. Additionally, since the acoustic similarity was
evaluated against a reference clean signal, these metrics were found to not be suitable in
our anonymization context (i.e., changing the speaker properties inevitably compromises
the acoustic similarity).

4.3. Voice Conversion Baselines

The first baseline considered was the method based on the McAdams coefficient [45],
which is a purely signal-processing approach. The power spectrum of a short-term segment
of speech is fit with an all-pole model using linear predictive coding analysis. The formant
frequencies were determined by the angles of the corresponding complex poles. The
speaker anonymization process was, therefore, achieved by varying the pole angles to shift
the formants using the McAdams coefficient. Another signal-based technique used as a
baseline applies pitch and formant changes and resembles the procedure based on the
popular Praat toolkit [77]. Given the efficacy of the speech modification approaches used
in ContentVec [36], we also consider it as a signal-processing baseline. Three modifications
were applied to the signals, i.e., a random shifting of the formants (achieved by scaling by
a random factor ρ1), random pitch scaling (by a random factor ρ2), and random frequency
shaping using a parametric equalizer [65].

The next baseline considered was the Activation Guidance and Adaptive Instance
Normalization-VC method (AGAIN-VC) [78], which is an auto-encoder-based model
that has a single encoder and a decoder. The application of activation as a bottleneck
on content embeddings greatly improves the trade-off between the synthesis quality and
the speaker similarity in the converted speech. The related code is publicly available
(https://github.com/KimythAnly/AGAIN-VC (accessed on 1 March 2024)). Finally, the
original Phonetic Posteriorgram-based VC method (PPG-VC) [19] was also considered and
included as a baseline. In this case, phonetic posteriors were used as content representations,
and the speaker information was therefore effectively obfuscated.

We also considered models based on our approach [17], i.e., ones that encode the
speech content through the popular SSL representation, such as HuBert [79] or WavLM [59].
The last baseline model was based on the aforementioned S3PRL toolkit and a standard
WavLM representation (https://huggingface.co/patrickvonplaten/wavlm-libri-clean-10
0h-base-plus (accessed on 1 March 2024)).

4.4. Vocoder

The final vocoder plays a critical role in ensuring a high-quality speech resynthesis
in the context of speech anonymization, and this is irrespective of the de-indentification
processes implemented beforehand. The present work adopts HiFi-GAN [80]: a state-of-
the-art vocoder that consists of one generator and two discriminators (multi-scale and
multi-period), which are trained in an adversarial fashion along with two additional
losses for improving training stability and model performance. The generator is a fully
convolutional neural network. Specifically, it uses a mel-spectrogram as the input, and
it upsamples it through transposed convolutions until the length of the output sequence

https://kaldi-asr.org/models/m13
https://kaldi-asr.org/models/m13
https://github.com/KimythAnly/AGAIN-VC
https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-base-plus
https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-base-plus
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matches the temporal resolution of the waveform. In this work, the synthesis model was
trained using LibriTTS and VCTK together with the speech disentanglement mechanism.

5. Experimental Results

By also leveraging the results obtained from our prior investigation in [17], this section
reports the performance of our newly proposed disentanglement approach in comparison
with the state-of-the-art methods described in Section 4.3. The results were computed
on the test-clean partition of LibriSpeech. “Original” in both Tables 2 and 3 refers to the
original audio signals without conversion.

Firstly, considering our framework presented in [17], Table 2 presents the performance
of the different pre-trained models (HuBert and WavLM) and the following two types of
representations: one based on the last hidden layer and another using the posteriorgram
produced by the CTC head. As expected, the results confirmed that these representations
partially mask speaker’s characteristics but still maintain some speaker information. A
trade-off exists between the quality of the reconstructed waveform, which is represented
by the WER, and the degree of anonymization obtained. Using the output of the CTC
head as speech representation leads to very good anonymization, albeit at the cost of a
degradation in terms of the speech quality as it only includes information about the speech
content. Conversely, using a latent representation inevitably leaks information about the
speaker, particularly when larger vectors are used. As per the reminder encouraged from
our experimental analysis, we considered WavLM HS-768 as speech embeddings.

Table 2. Anonymization performance using Hubert and WavLM as pre-trained models and by
considering either the exit of the last hidden layer (HS) or the posteriorgram provided by the CTC
head as speech embeddings. The number near each model indicates the size of the speech embeddings.
“Original” refers to the original audio signals without conversion.

Method EER ↑ WER ↓
Original 1.2 5.29
Hubert CTC-32 44.3 9.47
WavLM CTC-31 44.6 9.39
Hubert HS-1024 35.2 7.38
WavLM HS-768 33.5 7.50

Table 3 reports the performance of our proposed disentanglement approach when
we considered the following two different implementations: one that uses WavLM for
the speech content representation, while the other is the original S3PRL. The latter im-
plementation was used with and without disentanglement. Firstly, by focusing on the
signal-processing methods, we can observe that applying the transformations used in [36]
provides very interesting results at a low computational cost. The performance was found
to be significantly better than the McAdams, i.e., the other signal-processing method.
Traditional voice conversion methods (i.e., AGAIN-VC or PPG-VC) offer very good de-
anonymization performance but at the cost of a high degradation of the speech signal. This
degraded quality in the generated waveform may be due to a distributional mismatch
between the acoustic features predicted by the traditional conversion models and those
that the vocoder expects based on its training [24].

Using the S3PRL framework with WavLM HS-768 notably improves the performance
with an EER of 37.9% while introducing only a marginal degradation in WER. Finally,
the last row in Table 3 shows the considerable benefit provided by the present work’s
disentanglement approach, as it provided the highest EER (almost 50%) compared to all
the other methods. Notably, it significantly increased performance compared to the method
without disentanglement (from 37.9% to 49.4% EER) while maintaining a comparable WER
(from 6.24 to 6.56). This finding suggests that the disentanglement mechanism is a viable
approach to strike a balance between reducing the amount of speaker information present
in a signal while also maintaining reasonable intelligibility.
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Table 3. Results from using various Voice Conversion techniques on the Librispeech test-clean set. The
considered techniques were two signal-based approaches (McAdams and the alteration of pitch and
formants); two state-of-the-art voice conversion techniques (AGAIN-VC and PPG-VC); models based
on Self-Supervised Learning (SSL) representations that consider the last internal layer (Hidden Size
1024 or 768) or the CTC head (size 32 or 31) as content encoders; and finally, a WavLM model using
S3PRL-VC [66] were trained, with the disentanglement procedure further boosting the performance.
“Original” refers to the original audio signals prior to conversion.

Method EER ↑ WER ↓
Original 1.2 5.29
McAdams [45] 5.6 11.74
Pitch/Formants shift [36] 35.2 10.27
AGAIN-VC [78] 44.4 44.37
PPG-VC [19] 46.1 12.93
WavLM HS-768 [17] 33.5 7.50
S3PRL [66] using WavLM
HS-768 37.9 6.24

+Disentanglement 49.4 6.56

6. Conclusions

Voice anonymization, as it is driven by voice conversion techniques, plays a pivotal
role in addressing the complex intersection of privacy, security, and ethical concerns asso-
ciated with the ever-expanding realm of voice data. As the adoption of voice technology
continues to grow, the demand for effective voice anonymization solutions will only inten-
sify. The present work has provided an overview of the importance of voice anonymization
and the primary methods investigated in possible applications. One important approach
is voice conversion, which makes use of self-representation learning to provide a strong
framework for addressing the difficulties associated with speaker anonymization. Follow-
ing a thorough examination of various methods, a promising strategy based on feature
disentanglement was created and discussed. The goal of the proposed strategy is to conceal
the speaker information contained in speech signals while maintaining content and compre-
hensibility using a specifically trained speech encoder. The experimental results validate the
approach, although a more comprehensive analysis on the quality of the generated signals
is suggested. Similarly, a specific study on residual speaker characteristics embedded in
the learned representation would permit a fine-grained control of the converted speech
when compared to the very recent VoicePAT framework [81] selected for the incoming
VoicePrivacy Challenge 2024.

A more complete anonymization speech pipeline may also include a redaction or
obfuscation of specific content, such as, for example, spoken named entities [82,83]. How-
ever, while the discussed techniques are essentially language-independent, audio de-
identification is a more recent field of study that depends on the spoken language being
used and requires the integration of multilingual ASR models to cope with general speakers.

The implementation of the disentanglement procedure will be made available in a
public repository.
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