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Abstract: Precision agriculture (PA) is a management concept that makes use of digital techniques to
monitor and optimise agricultural production processes and represents a field of growing economic
and social importance. Within this area of knowledge, there is a topic not yet fully explored: outlining
a road map towards the definition of an affordable cobot solution (i.e., a low-cost robot able to safely
coexist with humans) able to perform automatic chemical treatments. The present study narrows
its scope to viticulture technologies, and targets small/medium-sized winemakers and producers,
for whom innovative technological advancements in the production chain are often precluded by
financial factors. The aim is to detail the realization of such an integrated solution and to discuss
the promising results achieved. The results of this study are: (i) The definition of a methodology
for integrating a cobot in the process of grape chemicals spraying under the constraints of a low-cost
apparatus; (ii) the realization of a proof-of-concept of such a cobotic system; (iii) the experimental analysis
of the visual apparatus of this system in an indoor and outdoor controlled environment as well as in
the field.

Keywords: collaborative robotics; precision agriculture; cyber–physical systems; artificial intelligence;
machine learning; deep learning; computer vision

1. Introduction

With the development of the global economy, novel agricultural approaches to prevent
growing problems and risks of disease transmission have gained momentum. Emerging
epidemics and pests in plants as well as infectious diseases in terrestrial animals have
a substantial economic and logistic impact on agricultural and forest productivity, trade
and public health. Therefore, the need for on-field treatments, which should be concen-
trated both in time and space to avoid waste of money and pollution whilst maintaining
farm productivity, is great.

Precision agriculture (PA) is an emerging trend that promises an increase in the
quantity and quality of agricultural output while using less input—like water, energy,
fertilisers and pesticides; the aim is to produce more and better food while reducing costs
and limiting the environmental impact. One key enabling technology for PA, among all
those inherited from Industry 4.0 [1], is that of the cyber–physical system (CPS), intended
as an ICT-based system purposefully built to interact with other CPSs and humans.

The focus of the present investigation is on the development of a CPS able to assist
winemakers—in particular, those present in the north-eastern regions of Italy as the first
experimental targets—which are typically small–medium enterprises (SMEs) with specific
constraints. Since vineyards in this context are relatively small-sized when compared to
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other farming activities, and most SMEs are not financially strong enough to afford full-
robotic systems for economic and logistic reasons, a low-cost technology integration should
be pursued.

The current research effort in a viticultural context should be envisioned into a broader
long-term objective; that is to say, the creation of an affordable agricultural collaborative
robot (cobot) able to carry out basic tasks in a rural environment. The agricultural cobot
would intervene by helping on-field operators in their more repeatable tasks, and surely
the most physically endangering and demanding ones. The first case study, which is
proper of a vineyard setting, involved chemical spraying on grape clusters (e.g., fungicides),
and precision treatments where grape buds, inflorescence and clusters should be avoided
(e.g., weed herbicides). The nature of these and other similar type of actions inevitably
requires vision capabilities to be integrated into the CPS.

The agenda for the present dissertation consists of the following three research goals:

• The definition of a methodology for integrating a cobot in the process of grape chemi-
cals spraying under the constraints of a low-cost apparatus;

• The realization of a proof-of-concept of such a cobotic system;
• The experimental analysis of the visual apparatus of this system in an indoor and

outdoor controlled environment as well as in the field.

The design of a cobot usage protocol is described, and the experimental apparatus for
the whole technological solution is presented. The adopted computer vision (CV) system
shall be widely described and featured with experimental results, while the cobot motion
planning and control apparatus is only sketched and shall be tested experimentally in
further work.

The paper is organized as follows: Section 2 highlights the state of the art and related
work about robotic solutions and CV techniques for agriculture technology. Section 3
examines the enabling technologies and macro-components necessary for the proposed
solution. Section 4 shows the experimental results achieved. In particular, Section 4.1
focuses on the implementation of the vision model. Section 4.2 is dedicated to explaining
the simulation phases restricted to pure vision capabilities, and critically analyzes the
performance metrics against other recent solutions. Section 4.3 is a brief report of the
first cobotic tests conducted both in controlled environments and in the vineyard. Finally,
Section 5 outlines several open issues and research paths left for future work.

2. Background

Agricultural robot technologies are nowadays one of the main catalysts for smart
industry [2], but in most cases, the research and application projects focus on the develop-
ment of individual specific-purpose machines [3] or delve deeply into the topic of advanced
control and obstacle avoidance. Moreover, when required, recognition capabilities based
on CV are often considered outside actual robotic integration.

Among the very few solutions developed in recent years in viticulture contexts, one
noteworthy example is introduced in [4] as a full-robotic monitoring system based on
images taken from a camera mounted on a mobile robot, which localizes itself in the
field using simultaneous localization and mapping (SLAM). Nevertheless, neither a full
adoption nor a partial integration of such solutions for the present case study is feasible,
since none of them have been framed in a perspective of low-cost architecture development.
In fact, although this aspect of applications of cobotic solutions in agriculture is of crucial
importance for the diffusion of the mentioned means, especially in those contexts where it
is essential from a social viewpoint [5], little consideration has been spent in the subject
matter. In particular, in [6], the authors deal with aspects related to general architecture
costs, while in [7], the authors discuss low-cost camera applications.

For a CV-assisted cobotic solution to comply to economic constraints, three crucial
problems must be addressed: (a) machine vision for fruit (in particular, grape clusters)
recognition, (b) chemicals spraying and (c) coordination among humans and robots. In
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what follows, a brief outline of the state of the art in the literature is reported for each
devised problem.

2.1. Machine Vision Capabilities

Machine vision applications in agriculture has been one of the most studied topics and,
generally speaking, one of the most successful and promising fields in the smart agriculture
domain [8–10]. Among the pure CV methods in agricultural contexts, the most relevant
case for our investigation is the application to viticulture (devised in Section 4). On the other
hand, noticeable exploratory analyses have been conducted on wheat farming [11]— to
provide real-time spatial information of the crop and weeds, where conventional methods
work undesirably in terms of segmentation accuracy or execution speed—and on the
ryegrass location [12]—where a geometric approach has been shown to be effective in the
determination of inter-row ryegrass weeds in a wheat field.

Many studies in the field consider more refined types of vision challenges other than
simple detection or spatial distribution tasks. Particularly relevant to the present research
is the automatic determination of the maturation levels of the same fruits, which has been
faced by using image analysis techniques as a general problem [13] and with respect to
specific fruits such as the persimmon [14].

2.2. Spraying Capabilities

Efficient irrigation has been investigated on large scale yards [15] as an optimisation
problem, where the goal is to find the best path to traverse a graph where each vertex has an
associated reward and each edge has a defined cost (i.e., a typical approach of reinforcement
learning). Analogous tasks have also been explored in small scale, i.e., gardening [16],
where a framework to decide the correct amount of water and chemicals for each plant
is implemented.

Vineyard sprayer robots have also been investigated, in particular, in [17] and other
studies. The platform diffuses chemicals in both directions, orthogonal to the robot’s
trajectory, while moving in the yard. In the same work, an interesting navigation technique
has been devised using a localization algorithm based on the maximum sum of probabilities
intersections for the optimal fusion of inexpensive navigation sensor data while maintaining
a moderate budget. While dealing with the problem of chemicals treatment distribution,
the topic of precision spot-spraying for robotic applications has also been dealt with by [18]
describing both the airflow structure and the spray coverage.

2.3. Cobotic Capabilities

Interaction with human operators in the fields, specifically human–robot interaction
user interface design and usability evaluation, has been explored only in part so far. Some
of the limitations identified pertain to the lack of peripheral vision, the amount of operator
time required to perform the movement (pan-tilt, zoom-in and zoom-out) needed to identify
targets and the calibration of the peripheral screen devices due to sunlight [19].

3. Materials and Methods
3.1. Enabling Technologies

An initial assessment of the state of the art provided potential needs for a CPS in the
context of PA, regarding the following three macro-components:

• Manipulation (Section 3.1.1);
• Recognition (Section 3.1.2);
• Movement.

These components shall be managed via an orchestrator, which allows for inter-
communication and a managed lifecycle (Section 3.1.3).
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3.1.1. Manipulation

Manipulation describes the possibility for a CPS to interact with the surrounding
environment by picking and placing objects in its environment within its workspace.

Manipulation is a hot topic since the design of the first robotic apparatus in the
1940s [20,21]. Over the years, a general consensus emerged about the basic structural shape
of a manipulator, i.e., a body and arm assembly guaranteeing spatial positioning, a wrist
assembly conferring dexterity and an end effector capable of orientating itself with some
degree of freedom.

Coordination of every robot joint’s movement is fundamental to manipulate an object
towards a precise configuration. Commands are provided in the joint space or in the
Cartesian space; that is to say, they can be given directly to the motors moving the single
robot joints with angular coordinates or with spatial coordinates to reach a predefined
position of the end effector (potentially with multiple orientations).

Inverse kinematics allows the calculation of joint space coordinates to obtain a position
in the workspace.

Explaining in detail how different body and arm assemblies and wrist assemblies
configurations are combined to influence manipulation is not among the goals of the present
work. Briefly speaking, these different combinations modify the cardinality of solutions for
the inverse kinematic problem and, thus, the possible configurations to reach the target
pose. Upon reaching the manipulation pose, the end effector can be actuated for the desired
action to be executed.

Manipulation allows direct interaction with the CPS’ environment and with humans.
The dexterity of how robots move in space allow them to reach goal configurations where
the end effector is used; this is why manipulation is crucial to the realization of a CPS.

3.1.2. Recognition

Recognition describes the possibility for a CPS to see obstacles while moving in space,
and to recognize its surroundings and what it could manipulate at the same time. All
of these actions require some vision capabilities to be provided to an otherwise blind
system. Vision is only one way to give senses to robots—together with touch, hearing and
equilibrium (particularly regarding the change between stasis and acceleration)—and make
them more similar to humans. CV is the interdisciplinary field dealing with supplying high-
level comprehension to a computer via digital images and videos. Born in the 1960s [22], CV
finds a key development with the introduction of deep learning (DL) and neural networks.

Sight can be obtained via traditional cameras, sonars, lasers or RFID. However,
the more up-to-date strategy for a chance at recognizing interactive objects is using a
classifier based on convolutional neural networks (CNNs). The most desirable way to
implement this technology is using cameras (to give the neural network a field-of-view to
evaluate the presence and position of objects—in this case study, grape clusters), whereas
obstacle recognition and avoidance can also be solely based on sonars and lasers.

Recognition represents a fundamental requirement to introduce a cobot in an agricul-
tural company, as it allows the CPS to acquire the following two separate but complemen-
tary functions:

Interactive objects recognition: being able to discern the class of an object and, therefore,
to determine whether the CPS can interact with it via manipulation (the object can
be picked, actions can be performed with or on it) or with movement (the object is
a charging base, the object represents the goal coordinates of the mobile base and
so on);

Obstacle recognition: to execute manipulation or movement trajectories, the CPS under-
stands that certain portions of space must be avoided not to incur into collisions.



Appl. Sci. 2024, 14, 3777 5 of 21

3.1.3. Orchestration

A CPS must behave in predefined cycles and react to unpredicted events in a robust
and effective way. To actually realize such a behaviour, a unit is needed that manages
various physical and logical components, in order to achieve a preset goal. The orchestrator
grants the ability to coordinate the other capabilities of a CPS and make them intercommunicate.

It basically is middleware for robotics, i.e., an agent supporting a distributed archi-
tecture that (i) integrates processes and services residing on multiple technologies and
architectures, and (ii) works between the operating system and the user’s application,
as reported in Figure 1.

User Application Orchestrator Operating System Physical Components

Figure 1. The orchestrator allows hardware and software intercommunication.

Over the time, many robotics middleware projects have been developed, such as
the following:

ROS: it is an open source meta-operating system providing services like hardware ab-
straction, low-level device control, commonplace functionality implementation,
message passing between processes and package management, together with
the instruments and libraries required to obtain, write, compile and run code on
different computers;

MRPT: it is an open source, multiplatform, C++ library aiming to help robotic researchers
with designing and implementing algorithms like SLAM, CV and path planning
with obstacles avoidance;

YARP: it supports building control systems for robots as collections of programs that
communicate in a peer-to-peer architecture, with extensible and interchangeable
types of connections (tcp, udp, multicast, local, mjpg-over-http, tcpros, . . . ) and
the strategic goal of increasing the life span of robotic software projects.

Being at times preferable to develop and integrate systems independently (especially
in pilot projects), not all robotic systems use middleware. This, however, becomes an
overbearing task when attempting to create robust, maintainable projects that manage
complexity in an intelligent way.

3.2. Designed Solution

The analysis of the enabling technologies reported in Section 3.1 led to the following
cobotic experimental solution:

• An affordable anthropomorphic manipulator with as many degrees of freedom as possible;
• A highly responsive CNN classifier to recognize grape clusters, obstacles and their

positions from visual input acquired by adequate sensors;
• ROS orchestration;
• A low-cost cobotic processor that integrates vision-related tasks of the CPS into orchestration.

3.2.1. Hardware Specifications

The collaborative robot model Panda (from Franka Emika GmbH) was chosen as
development manipulator, mainly for its straightforward integration with ROS. The high
abstraction level of ROS to accommodate to different hardware solutions does not preclude
the possibility to seamlessly shift to different cobotic choices in subsequent steps.

The end effector of choice for the current proof of technology is the Franka Hand
(Figure 2) provided with the Panda arm, while subsequent implementations could use
dedicated end actuators available in the market (like the one in Figure 3 for spraying).
For the first round of tests, a generic perfume sampler was used in place of an actual
nutrients dispenser.
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Figure 2. Franka Emika Panda’s end effector. Source: https://pkj-robotics.dk/wp-content/uploads/
2020/09/Franka_Emika_Hand_01.jpg, accessed on 25 April 2024.

Figure 3. Example of a sprayer end effector. Source: https://www.researchgate.net/publication/31
3497501/figure/fig18/AS:614364813983767@1523487394998/Variable-color-output-from-the-foam-
spray-end-effector-is-seen.png, accessed on 25 April 2024.

An Intel® RealSense™ D435 Depth Camera (https://www.intelrealsense.com/depth-
camera-d435/, acquired in Verona, Italy on https://store.intelrealsense.com/buy-intel-
realsense-depth-camera-d435.html, accessed on 25 April 2024) was chosen in a unifying
effort to accommodate collaborative robotics with CV (in particular, robotic planning
assisted by visual recognition). This enables scene analysis, obstacle recognition by working
in three dimensions and the usage of neural networks as visual classifiers.

In order to provide a low-cost architecture, one of the main efforts was to con-
sider the integration of mid-range, general-purpose cobot processors rather than high-
end, edge computing processors specifically engineered for AI-assisted robotic tasks (as,
for instance, the family NVIDIA Jetson Xavier/Orin—https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-xavier-series/, https://www.nvidia.
com/en-us/autonomous-machines/embedded-systems/jetson-orin/, accessed on 25 April
2024). On the other hand, the cobot processor must comply to crucial constraints regarding
data communication with the arm controller. The technical specifications of the processor
adopted are reported in Table 1.

Given the obvious imbalance between realization costs and expected performances,
a systematic work in software optimization has been conducted, especially in the definition
of the neural recognition layer (see Section 3.2.2).

https://pkj-robotics.dk/wp-content/uploads/2020/09/Franka_Emika_Hand_01.jpg
https://pkj-robotics.dk/wp-content/uploads/2020/09/Franka_Emika_Hand_01.jpg
https://www.researchgate.net/publication/313497501/figure/fig18/AS:614364813983767@1523487394998/Variable-color-output-from-the-foam-spray-end-effector-is-seen.png
https://www.researchgate.net/publication/313497501/figure/fig18/AS:614364813983767@1523487394998/Variable-color-output-from-the-foam-spray-end-effector-is-seen.png
https://www.researchgate.net/publication/313497501/figure/fig18/AS:614364813983767@1523487394998/Variable-color-output-from-the-foam-spray-end-effector-is-seen.png
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d435.html
https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d435.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
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Table 1. Specifications of the cobot processor. NUC Kit, CPU, NIC and LAN acquired in Verona, Italy
on https://www.amazon.it/INTEL-Barebone-BLKNUC7i7DNK2E-Core-i7-8650U/dp/B07BZCY271.
RAM acquired in Verona, Italy on https://it.crucial.com/memory/ddr4/ct8g4sfs824a. OS publicly
available on https://releases.ubuntu.com/16.04/.

Model Intel® NUC Kit NUC7i7DNKE
OS Ubuntu 16.04 64 bit, Open Source
CPU Intel® i7-8650U (8 M Cache, up to 4.20 GHz)
RAM Crucial Single Rank 16 GB DDR4, 2400 MT/s
NIC Intel® Dual-Band Wireless-AC 8265 Wi-Fi
LAN Intel® i219-LM, up to 1000 BASE-T
GPU —

3.2.2. Software Specifications

Software sub-components and libraries are required that permit the adoption of neural
networks in the control cycle (from sensors to motion controllers and back to actuators),
in order to properly recognize the arm’s surroundings. In this regard, the neural network
training quota has prevailed over other components in terms of development time.

OpenCL Caffe has been chosen as the codification standard for the neural network (for
both architectural representation and weight codification). As a Caffe fork, OpenCL Caffe
is a DL framework adapted to work with or without a GPU, thanks to the OpenCL libraries,
and particularly optimized for GPU-less, Intel-based architectures. The experimental line
of neural network training actually involved an additional framework named Darknet,
whose characteristics are specified in Section 4.1. The neural network development in the
Darknet standard, with subsequent OpenCL optimization and translation in the OpenCL
Caffe standard, resulted in an optimal pipeline to obtain a component that can be easily
integrated with other software components.

4. Experimental Results and Discussion
4.1. Vision Capabilities Implementation

The ideation, training, validation and test cycle for neural networks has been managed
with the help of Darknet, an open source framework for the creation of CNNs in C and
CUDA. Darknet has become a standard thanks to the engineering of the YOLO (You Only
Look Once) family of systems, state-of-the-art lightweight neural networks architectures
for real-time object detection. Starting from YOLOv1, the framework has been enriched
with ever more sophisticated variants over the course of multiple years (YOLOv2, YOLOv3,
up to YOLOv4 and Scaled-YOLOv4). The fourth version of YOLO was the last to be
written in Darknet in 2020; the AI company Ultralytics decided to further refine the YOLO
architecture (up to YOLOv8 in 2023), but favored the PyTorch technology over Darknet.

In the first experimental phase, two variants of model YOLOv2 have been adopted,
i.e., YOLOv2-416 and YOLOv2-608. Although quite outdated, the choice is justified by
the following:

• Given the high dispersion rate of most chemicals in agricultural environments, the ac-
tion of “precision spraying” does not necessarily require top-notch performances (for
instance, in regard to IoU) to be considered effective. In our preliminary case study,
YOLOv2 showed adequate performances with respect to the recognition of grape
clusters as well as bounding box precision, with no need to scale to more refined
versions (see Sections 4.1.2 and 4.2.4). Nonetheless, a comparative analysis with the
YOLOv3/v4 performances is currently ongoing, and their adoption is not excluded in
the foreseeable future;

• YOLOv2 allows a close-to-real-time performance for inference, even with GPU-less
compute units such as the one adopted in our case;

• The (re-)training of YOLOv2 is significantly faster when compared to a more recent
version of the architecture due to the relative simplicity of the underlying backbone;

https://www.amazon.it/INTEL-Barebone-BLKNUC7i7DNK2E-Core-i7-8650U/dp/B07BZCY271
https://it.crucial.com/memory/ddr4/ct8g4sfs824a
https://releases.ubuntu.com/16.04/
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• Being an open source framework, Darknet implementations of YOLO (i.e., up to
YOLOv4) are license-free by construction, whilst embedding Ultralytics software and
AI models in commercial products and applications strongly recommends an enter-
prise licensing, unless the open source requirements of AGPL-3.0 are met. This aspect
must be considered in view of a trade-off between cost reduction and performance.

4.1.1. Dataset

Rather than creating an image dataset from scratch by acquiring high-resolution im-
ages (as, for instance, in [23,24]) or stereo images [25] directly on the field, the Embrapa
Wine Grape Instance Segmentation Dataset (WGISD, https://github.com/thsant/wgisd,
accessed on 22 April 2024) has been considered as the starting point for our investigation.
This is an approach that guarantees reproducibility and, simultaneously, results that per-
form well in terms of effectiveness, especially in the field. The dataset has been augmented
accordingly with this purpose, as shown below.

The WGISD was purposefully created for use in tasks concerning image-based moni-
toring and robotics in a vinicultural setting (see, among others, [26]), and it provides visual
instances of five different grape varieties. The dataset shows a good variance with respect
to cluster pose, illumination, lens focus and it includes genetic and phenologic variations
that impact the shape, the color and the compactness of the bunches.

The original dataset contains 300 images with 4432 grape clusters identified by the
same number of bounding boxes (object detection) and 2020 bunches identified by binary
masks (semantic segmentation). The dataset subdivision between training, validation and
testing for WGISD (for images and bounding boxes) is given in the first row of Table 2.

Table 2. Dataset partition for grapes recognition.

Images Bounding Box
Train/Val Test Train/Val Test

WGISD 242 58 3581 850
WA-WGISD 1694 58 25,067 850

Dataset Aggregation and Augmentation

Following the current state of the art in the literature, the WGISD dataset has been
aggregated with an additional general purpose dataset for the following reasons:

• Radically avoiding overfitting problems, usually determined by the construction of
neural networks for the recognition of a single class;

• To be able to follow an analysis strategy of the average precision percentage on the
“grapes” class based on the average precision of other classes (in essence, check how
well the trained neural network behaves with the new “grapes” class compared to all
other recognizable classes);

• To exploit inference results of grape-unrelated classes and further empower the mech-
anism of obstacle avoidance (e.g., applying different security protocols based on the
nature of an obstacle—a person, another machine in the field and so on).

In order not to create a neural network with overabundant knowledge that could
excessively impact each training session, the choice fell to the PASCAL VOC 2007+2012
dataset (http://host.robots.ox.ac.uk/pascal/VOC/, accessed on 22 April 2024), which
provides a catalog of 20 classes, varying from vehicles, to home decor items and animals.
Table 3 shows the subdivision of training/validation and testing regarding images and
bounding boxes in the PASCAL VOC 2007+2012 dataset.

Given the clear mismatch between the number of images to train/validate on WGISD
and the single class average on PASCAL VOC 2007+2012, the original WGISD dataset
underwent an image augmentation process. Several strategies may be adopted in this
regard, for instance, which simulate camera focus, noise or dirty lenses on randomly
selected images in the source dataset [26], or by simply integrating additional images from

https://github.com/thsant/wgisd
http://host.robots.ox.ac.uk/pascal/VOC/
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other datasets to obtain a balance for the specific class (like GrapeCS-ML added to the
Open Image Dataset v6 restricted to the “grapes” class [27]). The innovative augmentation
technique proposed hereafter enriches the dataset by simulating different weather conditions
in the vineyard (for example, intense sun, fog, rain, haze and so on). Examples of image
augmentation for the WGISD dataset with atmospheric simulations are given in Figure 4. In
this way, the resulting vision model is expected to be more robust even in strongly over- or
under-exposed scenarios, where the lack of detail and luminance/chrominance distortions
considerably undermine the inference process. This technique bears a strong resemblance
and shares the same objectives of several cutting-edge studies in image enhancement
and restoration methods in CV (among others, [28–30] for intelligent image de-hazing
and [31,32] for image restoration under extreme low-light conditions).

Table 3. Dataset subdivision of PASCAL VOC 2007+2012.

Images Bounding Box
Train/Val Test Train/Val Test

PASCAL VOC 2007 5011 4952 12,608 12,032
PASCAL VOC 2012 11,540 11,540 27,450 27,450
PASCAL VOC 2007+2012 16,551 16,492 40,058 39,482
Single class average 827.55 824.6 2002.9 1974.1

(a) Original image. (b) Rain simulation.

(c) Strong brightness simulation. (d) Fog simulation.

Figure 4. Examples of image augmentation for the WGISD dataset.

The WGISD dataset enhanced with image augmentation has been renamed Weather-
Augmented WGISD (WA-WGISD), and its subdivision of images in training/validation
and testing is shown in the second row of Table 2.
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4.1.2. Training Strategy

The actual training and validation of the neural network for object detection on grape
clusters has followed three main lines of implementation, in order to be able to control the
improvement in the average precision of the network itself, both globally (i.e., on the whole
set of 20 PASCAL VOC classes enriched with the “grapes” class) and at the specific “grapes”
class level. The YOLOv2 model has been trained with image pre-processing/resize at
416x416 pixels, on the PASCAL VOC 2007+2012 aggregate dataset and the original WGISD
(416@VOC+WGISD), then with image pre-processing/resize at 416 × 416 pixels, on the
PASCAL VOC 2007+2012 aggregate dataset and the Weather-Augmented WGISD
(416@VOC+WA-WGISD) and finally with image pre-processing/resize at 608 × 608 pixels,
on the PASCAL VOC 2007+2012 aggregate dataset and the Weather-Augmented WGISD
(608@VOC+WA-WGISD).

An example of the graphical monitoring for training the 608@VOC+WA-WGISD
network is shown in Figure 5.

Figure 5. Average precision/loss curve for 608@VOC+WA-WGISD training.

Each training cycle completed successfully underwent an optimization procedure for
OpenCL and translation into OpenCL Caffe standard to be integrated with the developed
software components (Section 3.2.2). The main evaluation parameters on the quality of the
resulting neural networks are reported in Table 4.

Comparing, in particular, the medium average precision parameters on the entire set
of classes (mAP@.5) and the average precision on the “grapes” class (AP@.5), the adopted
choices for augmenting the WGISD dataset and a lower resize in pre-processing have
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positively influenced the learning curve. All this without exceeding in quality percentages
on the accuracy, which could indicate a potential overfitting of the network with respect to
the training data.

Table 4. Neural network performance summary for grape recognition.

416@VOC+
WGISD

416@VOC+
WA-WGISD

608@VOC+
WA-WGISD

# detections 58,313 94,062 88,623
# unique truths 12,882 12,979 12,979
Precision@.25 0.72 0.67 0.70

Recall@.25 0.72 0.75 0.78
F1-score 0.72 0.71 0.74
TP@.25 9237 9788 10,147
FP@.25 3530 4768 4386
FN@.25 3645 3191 2832
avg IoU 0.55 0.52 0.53
mAP@.5 0.72 0.75 0.77

AP@.5 (“grapes” class) 0.50 0.66 0.80

4.2. Vision Capabilities Simulations

The developed networks were subsequently adopted for inference simulations in
controlled environments and during various site visits in a vineyard lying on the hills
near Treviso, Veneto, Italy (N 45°41′56.066′ ′, E 12°34′15.697′ ′). Since the neural networks’
development took place during the late spring months (when a grapevine passes from
flowering to budding), the simulations were carried out on faithful plastic replicas of dark
red, light red and white fully ripe grape clusters (Figure 6).

Figure 6. Grape cluster replicas used during simulations.

4.2.1. Recognition in Indoor Controlled Environment

The first recognition experiments have been carried out in a closed-space laboratory
in conjunction with the first spraying tests. The environment and recognition results are
summarized later in Section 4.3.1. In line with the numeric analysis reported in Table 4,
during the laboratory simulations the work team noticed a grape cluster detection success
rate clearly in favor of the 608@VOC+WA-WGISD network, which was taken as a reference
network for all subsequent experiments.

4.2.2. Recognition in Open-Space Controlled Environment

Figure 7 reports some of the network’s inference results using some photographs taken
in an open-space, yet controlled test environment, where grape cluster replicas have been
hung next to real foliage.
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(a) BBI-OSCE-1.jpg (b) BBI-OSCE-2.jpg

(c) BBI-OSCE-3.jpg (d) BBI-OSCE-4.jpg

Figure 7. Bounding Box Inference from 608@VOC+WA-WGISD in Open-Space Controlled Environ-
ment (BBI-OSCE).

The bounding boxes shown on each image (labeled with “grapes”) were inserted syn-
thetically by the script that applies the inference result and represents the position returned
by the network for each recognized cluster replica, with the related confidence percentage.

4.2.3. Recognition in the Vineyard

In this case too, the recognition accuracy of the 608@VOC+WA-WGISD network was
significantly higher than all the other implementations. Figures 8 and 9 show the detection
results on some images taken in the vineyard, where the grape cluster replicas were placed
on the vine shoots at different heights and degrees of occlusion caused by the foliage.

Notice that occlusion in image detection is an open problem for which only experimen-
tal work has been performed so far with incomplete solutions. However, even if foliage
occlusion is a problem to be dealt with, there is no need to solve the occlusion problem
among bunches. In fact, the decision whether to spray or not (and specifically, where) does
not involve the most difficult task of isolating one bunch from another, as in the case of
bunch counting.
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(a) BBI-V-1.jpg (b) BBI-V-2.jpg

(c) BBI-V-3.jpg (d) BBI-V-4.jpg

Figure 8. Bounding Box Inference of 608@VOC+WA-WGISD in Vineyard (BBI-V)-Part 1/2.

(a) BBI-V-5.jpg (b) BBI-V-6.jpg

(c) BBI-V-7.jpg (d) BBI-V-8.jpg

Figure 9. Bounding Box Inference of 608@VOC+WA-WGISD in Vineyard (BBI-V)-Part 2/2.
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4.2.4. Comparison with State of the Art

In order to have a standardized basis for comparison and to assess the performance of
the 608@VOC+WA-WGISD against the state of the art, two distinct exploratory studies
have been conducted.

First, the recognition capabilities of 608@VOC+WA-WGISD have been validated with
two well-known datasets; that is to say, the Grapevine Bunch Detection Dataset version
2 (GBDDv2, https://zenodo.org/records/7717055, accessed on 21 March 2024), and the
Open Image Dataset version 7 (OIDv7, https://storage.googleapis.com/openimages/web/
visualizer/index.html, accessed on 4 April 2024). Table 5 reports the results against the
evaluation and test splits for both datasets.

Table 5. Detection results of 608@VOC+WA-WGISD over GBDDv2 and OIDv7 (restricted to Grape
class), with confidence threshold that optimizes F1-score.

IoU Conf. Threshold Precision Recall F1-Score

GBDDv2

Evaluation
0.40 0.05 0.94 0.79 0.86
0.45 0.05 0.86 0.77 0.81
0.50 0.05 0.78 0.75 0.77

Test
0.40 0.05 0.96 0.82 0.89
0.45 0.05 0.90 0.81 0.85
0.50 0.05 0.82 0.80 0.81

OIDv7
Grape
(All)

Evaluation
0.40 0.05 0.68 0.28 0.39
0.45 0.05 0.48 0.21 0.29
0.50 0.05 0.48 0.21 0.29

Test
0.40 0.05 0.61 0.28 0.39
0.45 0.05 0.56 0.27 0.36
0.50 0.05 0.52 0.25 0.34

OIDv7
Grape

(Bunches)

Evaluation
0.40 0.05 0.64 0.30 0.40
0.45 0.05 0.46 0.23 0.31
0.50 0.05 0.46 0.23 0.31

Test
0.40 0.05 0.60 0.48 0.53
0.45 0.05 0.56 0.47 0.51
0.50 0.05 0.53 0.45 0.49

The choice to conduct several tests with different IoU thresholds is motivated by the
different bounding box definition strategy adopted for GBDDv2 and OIDv7 as compared
to WA-WGISD. In fact, the first two datasets provide, in general, wider bounding boxes
to determine the position of each grapevine bunch in the images, whilst the WA-WGISD
applies a more conservative policy (i.e., narrower bounding boxes). For this reason, adopt-
ing lower IoU thresholds to classify TPs, FPs and FNs represents a legitimate choice for an
unbiased comparison against these datasets.

Being created specifically for grapevine bunch detection, the GBDDv2 evaluation
and test sets have been used in their entirety for the evaluation round. In this regard,
the numbers reported in the first and second rows of Table 5 show a remarkable recognition
behaviour, which far outperforms both the precision and F1-score metrics as calculated
against the evaluation and test splits of the VOC+WA-WGISD for the “grapes” class, while
keeping the recall almost aligned with the expected outcome.

On the other hand, some clarifications are required to correctly explain the decrease in
the detection performances over the OIDv7, which has been preemptively framed to the
Grape class (third and forth rows of Table 5). Notice that the 608@VOC+WA-WGISD has
been trained with the purpose of detecting whole grape clusters in the vineyard (bunches)
and not single grape berries, whilst the Grape class of the OIDv7 considers bounding boxes
for all of the following:

• Single grape berries;

https://zenodo.org/records/7717055
https://storage.googleapis.com/openimages/web/visualizer/index.html
https://storage.googleapis.com/openimages/web/visualizer/index.html
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• Grape bunches in environments other than the vineyard (for instance, markets and kitchens);
• Berries and clusters of completely different varieties of fruit, like currants (which can

also be considered a counter-measure to mitigate overfitting problems during network
training with OID).

This justifies the clear improvement (nearly 20%) in the 608@VOC+WA-WGISD
detection performances against the OIDv7 when the Grape class is pre-processed in a way
that single berries are not considered in the counting of TP, FP and FN (fifth and sixth
rows of Table 5). It is arguable that not considering clusters and bunches of other fruit
could further improve the detection capabilities of the 608@VOC+WA-WGISD against
the dataset.

The rationale behind the evaluation of the 608@VOC+WA-WGISD’s capabilities on
different datasets is crucial to express an objective opinion when comparing the proposed
CNN network to recently proposed models for grapevine bunch detection, which was the
subject of the second exploratory study, and whose results are reported in Table 6.

Table 6. Comparison between the proposed model and the state-of-the-art DL for grapevine bunch
detection, based on accuracy (Acc.), average precision (AP), medium average precision (mAP) and F1-
score (results taken from [33]).

State-of-the-Art Model Acc. (%) AP (%) mAP (%) F1-Score (%)

Sozzi et al. [34] YOLOv4 48.90 — — —
Aguiar et al. [35] SSD MobileNet v1 — — 66.96 —
Sozzi et al. [27] YOLOv5x — — 79.60 —

Santos et al. [26] Mask R-CNN — — — 84.00
Yin et al. [25] Mask R-CNN — 89.53 — —
Li et al. [36] YOLO-Grape — — — 90.47

Ghiani et al. [37] Mask R-CNN — — 92.78 —
Pinheiro et al. [33] YOLOv7 — — 77.00 94.00

Proposed (best) YOLOv2 58.43 80.00 77.00 74.00

The metrics regarding the proposed model are quite in line with the state of the art,
except from F1-score. Notice, however, only the F1-score of [26] is directly comparable
with the performance of the 608@VOC+WA-WGISD, being the Mask R-CNN in their
work trained on a subset (WGISD) of the VOC+WA-WGISD. On the other hand, although
Refs. [33,36] show impressive recognition performances, their training processes have been
conducted on WGISD-unrelated datasets (specifically, 2331 grape images in grape fields in
Shihezi and Turpan, Xinjiang from July 2020 to September 2020 for [36], and the GBDDv2
for [33]); only a comparative evaluation of their models against the VOC+WA-WGISD
would give a more faithful meter of comparison. For instance, the results in Table 5 directly
compare the 608@VOC+WA-WGISD with the model in [33], showing a best-case F1-score
of 89% against the GBDDv2.

4.3. Cobotic Preliminary Experiments

This section is devoted to the introduction of the experiments conducted as preliminary
tests in order to prepare the apparatus for the second experimental phase; that is to say,
testing the cobot in the vineyard as a system for chemical distribution.

4.3.1. Spraying Test

The Franka Hand end effector was adapted to include a sampler of a spray per-
fume filled with water so that the functionality could be proven without incurring addi-
tional research and development costs to purchase professional chemical dispensers as
end effectors.

In detail, the spraying process encompasses several phases, from the home pose
towards moves for searching (see Figures 10a and 11a), the decision making by the orches-
trator component to devise both the cluster to spray and the pose estimation, the spray
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position (see Figures 10c and 11c), the actual spraying (Figures 10d and 11d) and the return
to the home pose.

Spraying Test in Indoor Controlled Environment

The experimental laboratory tests were carried out by recreating a vineyard envi-
ronment, using branches to hang fake vine leaves and the aforementioned plastic grape
cluster replicas.

In the tests performed, the synthetic grape clusters with the highest recognition
percentage were the light red ones (82% on average) followed by dark red (77%) and finally
white grape clusters, recognized with an average confidence of 66%. This is probably due to
the laboratory lighting conditions, as well as the fact that the used dataset actually contains
different degrees of ripeness and grape types. It could also depend on the non-typical
background colors used in the laboratory tests: the background was, in fact, set by a white
cloth, while in the training datasets, the back of the vines is typically made up of other
vines, brown earth and green leaves.

(a) The arm is in the search-for-grape cluster pose. (b) The arm recognizes a grape cluster.

(c) The arm approaches a recognized grape cluster. (d) The arm performs spraying action.

Figure 10. Cobotic preliminary experiment: spraying test in indoor controlled environment.

Spraying Test in Vineyard

The developed CNN was able to recognize grape clusters even in a state of buds/veraison;
that is, the phenological state that precedes the complete ripening of the bunch. It was
therefore possible to use the robot directly on these, rather than adopting the plastic grape
cluster used in the laboratory. This behaviour is supported by the results obtained in the
exploratory study of Section 4.2.4 for the GBDDv2 and the OIDv7. Figure 12 depicts how
the 608@VOC+WA-WGISD behaves on the sample buds/veraison images extracted from
the GBDDv2 test set. A dedicated numerical analysis over both datasets showed that
the performance metrics restricted to just the buds/veraison are aligned with the overall
scores reported in Table 5. This is the reason why the accuracy percentages in the field are
comparable to those observed in the controlled environment. The developed procedure
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seamlessly operates in the vineyard, since the adverse weather conditions (in particular,
the high brightness in that area) did not bring any particular problem to the recognition of
the adolescent stage of the bunch (Figure 11).

(a) The arm is in the search-for-grape cluster pose. (b) The arm recognizes buds/veraison.

(c) The arm approaches to recognized buds/veraison. (d) The arm performs spraying action.

Figure 11. Cobotic preliminary experiment: spraying test in vineyard.

Spraying Performance: Preliminary Considerations

A quantitative study to evaluate the cobotic performances in chemical administration
is currently on-going and shall be the subject of a dedicated publication. Nevertheless, here
follows some preliminary observations and guidelines to get a glimpse of the rationale in
the matter.

The spraying workflow described at the beginning of Section 4.3.1 is relatively straight-
forward. Once the vision system recognizes a bunch to be treated, the corresponding
bounding box is sent to the robotic orchestrator, which, in turn, determines the target pose
of the arm based on the centroid of the bounding box itself. Based on this premise, it seems
legitimate to assume that there is a direct correlation between the performances of the
vision system and the performance of the actual administration:

• The accuracy of the spraying action, intended as how reliable is the administration
process, is directly proportional to the percentage of true positives in the grape recog-
nition process, thus, it is very likely interconnected to the concept of precision in grape
cluster recognition;

• The efficacy of the spraying action, deemed as a completeness measure, is proportional to
the percentage of false negatives in the grape recognition process (i.e., the orchestrator
misses a chemical treatment pose because no bounding box has been given), thus, it is
strictly related to the recall performance metric in grape detection;

• The efficiency is measured in terms of the chemical waste during the spraying action.
Three main factors play a crucial role in this sense: (i) the percentage of false positives
in the grape recognition process (i.e., the vision system feeds the orchestrator with a
wrong place to treat chemically); (ii) the precision (in terms of the IoU threshold) of
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the detected bounding boxes (i.e., how much the detected bounding box matches the
optimal area to treat); (iii) the diffusion strategy that optimizes the extracted bounding
box area, given the bounding box width and height, and the technical specifications of
the chemicals diffuser (e.g., diffusion shape, diffusion distance, dispersion rate and
so on).

(a) GBDDv2 test— angle15_IMG_20220721_134943.jpg (b) GBDDv2 test—angle15_IMG_20220811_162656.jpg

(c) GBDDv2 test—blurrandom_IMG_20220811_162656.jpg (d) GBDDv2 test—IMG_20220721_103744_1.jpg

Figure 12. Examples of buds/veraison bunch detection of 608@VOC+WA-WGISD for GBDDv2 test
images (right in each image), compared with corresponding ground truth (left in each image).

5. Conclusions

In this paper, a collaborative robotic, vision-aided solution for automatic chemical
treatment on grape clusters has been described. The overall architecture has been detailed,
as well as the principal components to be used, the neural training and the test phase. The
experimental results with respect to the automatic detection for both grape clusters and
the zone of precision spraying have been given, showing it can be feasible in a real-world
scenario using a cobotic arm under a low-cost effective constraint.

Many integrations, open issues and enhancements are currently in the research agenda
and shall be matter of subsequent publications as follows:

• An on-going dedicated study of the quantitative evaluation of cobotic chemical spraying
performances (related, for instance, to the accuracy and stability of the entire system)—see
the last part of Section 4.3.1;

• A dedicated study of autonomous, low-cost-oriented navigation in an open vineyard field;
• A theoretical and applied study on how the vision system and the overall devised

architecture for chemical spraying should be modified in order to cope with other
crucial tasks in viticulture environments, e.g., mature grape physical harvesting.
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