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Abstract: Large datasets play a crucial role in the progression of surgical robotics, facilitating advance-
ments in the fields of surgical task recognition and automation. Moreover, public datasets enable the
comparative analysis of various algorithms and methodologies, thereby assessing their effectiveness
and performance. The ROSMA (Robotics Surgical Maneuvers) dataset provides 206 trials of common
surgical training tasks performed with the da Vinci Research Kit (dVRK). In this work, we extend the
ROSMA dataset with two annotated subsets: ROSMAT24, which contains bounding box annotations
for instrument detection, and ROSMAG40, which contains high and low-level gesture annotations.
We propose an annotation method that provides independent labels for the right-handed tools and
the left-handed tools. For instrument identification, we validate our proposal with a YOLOv4 model
in two experimental scenarios. We demonstrate the generalization capabilities of the network to
detect instruments in unseen scenarios. On the other hand, for gesture segmentation, we propose two
label categories: high-level annotations that describe gestures at a maneuvers level, and low-level
annotations that describe gestures at a fine-grain level. To validate this proposal, we have designed a
recurrent neural network based on a bidirectional long-short term memory layer. We present results
for four cross-validation experimental setups, reaching up to a 77.35% mAP.

Keywords: robotic dataset; instrument detection; gesture segmentation; surgical robotics

1. Introduction

Surgical data sciences is emerging as a novel domain within healthcare, particularly in
the field of surgery. This discipline holds the promise of significant advancements in various
areas such as virtual coaching, assessment of surgeon proficiency, and learning complex
surgical tasks through robotic systems [1]. Additionally, it contributes to the field of gesture
recognition [2,3]. Understanding surgical scenes has become critical to the development of
intelligent systems that can effectively collaborate with surgeons during live procedures [4].
The availability of extensive datasets related to the execution of surgical tasks using robotic
systems would support these advancements forward, providing detailed information of the
surgeon’s movements with both kinematics and dynamics data, complemented by video
recordings. Furthermore, public datasets facilitate the comparison of different algorithms
proposed in the scientific literature. Rivas-Blanco et al. [5] provide a list of 13 publicly
accessible datasets within the surgical domain, such as Cholec80 or M2CAI16 datasets.

While most of these datasets include video data [6,7], only two of them incorporate
kinematic data [8,9], which is fundamental in analyzing metrics associated with the tool
motion. Kinematic data are provided by research platforms such as the da Vinci Research
Kit (dVRK). The dVRK is a robotic platform based on the first-generation commercial da
Vinci Surgical System (by Intuitive Surgical, Inc., Sunnyvale, CA, USA). This platform offers
a software package that records kinematics and dynamics data of both the master tool and
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the patient side manipulators. The JIGSAWS dataset [8] and the UCL dVRK dataset [9]
records were acquired using this platform. The first one stands out as one of the most
renowned dataset in surgical robotics. It encompasses 76-dimensional kinematic data in
conjunction with video data for 101 trials of 3 fundamental surgical tasks (suturing, knot-
tying, and needle-passing) performed by 6 surgeons. The UCL dVRK dataset comprises
14 videos using the dVRK across 5 distinct types of animal tissue. Each video frame is
associated with an image of the virtual tools produced using a dVRK simulator.

Common annotations in surgical robotics datasets are related to tool detection and
gesture recognition. These annotations, i.e., labeling data with relevant tags to make it
easier for computers to understand and interpret images, are the basis for developing
new strategies to advance in the field of intelligent surgical robots and surgical scene
understanding. One of the most studied applications in this field is surgical image analysis.
There are many promising works for object recognition based on surgical images. Most
works perform surgical instrument classification [10,11], instruments segmentation [12,13],
and tools detection [7,14]. Al-Hajj et al. [15] propose a network that concatenates several
CNN layers to extract visual features of the images and RNNs for analyzing temporal
dependencies. With this approach, they are able to classify seven different tools in cholecys-
tectomy surgeries with a performance of around 98%. Sarikaya et al. [7] applied a region
proposal network with a multimodal convolutional one for instrument detection, achieving
a mean average precision of 90%. Besides surgical instruments, anatomical structures are
an essential part of the surgical scene. Thus, organ segmentation provides rich informa-
tion for understanding surgical procedures. Liver segmentation has been addressed by
Nazir et al. [16] and Fu et al. [17] with promising results.

Another important application in surgical data sciences is surgical task analysis, as the
basis for developing context-aware systems or autonomous surgical robots. In this domain,
the recognition of surgical phases has been extensively studied, as it enables computer-
assisted systems to track the progression of a procedure. This task involves breaking down
a procedure into distinct phases and training the system to identify which phase corre-
sponds to a given image. Petscharnig and Schöffmann [18] explored phase classification on
gynecologic videos annotated with 14 semantic classes. Twinanda et al. [19] introduced a
novel CNN architecture, EndoNet, which effectively performs phase recognition and tool
presence detection concurrently, relying solely on visual information. They demonstrated
the generalization of their work with two different datasets. Other researchers delve deeper
into surgical tasks by analyzing surgical gestures instead of phases. Here, tasks such as
suturing are decomposed into a series of gestures [8]. This entails a more challenging
problem as gestures exhibit greater similarity to each other compared to broader phases.
Gesture segmentation, so far, has primarily focused on the suturing task [20–22], with
most attempts conducted in in vitro environments yielding promising results. Only one
study [23] has explored live suturing gesture segmentation. Trajectory segmentation offers
another avenue for a detailed analysis of surgical instrument motion [24,25]. It involves
breaking trajectories into sub-trajectories, facilitating learning from demonstrations, skill
assessment, phase recognition, among other applications. Authors take advantage of kine-
matics information provided by surgical robots, which combined with video data, allows
more accurate results [26,27].

In our previous work [28], we presented the Robotic Surgical Maneuvers (ROSMA)
dataset. This dataset contains kinematic and video data for 206 trials of 3 common training
surgical tasks performed with the dVRK. In the work of Rivas-Blanco et al. [28], we pre-
sented a detailed description of the data and the recording methodology, along with the
protocol of the three performed tasks. This first version of ROSMA did not include annota-
tions. In the present work, we incorporate manual annotations for surgical tool detection
and gesture segmentation. The main novelty regarding the annotation methodology is
that we have annotated independently the two instruments handled by the surgeon, i.e.,
we provide metadata with the bounding box position for the tool handled with the right
master tool manipulator, and also for the one handled with the left one. We believe that
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this distinction would provide useful information for supervisory or autonomous systems,
making it possible to pay attention to one particular tool, i.e., one may be interested in the
position of the main tool or in the position of the support tool, even if they are both the
same type of instrument.

In most of the state-of-the-art works, phases, such as suturing, or gestures, such as
pulling suture or needle orientation, are considered an action that involves both tools.
However, the effectiveness of these methods relies heavily on achieving a consensus on
the surgical procedure, which limits their applicability. Consequently, the generalization to
other procedures remains poor. Thus, for the gesture annotations presented in this paper,
the approach of treating the two tools independently is also followed. We have annotated
each video frame with a gesture label for the right-handed tool and another one for the
left-handed tool. This kind of annotating gestures makes special sense for tasks that may
be performed with either the right or the left hand, as is the case of the ROSMA dataset, in
which tasks are performed for half of the trials with the right hand, and the other half with
the left hand. Being able to detect the basic action each tool is performing would allow the
identification of general gestures or phases either for dexterous or left-handed surgeons.

In summary, the main contributions of this letter are as follows:

1. This work completes the ROSMA dataset with surgical tool detection and gesture
annotations, resulting in 2 new datasets: ROSMAG40, which contains 40 videos
labeled with the instruments’ gestures, and ROSMAT24, which provides bounding
box annotations of the instruments’ tip for 24 videos of the original ROSMA dataset.

2. Unlike previous work, annotations are performed on the right tool and on the left tool
independently.

3. Annotations for gesture recognition have been evaluated using a recurrent neural net-
work based on a bi-directional long short-term memory layer, using an experimental
setup-up with four cross-validation schemes.

4. Annotations for surgical tool detection have been evaluated with a YOLOV4 network
using two experimental setups.

2. Materials and Methods
2.1. System Description

The dVRK, supported by the Intuitive Foundation (Sunnyvale, CA, USA), arose as a
community effort to support research in the field of telerobotic surgery [29]. This platform
is made up of hardware of the first-generation da Vinci system along with motor controllers
and a software framework integrated with the Robot Operating System (ROS) [30]. There
are over thirty dVRK platforms distributed in ten countries around the world. In this
work, we have used the dVRK platform located at The Biorobotics Institute of the Scuola
Superiore Sant’Anna (Pisa, Itally). This platform has two Patient Side Manipulators (PSM),
labelled as PSM1 and PSM2 (Figure 1a), and a master console consisting of two Master Tool
Manipulators (MTM), labelled as MTML and MTMR (Figure 1b). MTMR controls PSM1,
while MTML controls PSM2. For the experiments described in this paper, the stereo vision
is provided using two commercial webcams, as the dVRK used for the experiments was
not equipped with the endoscopic camera manipulator.

Each PSM has 6 joints following the kinematics described in [31], and an additional
degree of freedom for opening and closing the gripper. The tip of the instrument moves
around a remote center of motion, where the origin of the base frame of each manipulator
is set. The motion of each manipulator is described by its corresponding base_frame with
respect to the the common frame ECM, as shown in Figure 2a. The MTMs used to remotely
teleoperate the PSMs have 7-DOF, coupled with the capability to open and close the
instrument. The base frames of each manipulator are related through the common frame
HRSV, as shown in Figure 2b. The transformation between the base frames and the common
one in both sides of the dVRK is described in the json configuration file that can be found in
the ROSMA Github repository (https://github.com/SurgicalRoboticsUMA/rosma_dataset,
accessed on 26 February 2024).

https://github.com/SurgicalRoboticsUMA/rosma_dataset
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(a) Slave side (b) Master console

Figure 1. da Vinci Research Kit (dVRK) platform used to collect the ROSMA dataset. (a) The slave
side has two Patient Side Manipulators (PSM1 and PSM2), two commercial webcams to provide
stereo vision and to record the images, and the training task board. (b) The master console has two
Master Tool Manipulators (MTML and MTMR) and a stereo vision system.

(a) Patient side kinematics (b) Surgeon side kinematics

Figure 2. Patient and surgeon side kinematics. Kinematics of each PSM is defined with respect to the
common frame ECM, while the MTMs are described with respect to frame HRSV.

2.2. Robotics Surgical Maneuvers Dataset (ROSMA)

The Robotics Surgical Maneuvers (ROSMA) dataset is a large dataset collected using
the platform described in the previous section. This dataset contains the performance
of three tasks of the Skill-Building Task Set (from 3-D Technical Services, Franklin, OH,
USA): post and sleeve, pea on a peg, and wire chaser. These training platforms for clinical
skill development provide challenges that require motions and skills used in laparoscopic
surgery, such as hand-eye coordination, bimanual dexterity, depth perception, or interaction
between dominant and non-dominant hands [32]. A detailed description of these tasks is
described in Section 2.3.

The ROSMA dataset contains 36 kinematic variables, divided into 154-dimensional
data, recorded at 50 Hz for 206 trials of three common training surgical tasks. A detailed
description of these kinematic data is provided in Table 1. This table provides the kinematic
variables recorded along with the number of features recorded for each component. These
data are complemented with the video recordings collected at 15 frames per second with
1024 × 768 pixel resolution. The dataset also includes task evaluation annotations based
on time and task-specific errors, a synchronization data file between data and videos,
the transformation matrix between the camera and the PSMs, and a questionnaire with
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personal data of the subjects (gender, age, dominant hand) and previous experience using
teleoperated systems and visuo-motor skills (sport and musical instruments). This dataset
is fully described by Rivas-Blanco et al. [28] and publicly available for download at
Zenodo [33]. The code for using the data in Matlab and ROS can be found in Appendix A.

Table 1. Description of the kinematic data.

Kinematic Variable Component No. Features

Cartesian position (x, y, z) PSM1 3
PSM2 3

MTML 3
MTMR 3

Orientation (x, y, z, w) PSM1 4
PSM2 4

MTML 4
MTMR 4

Linear velocity (x, y, z) PSM1 3
PSM2 3

MTML 3
MTMR 3

Angular velocity (x, y, z) PSM1 3
PSM2 3

MTML 3
MTMR 3

Wrench force (x, y, z) PSM1 3
PSM2 3

MTML 3
MTMR 3

Wrench torque (x, y, z) PSM1 3
PSM2 3

MTML 3
MTMR 3

Joint position PSM1 7
PSM2 7

MTML 6
MTMR 6

Joint velocity PSM1 7
PSM2 7

MTML 6
MTMR 6

Joint effort PSM1 7
PSM2 7

MTML 6
MTMR 6

2.3. Gesture Annotations

In most of the works on gesture segmentation in surgical procedures, gestures are
considered an action or maneuver that involves the motion of two surgical instruments,
such as suturing, knot-tying, inserting the needle in the tissue, etc. Usually, these kinds of
maneuvers are performed following a similar protocol, where actions are always performed
by the same tool, i.e., complex tasks that require high precision are usually performed
with the right-handed tool, while the left-handed one is usually employed for support
tasks. However, left-handed surgeons may not follow this convention, as their dexterous
hand is the left. Thus, we believe that being able to recognize gestures that are defined
by an adjective instead of by an action would facilitate the generalization of the gesture
segmentation algorithms to different protocols of the same task. As well, the generalization
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to different ways of performing a particular task, for example, in the case of left-handed
surgeons, would also be easier.

As mentioned previously, the ROSMA dataset contains the performance of three tasks:
post and sleeve, pea on a peg, and wire chaser. To explore the idea of gesture segmentation
presented above, in this work we have only annotated the two first tasks of the dataset, as
these two tasks have similar procedure protocols, which allow us to have common gestures
for both of them. However, wire chaser has a very different protocol, so we cannot define the
same gestures as for the other two tasks. Post and sleeve task (Figure 3a) consists of moving
the colored sleeves from one side of the board to the other. Each user performs six trials:
three starting from the right side and the other three starting from the left side. On the other
hand, pea on a peg (Figure 3b) consists of picking six beads from the cup and placing them
on top of the pegs. As in the previous task, each user performs six trials: three placing the
beads on the left-side pegs, and the other three on the opposite pegs. The detailed protocol
of these tasks is described in Table 2. Although these two tasks have different procedures,
they follow the same philosophy: picking an object and placing it on a peg. Hence, the
idea behind the gesture annotation methodology of this work is being able to recognize the
gesture or actions regardless of whether the user is performing pea on a peg or post and sleeve.

Table 2. Protocol of the task pea on a peg and post and sleeve of the ROSMA dataset.

Post and Sleeve Pea on a Peg

Goal
To move the colored sleeves from

side-to-side of the board.
To put the beads on the 14 pegs of the

board.

Starting position

The board is placed with the peg rows in
a vertical position (from left to right:

4-2-2-4). The six sleeves are positioned
over the six pegs on one of the sides of

the board.

All beads are on the cup.

Procedure

The subject has to take a sleeve with one
hand, pass it to the other hand, and place
it over a peg on the opposite side of the

board. If a sleeve is dropped, it is
considered a penalty and it cannot be

taken back.

The subject has to take the beads one by
one out of the cup and place them on top
of the pegs. For the trials performed with
the right hand, the beads are placed on

the right side of the board, and vice versa.
If a bead is dropped, it is considered a
penalty and it cannot be taken back.

Repetitions
Six trials: three from right to left, and

other three from left to right.

Six trials: three placing the beads on the
pegs of the right side of the board, and

the other three on the left side.

(a) (b)

Figure 3. Experimental board scenario for the ROSMA datasets tasks: (a) post and sleeve and (b) pea
on a peg.
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2.3.1. ROSMAG40 Annotations

ROSMAG40 is a subset of ROSMA dataset that includes gesture annotations for
40 videos (72,843 frames). The distribution of the annotated videos according to the user,
the task, and the dominant hand of each trial is described in Table 3. ROSMAG40 includes
videos from five different users: users X01, X02, and X07 are dexterous, while users X06,
and X08 are ambidextrous. For each user, we have annotated eight video, four for the pea on
a peg task, and four for post and sleeve. For each task, we have annotated two trials performed
using PSM1 as the dominant tool and other two trials using PSM2 as the dominant tool (for
pea on a peg; the dominant tool is the one in charge of picking and placing the peas, while
for post and sleeve, the dominant tool is considered the one that picks the sleeves).

Table 3. Description of the ROSMAG40 dataset distribution.

User ID Task Dominant Tool Annotated Videos

X01
Pea on a Peg PSM1 2

PSM2 2

Post and sleeve PSM1 2
PSM2 2

X02
Pea on a Peg PSM1 2

PSM2 2

Post and sleeve PSM1 2
PSM2 2

X06
Pea on a Peg PSM1 2

PSM2 2

Post and sleeve PSM1 2
PSM2 2

X07
Pea on a Peg PSM1 2

PSM2 2

Post and sleeve PSM1 2
PSM2 2

X08
Pea on a Peg PSM1 2

PSM2 2

Post and sleeve PSM1 2
PSM2 2

For the annotations, we have followed the previous idea of defining the gestures to
facilitate their generalization to other tasks. In this sense, we define a descriptive gesture
as a gesture or action characterized by an action adjective. For example, we can define a
descriptive gesture as a precision action, regardless of whether we are inserting the needle in
a particular point, putting a staple, or dissecting a duct. This work defines two classes of
descriptive gestures: maneuver descriptors (MD) and fine-grain descriptors (FGD). Ma-
neuver descriptors represent high-level actions that are common to all surgical tasks, such
as precision or collaborative actions. On the other hand, fine-grain descriptors represent
low-level actions that are specifically performed in the ROSMA training tasks, such as
picking or placing, but which are not generalizable for other types of tasks. ROSMAG40
provides manual annotations for these two classes of gestures. This dataset is available for
download at the Zenodo website [34], and its directory structure is as follows:

• FGDlabels: this folder contains text files with the FGD annotations. Each row, which
corresponds with a video frame, contains two items: the gesture label for PSM1 and
the gesture label for PSM2.

• MDlabels: this folder contains text files with the MD annotations with the same
structure as FGDlabels files.

• Kinematics: this folder contains text files with the 34 kinematic features. The first
row of these files contains the name of the kinematic feature corresponding with
each column.
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• Video: this folder contains the video files in mp4 format for the 40 trials of the tasks.

2.3.2. Maneuver Descriptor (MD) Gestures

MD gestures describe the gestures at a higher level than FGD and represent gestures
that are common to most surgical tasks. We have defined four MD gestures:

• Idle (G1): the instrument is in a resting position.
• Precision (G2): this gesture is characterized by actions that require an accurate motion

of the tool, such as picking or placing objects.
• Displacement (G3): this gesture is characterized by motions that do not require high

accuracy, i.e., displacement of the tools either to carry an object or to position the tip
in a particular area of the scenario.

• Collaboration (G4): both instruments are collaborating on the same task. For pea on a
peg, collaboration occurs when the dominant tool needs support, usually to release
peas held together by static friction, so it is an intermittent and unpredictable action.
For post and sleeve, collaboration is a mandatory step between picking and placing an
object, in which the sleeve is passed from one tool to another.

Table 4 summarizes the gesture description, along with their ID, labels, and the
presence (number of frames) of each gesture in the dataset for PSM1 and PSM2.

Table 4. Description of ROSMAG40 annotations for MD gestures.

Gesture ID Gesture Label Gesture Description No. Frames PSM1 No. Frames PSM2

G1 Idle The instrument is in a
resting position 28,395 (38.98%) 2583 (35.46%)

G2 Precision

The instrument is
performing an action

that requires an
accurate motion of the

tip.

9062 (12.43%) 9630 (13.1%)

G3 Displacement

The instrument is
moving with or

without an object on
the tip

24,871 (34.14%) 26,865 (36.42%)

G4 Collaboration
Both instruments are
collaborating on the

same task.
10,515 (14.53%) 10,515 (14.53%)

Figure 4 shows six characteristic snapshots of each MD gesture, three for pea on a
top (top) and three for post and sleeve (bottom images). Figure 5 shows a box chart for the
MD gestures occurrence for the 40 videos of the dataset. These plots clearly show the
dispersion of the data for different trials of the tasks, which was otherwise expected due
to the non-uniform nature of the different trials (half of the trials were performed with
PSM1 as the dominant tool, and the other half with PSM2). Besides this fact, there is a
non-uniform workflow between both tasks:

• Pea on a peg is mostly performed with the dominant tool, which follows the flow
of picking a pea and placing it on top of a peg. The other tool mainly carries out
collaborative actions to provide support for releasing peas from the tool. Thus, the
dominant tool gestures follow mostly the following flow: displacement (G3)-precision
(G2)-displacement (G3)-precision (G2), with short interruptions for collaboration (G4).
While the other tool is mainly in an idle (G1) position, with some interruptions for
collaboration (G4). This workflow is shown in Figure 6, which represents the sequential
distribution of the gestures along a complete trial of the task.

• Post and sleeve tasks follow a more sequential workflow between the tools: one tool
picks a sleeve and transfers it to the other tool, which places it over a peg on the
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opposite side of the board. Thus, the workflow is more similar for both tools, as can
be seen in Figure 7.

Figure 4. Examples of MD gesture annotations.

(a) (b)

Figure 5. Distribution of the gestures occurrence for the MD gestures for (a) PSM1 and (b) PSM2. The
red central mark on each box indicates the median, and bottom and top edges indicate the 25th and
the 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered
outliers, and the outliers are plotted individually using the ‘+’ marker symbol.

2.3.3. Fine-Grain Descriptor (FGD) Gestures

FGD gestures describe the gestures at lower level, i.e., the adjectives used to define the
gesture are linked to specific actions of the tools. We have defined six FGD gestures, which
are common for the two tasks of the dataset. Most of them can be seen as a particularity
of a MD gesture; the relationship between them is shown in Table 5. Additionally, Table 6
presents the ID, label and description of each gesture, along with the number of frames
annotated for PSM1 and PSM2. These six FGD gestures are as follows:
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• Idle (F1): this is the same gesture as for MD gestures described in the previous sec-
tion (G1).

• Picking (F2): the instrument is picking an object, either a pea on the pea on a peg task or
a colored sleeve on the post and sleeve task. This gesture is a particularity of G2 of MD
descriptors.

• Placing (F3): the instrument is placing an object, either a pea on top of a peg or a sleeve
over a peg. This gesture is also a particularity of G2.

• Free motion (F4): the instrument is moving without carrying anything at the tip. This
gesture corresponds with actions of approaching the objective to pick, and it is a
particularity of G3 of MD descriptors.

• Load motion (F5): the instrument moves while holding an object. This gesture corre-
sponds with actions of approaching the objective to a place, and, therefore, it is also a
particularity of G3.

• Collaboration (F6): equivalent to gesture G4 of maneuver descriptors.

Figure 6. Sequential distribution of the MD gestures along a complete trial of a pea on a peg task for
PSM1 (left) and PSM2 (right).

Figure 7. Sequential distribution of the MD gestures along a complete trial of post and sleeve task for
PSM1 (left) and PSM2 (right).
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Table 5. Relation between MD and FGD annotations.

MD Gestures FGD Gestures Description

Idle (G1) Idle (F1) Resting position

Precision (G2) Picking (F2) Picking an object
Placing (F3) Placing an object

Displacement (G3) Free Motion (F4) Moving without an object
Load Motion (F5) Moving with an object

Collaboration (G4) Collaboration (F6) Instrument collaborating

Table 6. ROSMAG40 annotations for maneuver descriptor gestures.

Gesture ID Gesture Label Gesture Description Number of Frames
PSM1

Number of Frames
PSM2

F1 Idle The instrument is in a
resting position 28,395 (38.98%) 25,830 (35.46%)

F2 Picking The instrument is
picking an object. 3499 (4.8%) 4287 (5.8%)

F3 Placing
The instrument is

placing an object on a
peg.

5563 (7.63%) 5343 (7.3%)

F4 Free motion

The instrument is
moving without

carrying anything at
the tool tip.

15,813 (21.71%) 16,019 (21.99%)

F5 Load motion The instrument moves
while holding an object. 9058 (12.43%) 10,846 (14.43%)

F6 Collaboration
Both instruments are
collaborating on the

same task.
10,515 (14.53%) 10,515 (14.53%)

Figure 8 shows six characteristic snapshots of each FGD gesture, three for pea on a peg
(top) and three for post and sleeve (bottom images). Figure 9 shows the gesture occurrence
distribution for FGD gestures. As expected, this box chart reveals the same conclusions of
MD gestures in term of the dispersion of the data for the different task trials. This can also
be seen in Figures 10 and 11, which show the sequential workflow of the gestures for a pea
on a peg task and a post and sleeve task, respectively:

• The workflow of pea on a peg task for FGD gesture is mainly as follows: free motion
(F4)-picking (F2)-load motion (F5)-placing (F3), with short interruptions for collaboration
(F6). The other tool is mostly in an idle (F1) position, with some interruptions for
collaboration (F6).

• As we stated previously, post and sleeve tasks follow a more sequential workflow
between the tools. In the trial represented in Figure 11, PSM1 was the dominant tool,
so the comparison between the gesture sequential distribution for PSM1 and PSM2
reflects that picking is a more time-consuming task than placing.
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Figure 8. Examples of FGD gesture annotations.

(a) (b)

Figure 9. Distribution of the occurrence for the FGD gestures for (a) PSM1 and (b) PSM2. The red
central mark on each box indicates the median, and bottom and top edges indicate the 25th and the
75th percentiles, respectively. The whiskers extend to the most extreme data points not considered
outliers, and the outliers are plotted individually using the ‘+’ marker symbol.

2.4. Instruments Annotations (ROSMAT24)

In this work, we extend the usability of ROSMA dataset incorporating manual anno-
tations for instrument detection. Hence, we present the ROSMAT24 dataset, a subset of
ROSMA that includes bounding box annotations for instruments detection on 24 videos,
22 videos of pea on a peg instances, and 2 videos of post and sleeve. Unlike most of the
previous work on instrument detection, we provide separate labeled bounding boxes for
the tip of PSM1 and PMS2. This way, we can model a network able to distinguish between
both tools. We have annotated a total of 48,919 images: 45,018 images (92%) of pea on a
peg trials, and 3901 (8%) of post and sleeve. The idea of this non-uniform distribution of
the annotations between the tasks is to validate the robustness of the recognition method
for different scenarios. Table 7 shows the specific trials that have been annotated and the
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overall number of labeled frames. The videos have been manually annotated frame by
frame using the Matlab Toolbox Video Labeler. The bounding boxes surround the robotic tip
of the tools, which is easily identifiable by its grey color. As the tools have an articulated
tip, the size of the bounding boxed depends on the orientation of the tool. Figure 12 shows
two examples of the instruments bounding boxes annotations. This dataset is available for
download at the Zenodo website [35]. The dataset directory structure is as follows:

• Labels: this folder contains the text files with the bounding boxes for the tip of PSM1
and PSM2. Each row, which corresponds with a video frame, has the following
eight items:

[BX1, BY1, BW1, BH1, BX2, BY2, BW2, BH2] (1)

where BX, BY, BW, and BH are the coordinates of the bounding boxes x1 (left), y1
(top), width and height, respectively, and the Subindexes 1 and 2 refer to PSM1 and
PSM2, respectively.

• Video: this folder contains the video files in mp4 format.

Figure 10. Sequential distribution of the FGD gestures along a complete trial of a pea on a peg task
for PSM1 (left) and PSM2 (right).

Figure 11. Sequential distribution of the FGD gestures along a complete trial of post and sleeve task
for PSM1 (left) and PSM2 (right).
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Table 7. Description of the ROSMAT24 dataset annotations.

Video No. Frames Video No. Frames

X01 Pea on a Peg 01 1856 X03 Pea on a Peg 01 1909
X01 Pea on a Peg 02 1532 X03 Pea on a Peg 02 1691
X01 Pea on a Peg 03 1748 X03 Pea on a Peg 03 1899
X01 Pea on a Peg 04 1407 X03 Pea on a Peg 04 2631
X01 Pea on a Peg 05 1778 X03 Pea on a Peg 05 1587
X01 Pea on a Peg 06 2040 X03 Pea on a Peg 06 2303
X02 Pea on a Peg 01 2250 X04 Pea on a Peg 01 2892
X02 Pea on a Peg 02 2151 X04 Pea on a Peg 02 1858
X02 Pea on a Peg 03 1733 X04 Pea on a Peg 03 2905
X02 Pea on a Peg 04 2640 X04 Pea on a Peg 04 2265
X02 Pea on a Peg 05 1615 X01 Post and Sleeve 01 1911
X02 Pea on a Peg 06 2328 X11 Post and Sleeve 04 1990

Figure 12. Examples of the instruments bounding boxes annotations of ROSMAT24.

2.5. Evaluation Method

In this section, we describe the evaluation methodology for the instruments and the
gesture annotations.

2.5.1. Gesture Segmentation

To validate the gesture annotations presented in Section 2.3, we propose the recurrent
neural network (RNN) model of Figure 13. Input data of the network are a sequence of
kinematic data collected with the dVRK during the experiments. The ROSMA dataset
includes 154 kinematics features from the dVRK platform (both master and slave sides).
To isolate the gesture segmentation methodology from the particular robotic system em-
ployed to carry out the experiments, we have only considered PSM kinematics for gesture
segmentation. To be able to replicate the model proposed in this work in a different sce-
nario, we have also obviated the Cartesian position of the manipulators. Thus, for gesture
segmentation we have used a subset of 34 kinematic features to train the network shown in
Table 8. This subset includes tools orientation (given as quaternion), linear, and angular
velocity, and wrench force and torque are raw data collected from the dVRK. Alongside
these data, we have added two hand-crafted variables that provide useful information on
the relation between the tools: distance and angle between PSM1 and PSM2. As gesture
annotations on ROSMAG40, this dataset has been defined to be as generalizable as possible.
Hence, no images have been added to the input of the network, as they would condition
the learning process to a particular experimental scenario.

These 34 features are the input to the network of Figure 13. The sequence layer extracts
the input from the given sequence. Then, a Bi-directional Long Short-Term Memory (Bi-
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LSTM) layer with 50 hidden units learns long-term dependencies between time steps of
the sequential data. This layer is followed by a dropout layer of 0.5 dropout rate to reduce
overfitting. The network concludes with a 50-fully connected layer, a softmax layer, and a
classification layer, which infers the output predicted gesture. LSTM layers are effective
classifiers for time series sequence data, as they employ three control units, namely the input
gate, the output gate, and the forget gate, to keep long-term and short-term dependencies.
A bi-LSTM layer is a model with two LSTM networks that work in two directions: one
LSMT layer takes the input in a forward direction, and the other in a backward direction.
This model allows increasing the amount of information available to the network and
improving the model performance [36].

Figure 13. RRN model based on a bi-directional LSTM network for gesture segmentation.

Table 8. Kinematic data variables from the dVRK used as input to the RNN for gesture segmentation.

Kinematic Variable PSM No. Features

Tool orientation (x, y, z, w) PSM1 4
PSM2 4

Linear velocity (x, y, z) PSM1 3
PSM2 3

Angular velocity (x, y, z) PSM1 3
PSM2 3

Wrench force (x, y, z) PSM1 3
PSM2 3

Wrench torque (x, y, z) PSM1 3
PSM2 3

Distance between tools - 1
Angle between tools - 1

Total number of input features - 34

The experimental setup includes four cross-validation schemes based on [8]:

• Leave-one-user-out (LOUO): in the LOUO setup, we created five folds, each one
consisting of data from one of the five users. This setup can be used to evaluate the
robustness of the model when a subject is not seen by the model.

• Leave-one-supertrial-out (LOSO): a supertrial is defined as in Gao et al. [8] as the set
of trials from all subjects for a given surgical task. Thus, we created two folds, each
comprising data from one of the two tasks. This setup can be used to evaluate the
robustness of the method for a new task.

• Leave-one-psm-out (LOPO): as half of the trials of the dataset are performed with
PSM1 as the dominant tool while the other half are performed with PSM2 as the domi-
nant tool, we have created two folds, one for trials of each dominant tool. This setup
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can be used to evaluate the robustness of the model when tasks are not performed
following a predefined order.

• Leave-one-trial-out (LOTO): a trial is defined as the performance by one subject of
one instance of a specific task. For this cross-validation scheme, we have considered
the following test data partitions:

– Test data 1: test data include two trials per user as follows: one of each task, and
performed with a different PSM as dominant. Thus, we have left out 10 trials: 2
per user, 5 from each task, and 5 with one PSM as dominant. This setup allows us
to train the model with the widest variety possible.

– Test data 2: this test folder includes 10 trials of pea on a peg task, 2 trials per user
with different PSM as dominant. This setup allows evaluating the robustness of
the method when the network has significantly more observations of one task.

– Test data 3: the same philosophy of test data 2, but leaving for testing just post
and sleeve data for testing.

– Test data 4: this test folder includes 10 trials performed with PSM1 as the dom-
inant tool, and 2 trials per user and task. This setup allows evaluating the
robustness of the method when the network has significantly more observations
with a particular workflow of the task performance.

– Test data 5: the same philosophy of test data 4, but leaving for testing just
performance with PSM2 as the dominant tool.

2.5.2. Instrument Detection

In this work, YOLOv4 was used to detect the tip of the instruments, using the images
as an input. YOLO (You Only Look Once) is a popular single-shot object detector known for
its speed and accuracy. This model is an end-to-end neural network that makes predictions
of bounding boxes and class probabilities all at once. This model is composed of three
parts: backbone, neck, and head. The backbone is a pretrained CNN that computes feature
maps from the input images. The neck connects the backbone and the head. It consists
of a spatial pyramid pooling module and a path aggregation network, which merges the
feature maps from various layers of the backbone network and forwards them as inputs to
the head. The head processes the aggregated features and makes predictions for bounding
boxes, objectness scores, and classification scores. Yolov4 has already proven to provide
good results for surgical instrument detection [37].

The experimental setup for instrument detection includes two scenarios:

• Leave-One-Supertrial-Out (LOSO): for this setup, we only used images of videos
performing pea on a peg for training the network, and then we incorporated images of
videos performing post and leave for testing. This setup can be used to evaluate the
robustness of the method for different experimental scenarios.

• Leave-One-Trial-Out (LOTO): for this setup, we used images of videos performing
pea on a peg and post and sleeve for training and testing the network.

3. Results

This section presents the experimental results for the gesture segmentation network
described in Section 2.5.1 and the instruments detection method presented in Section 2.5.2.
All the experiments have been conducted on Intel(R) Xeon(R) Gold 5317 CPU @ 3.00 GHz
with GA120GL (RTX A6000) GPU running Ubuntu 20.04.5 LTS. The code used to generate
the experimental results, along with video demonstrations of the gesture segmentation
network and the instrument detection model can be found in Appendix A and in the
Supplementary Materials. These videos demonstrate the performance of the networks for
the two algorithms presented in this work.

3.1. Results for Gesture Segmentation

This section presents the results of the gesture segmentation network described in
Section 2.5.1. We present the results for the two categories of annotations of ROSGMAG40
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dataset and the four experimental setups: leave-one-user-out (LOUO), leave-one-supertrial-
out (LOSO), leave-one-psm-out (LOPO) and leave-one-trial-out (LOTO). Matlab 2023b
software was used to implement the RNN model. Training of the network was performed
with the Adam optimization algorithm with an initial learning rate of 0.001. We used a
batch size of 8 for 60 epochs (240 iterations). A higher number of training epochs resulted
in worse metrics due to overfitting of the network. The total number of observations of
the network is 72,843. The size of the test data varies depending on the cross-validation
method evaluated, ranging from 15,347 to 36,215. The detection time of the network ranges
from 0.0021 to 0.0035 s.

Table 9 shows the results for LOUO cross-validation scheme. Observing these results
we can deduce that the model suffers from a lack of generalization when a user is left out of
the training. We can observe that the mean average precision varies from 39% for user X01
to 64.9% for X02. Though the experimental protocol is the same for all users, these results
suggest that the performance is highly dependent on the skill of each user. Moreover, we
left freedom to complete the tasks in a random order, i.e., each user had to place six peas
on top of the pegs and transfer the six colored sleeves from one side to the other of the
pegboard, but the order in which they had to complete the task was not predefined.

Table 9. Results for Leave-One-User-Out (LOUO) cross-validation scheme.

User Left Out Id PSM1 mAP
(MD)

PSM2 mAP
(MD)

PSM1 mAP
(FGD)

PSM2 mAP
(FGD)

X1 48.9% 39% 46.26% 23.36%
X2 58.8% 64.9% 48.16% 51.39%
X3 50.4% 64.2% 39.71% 51.24%
X4 63.0% 61.2% 54.05% 49.08%
X5 54.6% 53.6% 52.34% 52.7%

Mean 55.14% 56.58 48.01% 45.55%

Table 10 shows the results for the LOSO cross-validation scheme. As in the previous
case, the model has difficulties extrapolating the features learned by the network to a task
that has not been seen before. Table 11 shows the results for the LOPO cross-validation
scheme. In this case, we can observe how the network has poor results for the low-level
FGD annotations, but good results for high-level MD annotations, reaching a maximum
mAP of 67.5%.

Table 10. Results for Leave-One-Supertrial-Out (LOSO) cross-validation scheme.

Supertrial Left
Out

PSM1 mAP
(MD)

PSM2 mAP
(MD)

PSM1 mAP
(FGD)

PSM2 mAP
(FGD)

Pea on a peg 56.15% 56% 46.36% 46.67%
Post and sleeve 52.2% 51.9% 39.06% 43.38%

Table 11. Results for Leave-One-Psm-Out (LOPO) cross-validation scheme.

Dominant PSM PSM1 mAP
(MD)

PSM2 mAP
(MD)

PSM1 mAP
(FGD)

PSM2 mAP
(FGD)

PSM1 56.53% 67% 24.11% 37.33%
PSM2 65.7% 67.5% 52.47% 54.68%

Table 12 shows the results for the LOTO cross-validation scheme. This is the experi-
mental setup with more variety of the training data, thus it has the best results of the four
cross-validation schemes. Using the test folds of test data 1, which offers the most variety
of observations to the network, we reach a 64.65% and 71.39% mAP for the segmentation of
PSM1 and PSM2 gestures, respectively, using MD annotations. However, for the segmen-
tation of PSM1 gesture, we reach a maximum precision of 71.39% using test data 5 folds
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and FGD annotations. To conduct a more comprehensive analysis of the reported results,
we provide the confusion matrices, the training loss, and the training accuracy for this
experimental setup using test folds of Test data 1 in Appendix B.

Table 12. Results for Leave-One-Trial-Out (LOTO) cross-validation scheme.

Dominant PSM PSM1 mAP
(MD)

PSM2 mAP
(MD)

PSM1 mAP
(FGD)

PSM2 mAP
(FGD)

Test data 1 64.65% 77.35% 56.46% 58.99%
Test data 2 63.8% 62.8% 30.43% 70.58%
Test data 3 53.26% 55.58% 53.26% 61.6%
Test data 4 48.72% 60.62% 58.3% 55.58%
Test data 5 60.51% 66.84% 71.39% 46.67%

3.2. Results for Instruments Detection

We present experimental results for two architectures of the YOLOv4 network: a
CSPDarkNet53 backbone pretrained on the COCO dataset, and the compressed version
YOLOv4-tiny. We trained both networks for 40 epochs with the Adam optimizer with a
momentum of 0.9 [38], a batch size of 16, and an initial learning rate of 0.001. The learning
rate is divided by a factor of 10 every 10 epochs.

Table 13 shows the experimental results for the LOSO experimental setup. Both models
have high-precision results for the detection of both tools, reaching over 80% mAP. This
reveals the generalization capabilities of the YOLOv4 network to detect the instruments
in a scenario the network has not seen before. On the other hand, Table 14 presents the
experimental results for the LOTO experimental setup. As expected, results when the
network has seen both task scenarios during the training are higher, reaching values of
97.06% and 95.22% mAP for PSM1 and PSM2, respectively. Comparison between the
performance using CSPDarket53 and YOLOv4-tiny shows that the tiny version provides
similar accuracy results but the performance is 2/3 times faster. Figure 14 shows the
precision-recall curves for this model, showing both high recall and high precision for the
PSMs detection.

Table 13. Results for LOSO experimental setup.

Architecture Test Data PSM1 mAP PSM2 mAP

CSPDarknet53 Post and sleeve 70.92% 84.66%
YOLOv4-tiny Post and sleeve 83.64% 73.45%

Table 14. Results for LOTO experimental setup.

Architecture Left Tool mAP Right Tool mAP Detection Time

CSPDarknet53 97.06% 95.22% 0.0335 s (30 fps)
YOLOv4-tiny 93.63% 95.8% 0.02 s (50 fps)

Figure 15 shows different examples of correct (top images) and incorrect (bottom
images) tool detection. In this figure, we can observe two examples of how the model
is able to detect and distinguish the instruments even when they cross and there is an
overlap of their bounding boxes. This figure also shows the more representative situations
of incorrect detections, i.e., when the network detects more than two instruments in the
image, and incorrect detection when the instruments cross.
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(a) PSM1 (b) PSM2

Figure 14. Precision-recall curve for the LOTO cross-validation scheme using CSPDarknet53 architecture.

Figure 15. Example of correct detections (top images) and incorrect detection (bottom images).

4. Discussion

This work explores the approach of studying the motion of the surgical instruments
separately one from each other. In this sense, instead of considering a gesture or maneuver
as a part of an action that involves the coordinated motion of the two tools the surgeon is
managing, we define gestures as actions each tool is performing independently, whether
they are interacting with the other tool or not. We consider that this approach would
facilitate the generalization of the recognition methods for procedures that do not follow
rigid protocols. To train the recurrent proposed neural network we have used kinematic
data without Cartesian position to allow the reproduction of the experiments with different
robotic platforms. We have decided not to use images as an input to the network to be
able to extrapolate the results to different scenarios, i.e., the idea is that the network learns
behavioral patterns of the motion of the tools, whether they are picking colored sleeves,
peas, rings, or any other object.
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Results reveal a high dependency of the model on the user skills, with a wide range
of precision from 39% to 64.9% mAP depending on the user left out for the LOUO cross-
validation scheme. In future works, we will investigate the model performance when it is
trained with a higher variety of users. The model also has a high dependency on the task
used for training but shows high robustness for changes in the tool. The mean accuracy
of the model is over the 65% when the model has been trained using a particular tool as
the dominant one to complete the task, but tested with trials with a different dominant
tool. These are promising results to generalize the recognition method for dexterous or
left-handed surgeons.

When the system is trained with a wide variety of trials, comprising different users,
tasks, and dominant tools, the performance of the gestures prediction reaches 77.3% mAP.
This result is comparable to other works that perform gesture segmentation using kine-
matics data. Luongo et al. [39] achieved 71% mAP using only kinematic data as an input
to a RNN on the JIGSAWS dataset. Other works that include images as input data report
results of 70.6% mAP [25] and 79.1% mAP [26]. Thus, we consider that we achieved a good
result, especially taking into account that recognition is performed on tasks that do not
follow a specific order in any of the attempts. We believe that the annotations provided
on ROSMAG40 are a good base to advance in the generalization of the gesture and phase
recognition methodologies for procedures with a non-rigid protocol. Moreover, the an-
notations presented in this work could be merged with the traditional way of annotating
surgical phases to provide low-level information on the performance of each tool, which
could improve the high-level phase recognition with additional information.

The annotations provided in ROSMAT24 for tool detection can be used as complemen-
tary to the gesture segmentation methods to focus the attention on a particular tool. This is
important because surgeons usually perform the accuracy tasks with their dexterous hand
and the support tasks with the non-dexterous one. Thus, being able to detect each one
independently can provide useful information. We have demonstrated that the YOLOv4
network provides high precision in the instrument detection, reaching 97% mAP. This result
is comparable to other works on surgical instruments detection, such as Kurman et al. [7],
who reported a 90% mAP or Zhao et al. [40] with 91.6% mAP. We also demonstrated the
capabilities of the network to detect the instruments in an unseen scenario through the
LOSO experimental setup.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app14093701/s1, Videos: Demonstrations of the networks
performance.
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Abbreviations
The following abbreviations are used in this manuscript:

ROSMA Robotics Surgical Maneuvers
dVRK da Vinci Research Kit
MD Maneuver Descriptor
FGD Fine-Grained Descriptor
RNN Recurrent Neural Network
CNN Convolutional Neural Network
Bi-LSTM Bidirectional Long-short Term Memory
MT Master Tool Manipulator
PSM Patient-sided Manipulator
YOLO You Only Look Once

Appendix A

The code used to generate the results presented in this work is provided on GitHub:
https://github.com/irivas-uma/rosma, accessed on 26 February 2024. Besides the code,
this repository also contains video demonstrations of the instrument detection and the
gesture segmentation algorithms presented in this work. The content of these videos is
as follows:

• Testgestures_peaonapeg.mp4: this video shows the annotated labels for a trial of the
pea on a peg task using the FGD annotations. Gesture of PSM1 is displayed in green
on the left side of the image, and gesture of PSM2 is displayed in blue on the right
side of the image. The purpose of this video is to provide the reader with a better
understanding of the meaning of the gestures.

• Testgestures_postandsleeve.mp4: this video shows the performance of the gesture
recognition network for a trial of the post and sleeve task using the MD annotations.
The predicted gesture of PSM1 is displayed in green on the left side of the image, and
the predicted gesture of PSM2 is displayed in blue on the right side of the image. The
purpose of this video is to demonstrate the performance of the network.

• ToolsDetection_peaonapeg.mp4: this video shows the performance of the instruments
detection network for a trial of the pea on a peg task. The predicted bounding boxes
for PSM1 and PSM2 are shown in green and blue, respectively, with a label on the top
displaying the predicted accuracy.

• ToolsDetection_postandsleeve.mp4: performance of the instruments detection net-
work for a trial of the post and sleeve task. The predicted bounding boxes for PSM1 and
PSM2 are shown in green and blue, respectively, with a label on the top displaying the
predicted accuracy.

Appendix B

Figures A1 and A2 show the confusion matrices for MD and FGD gesture segmentation
for the particular experiment of the LOTO cross-validation method using the test data
partition labeled as Test data 1. On these confusion matrices, the rows correspond to the
predicted class (Output class) and the columns correspond to the true class (Target class).
The diagonal cells correspond to observations that are correctly classified. The off-diagonal
cells correspond to incorrectly classified observations. The number of observations and the
percentage of the total observations are shown in each cell. The column on the far right of
the plot shows the percentages of all the examples predicted to belong to each class that are
correctly and incorrectly classified. The row at the bottom of the plot shows the percentages
of all the examples belonging to each class that are correctly and incorrectly classified. The
cell in the bottom right of the plot shows the overall accuracy.

https://github.com/irivas-uma/rosma
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(a) PSM1 (b) PSM2

Figure A1. Confusion matrix for gesture segmentation using MD annotation, for the LOTO cross-
validation scheme using the test data partition labeled as Test data 1.

(a) PSM1 (b) PSM2

Figure A2. Confusion matrix for gesture segmentation using FGD annotation for the LOTO cross-
validation scheme using the test data partition labeled as Test data 1.

On the other hand, Figures A3 and A4 represent the training accuracy and the training
loss for the LOTO cross-validation scheme using the test data partition labeled as Test data
1 for MD and FGD annotations, respectively. The results for PSM1 gesture training are
shown in blue, while the results for PSM2 gesture training are shown in red.
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(a) Training accuracy (b) Training loss

Figure A3. Representation of the training accuracy (a) and the training loss (b) for the LOTO
cross-validation scheme using the test data partition labeled as Test data 1 and MD annotations.

(a) Training accuracy (b) Training loss

Figure A4. Representation of the training accuracy (a) and the training loss (b) for the LOTO
cross-validation scheme using the test data partition labeled as Test data 1 and FGD annotations.
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