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Featured Application: Estimation of expanded uncertainty in case of measurement chains contain-
ing wavelet transform algorithms without using Monte-Carlo simulations.

Abstract: This paper discusses the role of the discrete wavelet transform algorithm in processing
error signals present in the input quantities of the algorithm. In considering the error model of
the measurement chain, the parameters of the error signals in the input quantities of the wavelet
transform algorithm are estimated. Subsequently, in accounting for the algorithm’s properties, the
parameters of its output values are determined, and the resulting uncertainty values of the output
quantities of the measurement chain are estimated. The interval reduction arithmetic method is
employed in the calculations for estimating the expanded uncertainty. All findings were validated
through measurements conducted using the implemented measurement chain.

Keywords: measurement chain error model; uncertainty estimation; discrete wavelet transform

1. Introduction

Currently, extensive applications of wavelet transform algorithms (WT) are well
documented in the literature [1–5]. The algorithms discussed are used, for example, in
medicine [6], image and sound processing [7], machine diagnostics [8], seismic vibration
analysis [9], metal analysis [10], and even in the case of detecting leaks in pipelines [11].
However, there are few works that provide a universal and accessible method for mea-
surement chain designers to estimate the uncertainty associated with the output values of
these algorithms. The methods outlined in current works [12–15] are complex, requiring
the measurement chain designer to possess in-depth knowledge of the algorithm being
utilized.

The universal method for analyzing the metrological properties of WT algorithms
was previously introduced in the [16], where the propagation of random error signals
using these algorithms was discussed. Consequently, the issue of how these algorithms
propagate deterministic error signals and their role in introducing self-error signals into the
output values necessitates further examination. The method outlined in this paper, akin to
that in the previous study, employs a matrix representation of the algorithm. Alongside
the identification algorithm, which is elaborated on in [16–18], an analytical approach for
determining the coefficients of this matrix will be presented.

The main goal of the work was to provide a quantitative description of how error
signals present in the input quantities of the WT algorithm are transferred to its output and
how the parameters of these signals change. This manuscript is divided into 6 sections.
Section 1 contains an introduction and presents the most important assumptions of the
work. Section 2 is devoted to the transmittance of the WT algorithm, explains how the
quantity in question affects the error signals processed by the algorithm, and presents
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an analytical example of determining this quantity for selected algorithm parameters.
Section 3 is devoted to the algorithm’s own errors, explaining their origins and describing
the algorithm for identifying their parameters. Section 4 contains a description of the
method used in this work to determine the resultant expanded uncertainty value. Section 5
presents an example of the application of the discussed analysis method and summarizes
the results of a measurement experiment aimed at verifying its correctness. Section 6
contains the most important conclusions from the work.

All considerations presented in the work were verified through measurements using a
previously constructed measurement chain. This article does not include a metrological
analysis of the discussed measurement chain regarding the error model and metrological
parameters of the input values of the WT algorithm. This aspect is addressed separately
and has been detailed in another work [19]. The uncertainty budget of the signal processed
by the WT algorithm has already been established and will serve as a reference for the
metrological properties of this signal. Therefore, this work, in conjunction with the previous
one [16,19], can offer guidance to the designers of measurement chains on how to implement
the presented considerations in their own applications of measurement chains.

According to the division introduced in some works [16,19,20], the error signals can be
divided according to the nature of the implementation, and we distinguish the following:

• Static signals, where subsequent values are constant within a single measurement
window;

• Dynamic signals, where subsequent values change within a single measurement
window, and it is possible to deterministically describe the course of these signals;

• Random signals, where subsequent values change within a single measurement
window, and it is not possible to deterministically describe the course of these signals;

due to the origin of the signals, we distinguish the following as well:

• Own signals, introduced by the analyzed object, resulting from its imperfect proper-
ties;

• Propagated signals transferred from the input to the output of an object, present in
the input quantities.

2. Wavelet Transform Algorithm Transmittance

As described in [16–18], many data processing algorithms can be represented in matrix
form. In denoting the successive input quantities of the algorithm as x(i) and the output
quantities as X(j), their relationships can be expressed in the following form :

X(0)
X(1)

...
X(M − 1)

 =


a0,0 a0,1 · · · a0,N−1

a1,0
. . . a1,N−1

...
. . .

...
aM−1,0 · · · · · · aM−1,N−1




x(0)
x(1)

...
x(N − 1)

, (1)

where N is the number of input quantities, M is the number of output quantities, and
the symbol ai,j denotes the coefficients of the transformation matrix A of the algorithm,
obtained according to the method described in [18] or determined analytically in accordance
with the assumptions of the analyzed algorithm, as in [21]. The method discussed was
previously utilized in papers [16,22] that described the transfer of random errors using
discrete wavelet transform algorithms.

When analyzing how the discussed algorithm transfers errors of a deterministic nature,
the transmittance of this algorithm should be taken into account. This algorithm will act
as a filter and thus modify the spectrum of the processed signal. This work assumed
that the transmittance of the algorithm is ideal, which means that the algorithm does not
introduce any deterministic, own errors, but only transfers the errors present in the signal
(in case the actual transmittance of the algorithm differs from the ideal one, an additional
component of the self-error signal should be considered, as proposed in work [19] in the



Appl. Sci. 2024, 14, 3691 3 of 17

attached example). Additionally, the rounding errors introduced by the algorithm during
the multiplication and addition operations are taken into account, as presented later in this
paper. In general, the analysis discussed should be carried out individually for each output
quantity of the algorithm. However, as described in [16,22], the values for successive
rows of the transformation matrix related to the same level of decomposition are only
shifted toward each other, and therefore, their impact on the transmission of the error
signal remains constant. Therefore, an analysis can be performed for each level of signal
decomposition and not for each output quantity separately, as demonstrated in this paper.

2.1. Relationship between Transmittance and Matrix Form of Algorithm

Based on Equation (1), the transmittance in the Z domain can be determined for the
selected row of the transformation matrix in the form

Hi(z) = ai,0 + ai,1z−1 + . . . + ai,N−1z−N+1 =
N−1

∑
k=0

ai,kz−k, (2)

and after substituting z = ejωTs , where Ts =
1
fs

is the sampling perioid corresponding to
the sampling frequency fs, the dependence describing the transmittance of the selected
i-th row in the pulsation domain denoted as Gi(jω) = Hi(ejωTs) is obtained. Based on the
determined transmittance, the amplification Ki(ω) and phase shift φi(ω) for the selected
harmonic of the signal can be described in the following way:

Ki(ω) =
∣∣∣Gi

(
jω

)∣∣∣ =
√(

ℜ
(

Gi
(
jω

)))2
+

(
ℑ
(

Gi
(
jω

)))2
,

φi(ω) = arctan

ℑ
(

Gi
(
jω

))
ℜ
(

Gi
(
jω

))
.

The transmittance of the object being discussed will impact the error signal components in
a manner that alters their amplitude and phase.

2.2. Algorithm Transmittance Impact on Error Signals

Assume that the signal x(t), processed by the analyzed WT algorithm, can be described
in an ideal case as follows:

ẋ(i) =
∞

∑
j=0

Ex,o

(
ωj

)
sin

(
ωjiTs + φx,o

(
ωj

))
,

where Ts =
1
fs

is the sampling period corresponding to sampling frequency fs, Ex,o(ω) is
the amplitude, and φx,o(ω) is the phase shift of the signal harmonic of pulsation ω. In the
real case, the quantity x(i) can be described as follows:

x̃(i) = ẋ(i) + ex,r(i) +
∞

∑
j=0

Ex,e

(
ωj

)
sin

(
iTsωj + φx,e

(
ωj

))
, (3)

where ex,r(i) is random error (non-deterministic), Ex,e(ω) is the amplitude, and φx,e(ω) is
the phase shift of the deterministic error.

According to Equation (3), it is possible to define static error signal ex,s(i) (for which
subsequent values do not change for a single WT algorithm run) as follows:

ex,s(i) = Ex,e(0) sin
(

φx,e(0)
)
,
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where in case of φx,e(0) = π rad, the equation in question can be written as ex,s(i) = Ex,e(0).
In case of harmonics with non-zero pulsation, the dynamic error signal ex,d(i) can be
defined as follows:

ex,d(i) =
∞

∑
j=1

Ex,e

(
ωj

)
sin

(
iTsωj + φx,e

(
ωj

))
.

The random error signal ex,r(i) cannot be described in a deterministic form, but
statistical parameters such as variance, expected value, and the shape of the probability
density function can describe its properties.

According to [5,23,24], a single row of the transmission matrix, as indicated in Equation (1),
and the related transmittance described in Equation (2), can be analyzed in a manner analo-
gous to a finite impulse response (FIR) filter [25]. For each output quantity, it is possible
to analyze how the algorithm introduces error signals present at its input to this quantity.
It should also be noted that in the case of the discussed family of algorithms, the transfer
function associated with the selected quantity is linear and time invariant. Therefore,
the deterministic error component of the input quantity, as described in Equation (3), is
transferred to the i-th output of the WT algorithm according to the following relationship:

eX,s,i
(

j
)
= Ki(0)Ex,e(0) sin

(
φx,e(0) + φi(0)

)
,

ex,d,i
(

j
)
=

∞

∑
k=1

Ki(ωk)Ex,e(ωk) sin
(

jTsωk + φx,e(ωk) + φi(ωk)
)
.

The discussed transmittance also affects the variance of the analyzed error signals.
In the case of both deterministic and random signals, the following relationship can be
written [23,26]:

σ2
X,i(ω) = K2

i (ω)σ2
x(ω) = σ2

x(ω)

∣∣∣∣Hi

(
ejωTs

)∣∣∣∣2, (4)

where for analyzed error signal σ2
x is the variance in the WT algorithm input, and σ2

X,i is the
variance in the i-th WT algorithm output. Given the above equation, the single harmonic
variance of the dynamic error signal eX,d,i(j) in the algorithm output can be determined
according to the relationship [24]

σ2
X,d,i(ω) =

1
2

E2
x,e(ω)

∣∣∣∣Hi

(
ejωTs

)∣∣∣∣2. (5)

In the case of static error signals, the presented equation simplifies (for ω = 0 rad/s, it
becomes ejωTs = 1), so it can be written as follows:

σ2
X,s,i =

∣∣Hi(1)
∣∣2σ2

x,s = σ2
x,s

N−1

∑
j=0

ai,j

2

.

In the case of random error signals, it can be observed that the algorithm in question
processes N subsequent realizations of these signals. If these realizations are uncorrelated
with each other, or the autocorrelation mentioned is small, and the assumption of the
same power spectral density of these signals in the frequency range f̂ ∈ [0; 1

2 fs] holds,
the variance of the random error signal at the algorithm’s output can be described by the
following equation:

σ2
X,r,i = a2

i,0σ2
x,r + a2

i,1σ2
x,r + . . . + a2

i,N−1σ2
x,r = σ2

x,r

N−1

∑
j=0

a2
i,j. (6)
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If the specified conditions are not satisfied for the analyzed signal, its variance should
be calculated using Equation (4). In this scenario, it is also feasible to calculate the average
variance of the analyzed random error signal:

σ2
X,r,i =

1
π

∫ π

0
σ2

x,r

(
ωn

Ts

)∣∣∣∣Hi

(
ejωn

)∣∣∣∣2dωn, (7)

where ωn = ωTs is the normalized pulsation [24]. Note that Equations (6) and (7) are
equivalent when the ex,r(i) signal has a constant power spectral density (in case where
σ2

x,r(ω) = const), which occurs, i.e., in case of white noise or in case of a quantization error
signal [27–30]. In the case of non-constant power spectral density, only Equations (4) and (7)
can be used to calculate the analyzed signal variance correctly.

2.3. Identification of Algorithm Transmittance

The determination of the algorithm’s transmittance concerning the subsequent output
quantities can be carried out using Equation (2) or by understanding the properties of the
wavelet utilized by the analyzed algorithm. This process can also be executed for an exist-
ing implementation of the algorithm (e.g., implemented in MATLAB [31], GNU Octave [32],
or the PyWavelets package [33]), employing a suitable identification algorithm [18]. Since
the mentioned identification algorithm has been utilized in previous studies [16,22], and its
application is straightforward, the analytical approach will be elaborated below. The illus-
tration pertains to the “Daubechies” [21] wavelet family, assuming that the WT algorithm
will process N = 8 input quantities to produce M = 8 output quantities, utilizing the “db2”
wavelet and undergoing K = 2 iterations of the signal decomposition process.

In the case under analysis, the vector of input quantities, previously mentioned in
Equation (1), can be represented as [5]

XT =
[
S2,0 S2,1 T2,0 T2,1 T1,0 T1,1 T1,2 T1,3

]
, (8)

where the symbol Sm,n denotes the approximations, and the symbol Tm,n denotes the details
of the signal for the scale number m and the time shift number n, while the vector of output
quantities can be described in the form

xT =
[
S0,0 S0,1 S0,2 S0,3 S0,4 S0,5 S0,6 S0,7

]
. (9)

The signal decomposition process, enabling the calculation of the values of the quanti-
ties referenced in Equation (8) from the values of the quantities specified in Equation (9),
can be recursively defined using the equations outlined in [5]:

Sm+1,n =
1√
2

Nk−1

∑
k=0

ckSm,2n+k, (10)

Tm+1,n =
1√
2

Nk−1

∑
k=0

bkSm,2n+k. (11)

where the symbol ck represents consecutive non-zero scaling factors, which will be elab-
orated on later in this paper, while the symbol bk signifies the coefficients computed in
accordance with the following equation:

bk = (−1)kcNk−k−1, (12)

where Nk is the number of non-zero scaling factors resulting from the properties of the
wavelet used.

According to Equations (10) and (11), to determine the values of the quantities outlined
in Equation (8), one must have knowledge of the number and values of consecutive scaling
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factors. In considering the assumptions regarding the analyzed wavelet “db2”, this wavelet
possesses Nk = 4 non-zero scaling factors: c0, c1, c2, and c3 [5,21]. Furthermore, it is
characterized by the following assumptions [5,21]:

Nk−1

∑
k=0

ck = 2, (13)

Nk−1

∑
k=0

(−1)kckkm = 0, (14)

Nk−1

∑
k=0

ckck+2k′ =

2 where k′ = 0
0 in other cases

, (15)

where in Equation (14), m ∈ [0; Nk
2 − 1], and in Equation (15), k′ ∈ N. Based on the above

assumptions, the system of equations can be written as follows:
c0 + c1 + c2 + c3 = 2 according to (13)
c0 − c1 + c2 − c3 = 0 according to (14) for m = 0
−1c1 + 2c2 − 3c3 = 0 according to (14) for m = 1
c2

0 + c2
1 + c2

2 + c2
3 = 2 according to (15)

,

and solving this system allows the values of the analyzed scaling factors to be determined:

c0 =
1 +

√
3

4
, c1 =

3 +
√

3
4

, c2 =
3 −

√
3

4
, c3 =

1 −
√

3
4

. (16)

Based on Equations (10) and (11), relationships describing the output values of the
analyzed algorithm, indicated in Equation (8), are obtained:

S2,0 =
1√
2

(
c0S1,0 + c1S1,1 + c2S1,2 + c3S1,3

)
=

1√
2

c0√
2

(
c0S0,0 + c1S0,1 + c2S0,2 + c3S0,3

)
+

1√
2

c1√
2

(
c0S0,2 + c1S0,3 + c2S0,4 + c3S0,5

)
+

1√
2

c2√
2

(
c0S0,4 + c1S0,5 + c2S0,6 + c3S0,7

)
+

1√
2

c3√
2

(
c0S0,6 + c1S0,7 + c2S0,0 + c3S0,1

)
, (17)

S2,1 =
1√
2

(
c0S1,2 + c1S1,3 + c2S1,4 + c3S1,5

)
=

1√
2

c0√
2

(
c0S0,4 + c1S0,5 + c2S0,6 + c3S0,7

)
+

1√
2

c1√
2

(
c0S0,6 + c1S0,7 + c2S0,0 + c3S0,1

)
+

1√
2

c2√
2

(
c0S0,0 + c1S0,1 + c2S0,2 + c3S0,3

)
+

1√
2

c3√
2

(
c0S0,2 + c1S0,3 + c2S0,4 + c3S0,5

)
, (18)
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T2,0 =
1√
2

(
c3S1,0 − c2S1,1 + c1S1,2 − c0S1,3

)
=

1√
2

c3√
2

(
c0S0,0 + c1S0,1 + c2S0,2 + c3S0,3

)
−

1√
2

c2√
2

(
c0S0,2 + c1S0,3 + c2S0,4 + c3S0,5

)
+

1√
2

c1√
2

(
c0S0,4 + c1S0,5 + c2S0,6 + c3S0,7

)
−

1√
2

c0√
2

(
c0S0,6 + c1S0,7 + c2S0,0 + c3S0,1

)
, (19)

T2,1 =
1√
2

(
c3S1,2 − c2S1,3 + c1S1,4 − c0S1,5

)
=

1√
2

c3√
2

(
c0S0,4 + c1S0,5 + c2S0,6 + c3S0,7

)
−

1√
2

c2√
2

(
c0S0,6 + c1S0,7 + c2S0,0 + c3S0,1

)
+

1√
2

c1√
2

(
c0S0,0 + c1S0,1 + c2S0,2 + c3S0,3

)
−

1√
2

c0√
2

(
c0S0,2 + c1S0,3 + c2S0,4 + c3S0,5

)
, (20)

T1,0 =
1√
2

(
c3S0,0 − c2S0,1 + c1S0,2 − c0S0,3

)
, (21)

T1,1 =
1√
2

(
c3S0,2 − c2S0,3 + c1S0,4 − c0S0,5

)
, (22)

T1,2 =
1√
2

(
c3S0,4 − c2S0,5 + c1S0,6 − c0S0,7

)
, (23)

T1,3 =
1√
2

(
c3S0,6 − c2S0,7 + c1S0,0 − c0S0,1

)
. (24)

With Equation (1) and taking into account the order of the elements of the vector of
the output quantities consistent with that assumed in Equation (8) and substituting on the
basis of Equation (9) S0,i = x(i) = xi, we have

S2,0 = a0,0x0 + a0,1x1 + a0,2x2 + a0,3x3 + a0,4x4 + a0,5x5 + a0,6x6 + a0,7x7, (25)

S2,1 = a1,0x0 + a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 + a1,5x5 + a1,6x6 + a1,7x7, (26)

T2,0 = a2,0x0 + a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 + a2,5x5 + a2,6x6 + a2,7x7, (27)

T2,1 = a3,0x0 + a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 + a3,5x5 + a3,6x6 + a3,7x7, (28)

T1,0 = a4,0x0 + a4,1x1 + a4,2x2 + a4,3x3 + a4,4x4 + a4,5x5 + a4,6x6 + a4,7x7, (29)

T1,1 = a5,0x0 + a5,1x1 + a5,2x2 + a5,3x3 + a5,4x4 + a5,5x5 + a5,6x6 + a5,7x7, (30)

T1,2 = a6,0x0 + a6,1x1 + a6,2x2 + a6,3x3 + a6,4x4 + a6,5x5 + a6,6x6 + a6,7x7, (31)

T1,3 = a7,0x0 + a7,1x1 + a7,2x2 + a7,3x3 + a7,4x4 + a7,5x5 + a7,6x6 + a7,7x7, (32)

Therefore, based on the relationships indicated so far, the transformation matrix A
described in Equation (1), which is appropriate for the analyzed WT algorithm, takes the
form
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A =



5−
√

3
16

5+
√

3
16

3+3
√

3
16

5+3
√

3
16

3+
√

3
16

3−
√

3
16

5−3
√

3
16

3−3
√

3
16

3+
√

3
16

3−
√

3
16

5−3
√

3
16

3−3
√

3
16

5−
√

3
16

5+
√

3
16

3+3
√

3
16

5+3
√

3
16

− 1+
√

3
16

1−
√

3
16

3−3
√

3
16 − 1+

√
3

16 − 3−5
√

3
16

3+5
√

3
16

1−
√

3
16 − 3+3

√
3

16

− 3−5
√

3
16

3+5
√

3
16

1−
√

3
16 − 3+3

√
3

16 − 1+
√

3
16

1−
√

3
16

3−3
√

3
16 − 1+

√
3

16
1−

√
3

4
√

2
− 3−

√
3

4
√

2
3+

√
3

4
√

2
− 1+

√
3

4
√

2
0 0 0 0

0 0 1−
√

3
4
√

2
− 3−

√
3

4
√

2
3+

√
3

4
√

2
− 1+

√
3

4
√

2
0 0

0 0 0 0 1−
√

3
4
√

2
− 3−

√
3

4
√

2
3+

√
3

4
√

2
− 1+

√
3

4
√

2
3+

√
3

4
√

2
− 1+

√
3

4
√

2
0 0 0 0 1−

√
3

4
√

2
− 3−

√
3

4
√

2


. (33)

Knowing the values of the subsequent transformation coefficients ai,j allows us, in
accordance with Equation (2), to determine the transfer functions related to the subse-
quent output quantities of the analyzed algorithm. A certain regularity can be noticed
here—the transmittances related to the output quantities with the same scale number will
be identical, regardless of the time shift number (this applies separately to details and
signal approximation). Hence,

HSm,n(z) = HSm,n′
(z), (34)

HTm,n(z) = HTm,n′
(z), (35)

for n′ ∈ N. This property significantly simplifies the analysis of the metrological character-
istics of WT algorithms, especially considering that the quantity of output values generated
by these algorithms typically exceeds the number of scales analyzed, stemming from the
iterations in the input signal decomposition process [3,16].

It is essential to highlight that the analysis presented can also be conducted for other
wavelet families, varying numbers of decomposition process iterations, and different
quantities of algorithm input. In instances involving wavelet families with explicitly
defined mother wavelet equations (instead of utilizing appropriate relations as shown in
the example), it becomes feasible to determine the algorithm’s transfer function through
suitable transformations [26]. Nonetheless, the connection between the algorithm’s transfer
function and the transformation matrix coefficient values is consistently described by
Equation (2).

Another scenario that warrants discussion is when adjustments can be made to the
transformation matrix coefficients. This situation may involve modifications such as the
incorporation of an additional window function w(n), where the algorithm’s output values
are determined based on the following relationship:

X(i) = ai,0w(0)x(0) + ai,1w(1)x(1) + . . . + ai,N−1w(N − 1)x(N − 1). (36)

In the discussed case, the coefficients of the transformation matrix of the algorithm are
modified according to the equation

a′i,j = w
(

j
)
ai,j, (37)

where a′i,j is the new value of the transformation coefficient ai,j. In this case, a different
transfer function is associated with each output quantity, and Equations (34) and (35) are
no longer valid.

3. Own Errors of the Wavelet Transform Algorithm

In analyzing the values of the subsequent coefficients of the transformation matrix
given in Equation (33), it can be noticed that most of the coefficients are irrational. Based
on the analysis of Equation (1), it can be noticed that in order to determine a single value
for the implementation of the selected output quantity of this algorithm, it is necessary to
perform N multiplications and N additions. These calculations are most often performed
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by a microprocessor and are therefore associated with errors related to the limited precision
of real numbers [34]. It can therefore be noticed that, in addition to processing error signals
present in the algorithm’s input quantities, this algorithm will introduce its own errors
resulting from the presented phenomena into the output quantities.

In order to determine the parameters of the own error signal eX,z,i(j) for the subsequent
output values of the algorithm, it is proposed to perform an appropriate experiment using
the Monte-Carlo method [35]. During the experiment, random values of input quantities
from the range of values that the algorithm processes in real conditions will be provided
as input for the actual implementation of the algorithm. Simultaneously, with the result
X̃i(j) for the real algorithm, the result Ẋi(j) should be determined in the case of the ideal
algorithm, implemented according to Equation (1). In assuming that the input quantities
x(i) of the algorithm are not subject to any error signal (i.e., x̃(i) = ẋ(i)), the error signal
eX,z,i(j) can be defined as follows:

eX,z,i
(

j
)
= X̃i

(
j
)
− Ẋi

(
j
)
. (38)

Based on the values of the subsequent realizations of the error signal eX,z,i(j), its
variances, expected value, and associated expanded uncertainty for a given confidence
level can be determined. Unfortunately, it is actually impossible to carry out the presented
experiment. The process of determining the value of the realization of the quantity Ẋi(j)
in the case of an ideal algorithm must also be carried out using a microprocessor, and
this, therefore, also introduces errors related to the phenomena discussed earlier in this
quantity. However, it is proposed to estimate the parameters of the error signal eX,z,i(j)
by carrying out the process of determining the value of Ẋi(j) using numbers with much
greater precision than in the case of the value X̃i(j). Since modern microcontrollers usually
use real numbers with word lengths of 16 or 32 bits [36,37], the values of Ẋi(j) may be
determined using a word length of 128 bits [34,38].

The discussed experiment was performed for the algorithm described in the previous
section, for which its values for the transformation matrix coefficients are presented in
Equation (33). In each experiment, 100,000 random values of the x(i) signal realization
from the selected range were fed as input to the algorithm. Then, based on Equation (38),
subsequent realizations of the algorithm’s own error signal were determined. The obtained
results allowed for the estimation of the variance, expanded uncertainty, and expansion
coefficient for the analyzed cases. The experiment was conducted for an implementation of
the algorithm using 16- and 32-bit floating-point numbers. The algorithm was implemented
in C using the GNU GCC [38] compiler to generate the machine code. This compiler is
also utilized for the “ARM” and “AVR” platforms [37–39]. The experimental results are
summarized in Tables 1 and 2. Based on the results obtained, the expansion coefficient for
the distributions of the analyzed signals was estimated to be cz = 2.15 on average.

Table 1. Summary of the simulation-obtained values of the rounding error signal variance of
subsequent output quantities of the discrete wavelet transform algorithm for the wavelet “db2” with
two iterations of the decomposition process, for numbers with a length of 16 bits, depending on the
range of possible values of the implementation of the input quantities

Quantity WT Algorithm Input Values Range
[−1; 1] [−2; 2] [−3; 3] [0; 2] [0; 4] [3; 9]

S2,0 1.03 × 10−7 4.12 × 10−7 9.74 × 10−7 7.08 × 10−7 2.83 × 10−6 2.16 × 10−5

S2,1 1.11 × 10−7 4.43 × 10−7 1.01 × 10−6 9.55 × 10−7 3.82 × 10−6 2.75 × 10−5

T2,0 1.31 × 10−7 5.24 × 10−7 1.21 × 10−6 2.87 × 10−7 1.15 × 10−6 7.06 × 10−6

T2,1 1.07 × 10−7 4.29 × 10−7 9.73 × 10−7 3.36 × 10−7 1.34 × 10−6 9.30 × 10−6

T1,0 7.09 × 10−8 2.85 × 10−7 6.99 × 10−7 1.65 × 10−7 3.56 × 10−7 4.29 × 10−6

T1,1 5.83 × 10−8 2.33 × 10−7 5.87 × 10−7 1.49 × 10−7 5.95 × 10−7 4.05 × 10−6

T1,2 5.84 × 10−8 2.34 × 10−7 5.85 × 10−7 1.49 × 10−7 5.97 × 10−7 4.05 × 10−6

T1,3 5.53 × 10−8 2.21 × 10−7 5.41 × 10−7 1.78 × 10−7 7.08 × 10−7 5.26 × 10−6
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Table 2. Summary of the simulation-obtained values of the rounding error signal variance of
subsequent output quantities of the discrete wavelet transform algorithm for the wavelet “db2” with
two iterations of the decomposition process, for numbers with a length of 32 bits, depending on the
range of possible values of the implementation of the input quantities

Quantity WT Algorithm Input Values Range
[−1; 1] [−2; 2] [−3; 3] [0; 2] [0; 4] [3; 9]

S2,0 1.40 × 10−15 5.57 × 10−15 1.30 × 10−14 9.29 × 10−15 3.71 × 10−14 2.78 × 10−13

S2,1 1.40 × 10−15 5.61 × 10−15 1.29 × 10−14 1.25 × 10−14 5.00 × 10−14 3.54 × 10−13

T2,0 1.71 × 10−15 6.83 × 10−15 1.58 × 10−14 3.33 × 10−15 1.33 × 10−14 7.78 × 10−14

T2,1 1.39 × 10−15 5.56 × 10−15 1.29 × 10−14 4.27 × 10−15 1.71 × 10−14 1.16 × 10−13

T1,0 8.28 × 10−16 3.54 × 10−15 8.38 × 10−15 1.70 × 10−15 6.84 × 10−15 4.25 × 10−14

T1,1 6.82 × 10−16 2.72 × 10−15 6.67 × 10−15 1.46 × 10−15 5.84 × 10−15 4.02 × 10−14

T1,2 6.82 × 10−16 2.72 × 10−15 6.66 × 10−15 1.47 × 10−15 5.86 × 10−15 4.02 × 10−14

T1,3 6.68 × 10−16 2.67 × 10−15 6.48 × 10−15 2.02 × 10−15 8.10 × 10−15 6.15 × 10−14

In analyzing the results presented in Tables 1 and 2, several of the most important
relationships can be noticed. The value of the variance of the self-error signal has the
following characteristics:

• It depends on the number of arithmetic operations performed on non-zero coefficients
of the transformation matrix and increases with the number of these operations;

• It depends on the range of possible implementation values of the algorithm’s input
quantities and increases as this range is extended;

• It depends on the length of the word used by the algorithm and decreases as this
length increases.

Therefore, from the perspective of the measuring chain design, this value will rely on the
number of the input quantities of the WT algorithm, the iterations of the signal decomposi-
tion process, and the order and type of the mother wavelet used. It is also noticeable that
for the same stage of signal decomposition, the error signal parameters are nearly identical
for each output quantity. Hence, for each algorithm implementation, the parameters of
the self-error signals should be determined for the subsequent decomposition stages. The
experiment conditions should closely resemble the actual operational conditions of the
analyzed algorithm.

4. Method for Determining the Resultant Expanded Uncertainty

In many cases, merely knowing the value of the standard uncertainty parameter
or the error signal variance may not suffice [40]. The most universal method used to
determine the resulting expanded uncertainty value in a general situation is the Monte-
Carlo method. However, this approach necessitates numerous iterations to obtain the final
value of the analyzed error signal and may not be suitable for the real-time evaluation of
the metrological properties of the measurement chain due to the time required to repeat
the experiment.

An alternative to the Monte-Carlo method could be an analytical method, such as the
propagation of distribution functions method described in sources like [41] or the extended
rule of the combination of uncertainties method outlined in [42]. However, these methods
are intricate, and their application to the error model proposed in this study might be less
effective compared to the reduction interval arithmetic method, as discussed in works
like [43–45]. Another alternative could be a method based on fuzzy logic, as detailed in [46].

Due to the advantages of the interval arithmetic reduction method, such as its simplic-
ity of application, its ability to determine new values of the resulting expanded uncertainty
when the error model parameters change without the need for a Monte-Carlo experi-
ment, and its low computational complexity, the reduction interval arithmetic method was
employed to ascertain the resulting value of the expanded uncertainty in this study.
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According to the method of reduction interval arithmetic, the expanded uncertainty in
case of an error signal eΣ(t) = e0 + . . . + eN−1 can be determined according to the following
relation [43,44]:

UΣ =

√√√√√√√√√


U0
U1
...

UN−1


T

1 h0,1 · · · h0,N−1
h1,0 1 h1,N−1

...
. . .

...
hN−1,0 · · · · · · 1




U0
U1
...

UN−1

, (39)

in which the successive values of the expanded uncertainties Ui for the analyzed component
ei(t) of the error signal eΣ(t) are determined according to the relation [40]

Ui = ciσi,

where ci is the coverage factor for the i-th eΣ(t) signal component. The successive coherence
coefficients hi,j are determined according to the following equation [43]:

hi,j = hj,i = si,j

 U2
i + U2

j

∑N−1
k=0 U2

k

, (40)

where symbol si,j denotes the shape factor, which is determined for a pair of signals ea(t)
and eb(t) has a specific distribution shape of the following form [43]:

sa,b = sb,a =
U2

a,b − U2
a − U2

b

2UaUb
=

U2
a,b

2U2 − 1,

assuming that signals ea(t) and eb(t) are uncorrelated and have the same value of expanded
uncertainty Ua = Ub for the same confidence level 1 − α [40].

The coherence coefficients hi,j determined consider the relationships between the
shapes of the provided error distributions and their correlations, incorporating corrections
arising from the central limit theorem [40]. The shape factor coefficients si,j need to be
computed only once, which can be achieved through a simulation experiment (Monte-Carlo
method) or analytically. Various works such as [43,44] describe the process of calculating
these coefficients in different manners. Table 3 displays values for typical scenarios at a
95% confidence level for 1 − α.

Table 3. Summary of shape factor values for pairs of signals with typical probability density functions for
the confidence level 95%, where the following symbols denote a distribution: (n) normal, (u) uniform,
(t) triangular, (d) u-shape (sine function distribution), (z) WT self-error signal distribution.

sa,b n u t d z

n 0.0000 0.1561 0.0250 0.2988 −0.0091
u 0.1561 0.3356 0.1773 0.5337 0.0662
t 0.0250 0.1773 0.0419 0.3504 −0.0104
d 0.2988 0.5337 0.3504 0.7136 0.1971
z −0.0091 0.0662 −0.0104 0.1971 0.0273

5. Application of the Proposed Analysis Method

The effectiveness of the proposed analysis method was verified using the measurement
chain detailed in a previous study [19]. This measurement chain processes a time-varying
voltage signal s(t), with realization values falling within the range ŝ(t) ∈ [0; 1] V on discrete
representations of x(i) of this magnitude, where x(i) = s(iTs), and fs = 1

Ts
= 48 kHz

denotes the sampling period. In a single measurement series, with N = 8, consecutive
samples of quantities x(i) are inputted into the WT algorithm described in the previous
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section, leading to the determination of a vector M = 8 of output quantities X(j). The
algorithm’s implementation utilizes floating-point numbers with a word length of 32 bits.

The metrological properties of the section of the measurement chain responsible for
converting the quantity s(t) into x(i) were previously discussed in [19]. The uncertainty
budget related to x(i) encompasses the random error signal ex,r(i) and the dynamic error
signal ex,d(i). For the random error signal ex,r(i), the variance is σ2

x,r = 0.13 µV, and the
realization values of this signal are distributed close to normal. Hence, for a confidence
level of 1 − α = 95%, the coverage factor cx,r = cn = 1.96, and the expanded uncertainty is
Ux,r = 0.71 mV.

Regarding the dynamic error signal ex,d(i), its characteristics are influenced by the
spectrum of the processed signal s(t). If this signal is a sinusoidally varying signal with
pulsation ωs,o and amplitude Es,o, the following conditions apply [19]:

σ2
x,d,sin =

(
Es,o cos

(
φ̃y

(
ωs,o

))
− Es,o

)2
+

(
Es,o sin

(
φ̃y

(
ωs,o

)))2

2
,

however, if the signal is a triangular signal with the given parameters, then [19]:

σ2
x,d,tri =

∞

∑
i=1

σ2
x,d,tri,i,

σ2
x,d,tri,i =

(
Es,o,i cos

(
φ̃y

(
ωs,o,i

))
− Es,o,i

)2
+

(
Es,o,i sin

(
φ̃y

(
ωs,o,i

)))2

2
, (41)

Es,o,i =
π

8
(2i − 1)−2Es,o,

where in Equation (41), only those harmonics of the signal s(t) for which k fs,o ≤ 1
2 fs holds

are taken into account, where k = (2i − 1). The introduced phase shift φ̃y, which is the
origin of the dynamic error signal, is estimated according to the relationship [19]

φ̃y(ω) ≈ −6.26 × 10−13ω2 − 5.73 × 10−7ω.

As the ambient conditions did not change during the experiments, it is assumed that
the static error signal ex,s(i) does not occur.

In considering the aforementioned relationships, in the scenario of a sinusoidally
varying signal s(t), the resulting error signal ex,Σ,sin(i) will comprise the signal ex,r(i) and
the signal ex,d,sin(i) consisting of a single harmonic with pulsation ωs,o. In the instance of a
triangular signal, the error signal ex,Σ,tri(i) will also encompass a random error component
ex,r(i), and depending on the signal’s pulsation s(t), it will include a specific number of
harmonics of the random error signal ex,d,tri(i), where the i-th harmonic is characterized by
a pulsation of ωx,e,i = (2i − 1)ωs,o.

These error signals discussed will be propagated to the algorithm output as per
Equation (1). The parameters at the algorithm output can be determined for subsequent
output quantities following Equation (6) for the random error signals and Equation (5) for
the successive harmonics of the resultant dynamic error signal. Moreover, in the scenarios
discussed, the WT algorithm will introduce its own error signals eX,z,i(j) to the output
values, linked to the previously mentioned roundings.

The vector of expanded uncertainties related to the resultant error signal for sub-
sequent output quantities of the algorithm, as required in Equation (39), can thus be
delineated as

U∗,sin =
[
U∗,z U∗,r U∗,d,sin

]
,
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in the case of a sinusoidal signal, and in the case of a triangular signal, in the following
form:

U∗,tri =
[
U∗,z U∗,r U∗,d,tri,1 U∗,d,tri,2 . . . U∗,d,tri,N

]
.

The symbol “∗” represents the output quantity number, assigned following the symbols
introduced earlier in Equation (8). Based on the previously addressed characteristics of the
WT algorithm, for random error signals, the uncertainty linked to the propagation of these
signals to the WT algorithm’s output can be calculated using the following relationship:

U∗,r = cnσx,r

√√√√N−1

∑
j=0

a2
∗,j,

resulting from Equation (6), while in the case of the subsequent harmonics of the resultant
dynamic error signal,

U∗,d(ω) = cdσx,d(ω)

∣∣∣∣H∗
(

ejωTs
)∣∣∣∣ = cd

1√
2

Ex,e(ω)

∣∣∣∣H∗
(

ejωTs
)∣∣∣∣,

which results from Equation (5). The resulting expanded uncertainty U∗,Σ related to the
subsequent output quantities can be determined according to Equation (39), with the values
of the coherence coefficients estimated based on relationship (40). For the confidence level
1 − α = 95% cn = 1.96 and cd = 1.41 [40], cz = 2.15.

To validate the indicated relationships, a Monte-Carlo measurement experiment was
conducted, gathering 30,000 values of the X∗(j) signal realization each time. Through-
out the experiment, the signal source s(t) originated from the RIGOL DG1011 arbitrary
waveform generator [47]. The initial phase of this signal was randomized within the in-
terval [−π; π], which was determined using the generator’s synchronizing output. The
signal’s frequency s(t) ranged from f̂s,o ∈ [1; 20] kHz for a monoharmonic signal and from
f̂s,o ∈ [1; 5] kHz for a polyharmonic signal. The signal parameters remained constant at
Ds,o = 0.5 V and Es,o = 0.475 V.

Based on the collected values of the X∗(j) quantity realization, we have the following
the equation:

e∗,Σ(j) = X̃∗
(

j
)
− Ẋ∗

(
j
)
,

The error signal values e∗,Σ(j) were determined, and their variances were calculated
along with the expanded uncertainty. The measured expanded uncertainty value Um
was compared with the value Uc determined using Equation (39), and the relative error
in estimating this value was computed. The outcomes for specific values of signal s(t)
pulsation are outlined in Tables 4 and 5.

For example, in the case of a monoharmonic signal with a frequency fs,o =
ωs,o
2π = 5 kHz

for the output quantity T2,1, the following occurs:

UT2,1,z = czσT2,1 = 2.15 · 3.73 × 10−8 = 8.02 × 10−5 mV,

UT2,1,r = cnσx,r

√√√√N−1

∑
j=0

a2
T2,1,j = 1.96 · 0.36 × 10−4 · 1.0 = 0.70 mV,

UT2,1,d,sin = cdσx,d,sin
(
ωs,o

)∣∣∣∣HT2,1

(
ejωs,oTs

)∣∣∣∣ = 1.41 · 6.31 × 10−4 · 1.59 = 14.09 mV,

UT2,1,sin =
[
UT2,1,z UT2,1,r UT2,1,d,sin

]
=

[
8.02 × 10−8 0.70 × 10−3 14.09 × 10−3

]
V,

UT2,1,Σ =

√√√√√√
 8.02 × 10−8

0.70 × 10−3

14.09 × 10−3


T1.000 0.000 0.197

0.000 1.000 0.534
0.197 0.534 1.000


 8.02 × 10−8

0.70 × 10−3

14.09 × 10−3

 = 14.48 mV,
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and for the indicated case, 14.13 mV was measured. Expanded uncertainty values can be
determined similarly in other cases, but due to the large number of components of the
indicated equations, further examples were not published in this paper.

Table 4. Summary of the values of the relative error of estimating the expanded uncertainty values
obtained by means of a measurement experiment (the case of a monoharmonic signal).

fs,o, Hz Relative Error Value δ for Expanded Uncertainty Estimation, %
S2,0 S2,1 T2,0 T2,1 T1,0 T1,1 T1,2 T1,3

1000 −3.52 −4.27 +9.29 +7.09 +30.49 +24.32 +24.32 +9.49
2000 +4.66 +0.49 +6.57 +4.77 +15.34 +27.58 +27.58 +5.04
3000 +10.24 +5.10 +7.81 +6.53 +11.67 +21.96 +21.96 +6.19
4000 −0.38 +9.21 +10.38 +9.09 +13.80 +16.49 +16.49 +10.12
5000 +3.99 +2.69 +3.51 +2.45 +5.71 +5.62 +5.62 +4.02
6000 +6.21 +5.83 +5.94 +5.84 +8.78 +9.08 +9.08 +7.98
7000 +9.29 +10.38 +8.84 +8.15 +9.86 +10.86 +10.86 +9.87
8000 +0.83 +1.51 +0.65 +1.82 +1.77 +1.63 +1.63 −0.17
9000 +2.99 +2.06 +1.74 +4.68 +1.82 +1.30 +1.30 +1.67

10,000 +6.33 +6.23 +5.04 +5.55 +5.46 +4.36 +4.36 +5.05
11,000 −1.64 −0.06 +0.49 +0.75 −0.41 −0.61 −0.61 +0.05
12,000 −11.33 −11.98 −1.06 −1.05 −1.68 −1.68 −1.68 −1.72
13,000 +5.20 +3.38 +4.78 +5.54 +5.23 +4.46 +4.46 +5.46
14,000 +2.83 +2.93 +2.50 +2.20 +3.40 +2.39 +2.39 +3.60
15,000 +2.50 +5.49 +2.42 +2.89 +3.04 +2.10 +2.17 +2.53
16,000 −0.34 −1.63 −2.09 −2.94 −2.44 −2.76 −2.76 −2.34
17,000 +3.20 +5.51 +4.40 +0.97 +3.18 +3.05 +3.05 +3.91
18,000 +6.19 +7.02 +1.95 +2.66 +4.57 +4.56 +4.56 +4.50
19,000 −4.08 −3.37 −13.04 −3.45 −3.70 −4.00 −4.00 −3.70
20,000 +5.87 +2.91 −15.64 +6.81 +8.00 +7.68 +7.68 +7.34

Mean 1 4.58 4.60 5.41 4.26 7.02 7.82 7.83 4.74
1 Mean of absolute δ values for selected output quantity.

Table 5. Summary of the values of the relative error of estimating the expanded uncertainty values
obtained by means of a measurement experiment (the case of a polyharmonic signal).

fs,o, Hz Relative Error Value δ for Expanded Uncertainty Estimation, %
S2,0 S2,1 T2,0 T2,1 T1,0 T1,1 T1,2 T1,3

1000 +20.52 +18.96 −4.26 +4.16 +21.57 +10.47 +10.47 +9.63
2000 +8.99 +5.90 −5.19 −0.01 −22.21 −22.25 −22.25 −7.15
3000 −12.69 +16.92 +8.45 +9.16 −15.20 −13.56 −13.56 +7.15
4000 −19.09 −2.30 +9.05 +9.93 −8.68 −12.27 −12.27 +15.61
5000 −15.90 −0.52 +9.88 +0.00 −12.82 −20.08 −20.08 +22.54

Mean 1 15.44 8.92 7.37 4.65 16.10 15.73 15.73 12.42
1 Mean of absolute δ values for selected output quantity.

6. Conclusions

The expanded uncertainty values determined for a monoharmonic signal for subse-
quent output values of the measurement chain consistently aligned with those obtained
experimentally. The typical deviation between the actual and estimated expanded un-
certainty fell within the range of ±5%. However, in the case of a polyharmonic signal,
the resultant expanded uncertainty values were determined with a larger margin of er-
ror. This discrepancy is primarily due to the imprecise determination of the error model
parameter of the analyzed measurement chain. These parameters were established in
a previous study [19], incorporating several simplifications to ensure that the presented
analysis example maintained a minimal level of complexity.

Upon analyzing the instances of a polyharmonic signal where there is a notable dispar-
ity between the estimated and measured expanded uncertainty values, a specific pattern
emerges. Each output quantity of the algorithm corresponds to a particular transmittance,
which effectively dampens or enhances error signals with a specific spectrum. Conse-
quently, if there is an inaccurate estimation of the parameter of a particular error signal,
especially if this signal emerges as the predominant signal in the algorithm’s output, the
estimation will be erroneous.
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This observation highlights a crucial insight—even with highly accurate estimations
of the resultant error signal parameters of the input quantities of the WT algorithm, there
remains a possibility that the parameters of the error signal at the algorithm’s output are
inaccurately estimated. The dominant error signal (with accurately determined parame-
ters) could be suppressed, while the less significant signal (with imprecisely determined
parameters) could undergo significant amplification.

It can be seen that the transfer function of the WT algorithm can be determined
in two ways. The first method, described in [16–18], is the most accessible to the de-
signer of the measurement track and does not require any knowledge about the algorithm
used; however, its use requires a ready implementation of this algorithm. The second
method, presented in this paper, requires knowledge of the assumptions of the wavelet
family used and their transformation to the form described in Equation (2), by following the
steps below:

1. Indicate the form of the vector of the output quantities based on the number of
input quantities, the type of wavelet, and the number of iterations of the signal
decomposition process (as shown in Equations (8) and (9) in the case of the analyzed
example).

2. Determine the values of the scaling factors based on the assumptions of the selected
family and the order of the selected mother wavelet (as shown in Equations (13)–(16)
in the case of the analyzed example).

3. Determine the equations describing the output quantities indicated in step 1, based
on Equations (10) and (11) and substitute the values determined in step 2 into them
(as shown in Equations (17)–(32) in the case of the analyzed example).

This procedure is much more complex due to the necessary calculations, but it does not
require the implementation of the algorithm used.

It should be noted that the use of the interval arithmetic reduction method to estimate
the resulting expanded uncertainty value comes down to the following:

• Determining the value of the vector of partial uncertainties;
• Determining the values of the coherence coefficients;
• The application of Equation (39) for the obtained data.

This implies that in the event of a change in the error model parameter (e.g., alterations
in the spectrum of the processed signal, the emergence of an additional error signal, a
modification in the parameters of existing error signals), there is no need to conduct Monte-
Carlo simulations or any other intricate procedures to ascertain the current resulting value
of the expanded uncertainty. The sole task that requires additional effort is determining
the values of shape coefficients, which occurs once during the analysis preparation stage.
However, this feature indicates that the obtained results may be inaccurate if the analyzed
error signals exhibit a realization distribution shape different from the one assumed in
the calculations.

In conclusion, the proposed analysis method and the previously suggested error
model can be deemed suitable. It is essential to highlight that the accuracy of the proposed
analysis method hinges on the precision of determining the parameters of the proposed
error model. The authors of this article anticipate that the proposed method will be
beneficial for the designers of measurement chains utilizing WT algorithms or other types
of linear measurement data processing algorithms.
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