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Abstract: Among the existing insulator defect detection methods, the automatic detection of in-
spection robots based on the instance segmentation algorithm is relatively more efficient, but the
problem of the limited accuracy of the segmentation algorithm is still a bottleneck for increasing
inspection efficiency. Therefore, we propose a single-stage insulator instance defect segmentation
method based on both an attention mechanism and improved feature fusion network. YOLACT
is selected as the basic instance segmentation model. Firstly, to improve the segmentation speed,
MobileNetV2 embedded with an scSE attention mechanism is introduced as the backbone network.
Secondly, a new feature map that combines semantic and positional information is obtained by
improving the FPN module and fusing the feature maps of each layer, during which, an attention
mechanism is introduced to further improve the quality of the feature map. Thirdly, in view of
the problems that affect the insulator segmentation, a Restrained-IoU (RIoU) bounding box loss
function which covers the area deviation, center deviation, and shape deviation is designed for object
detection. Finally, for the validity evaluation of the proposed method, experiments are performed
on the insulator defect data set. It is shown in the results that the improved algorithm achieves a
mask accuracy improvement of 5.82% and a detection speed of 37.4 FPS, which better complete the
instance segmentation of insulator defect images.

Keywords: insulator defect; instance segmentation; YOLACT; attention mechanism; feature fusion;
loss function

1. Introduction

Due to external erosion and internal overload during long-term operation, various
faults will inevitably occur in insulators, and the stability of the power grid will also be
affected by insulator defects. Regular inspection of the insulator’s operation in advance
allows for the detection of equipment problems to a certain extent, thereby reducing the
damage to the power grid caused by the insulators [1]. With traditional manual inspection
finding it difficult to meet the increasing efficiency requirements in the power industry, an
important trend is using robots for the promotion of power equipment inspection [2]. The
replacement of manual inspection by automatic inspection is advantageous in reducing
labor consumption, increasing the efficiency of inspection, and ensuring the stable operation
of the power grid. The instance segmentation algorithm is one of the important technologies
for inspection robots to obtain power equipment information quickly and accurately. This
algorithm divides the image into several regions with unique properties and then extracts
the target of interest from these regions. Compared with the bounding box extracted by
the object detection algorithm, the instance segmentation algorithm has a more refined
performance on the target boundary and removes redundant background information,
making the algorithm more conducive to the acquisition of the target instance information.
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In complex situations such as target overlapping, the instance segmentation algorithm
is more accurate in extracting the target information and more suitable for the accurate
monitoring of power equipment, and it is an effective technical means for automatic
inspection robots to identify and segment power equipment [3]. The targeted improvement,
transplantation, and application of the instance segmentation algorithm in the power
industry improves the accuracy of automatic inspection and enhances the ability to locate
equipment faults in advance.

The instance segmentation algorithm has achieved many satisfactory results in tradi-
tional sectors such as transportation, agriculture, and medicine, but there are still many
problems in some specific situations, including the occlusion between instances, the diffi-
culty in detecting small instances, and the lack of data samples [4–6]. Especially in the case
of insulator defect segmentation, there are characteristics such as a small target scale and
large number of targets that lead to a low accuracy of those instance segmentation methods
when applied to insulator image segmentation, while the speed is also limited by the
number of targets [7]. These factors limit the accuracy and speed of instance segmentation
algorithms. In order to better segment insulator images, an improved YOLACT algorithm
for the detection and segmentation of insulator defects is proposed in this paper. Firstly,
we modify the backbone network of MobileNetV2 [8] embedded with an scSE (Concurrent
Spatial and Channel Squeeze & Excitation) mechanism [9] to improve the inference speed
of the model. Secondly, the ECA-Net (Efficient Channel Attention Network) [10] module
is introduced into the FPN module while the feature fusion method is also improved, so
as to optimize the feature map. Finally, a bounding box loss function, RIoU Loss, which
covers area deviation, center deviation, and shape deviation is designed to better limit the
generation of redundant bounding boxes.

A literature review will be conducted in Section 2. In Section 3, the overall structure
of the improved YOLACT algorithm and the improvements in each module are intro-
duced. Section 4 follows the experiments carried out in this paper, including the data set,
experimental environment, and parameter settings, as well as the analysis of the experi-
mental results. In the Section 5, the research results and the prospects for future research
are summarized.

2. Literature Review

Instance segmentation algorithms based on deep learning can generally be divided
into two-stage algorithms and single-stage algorithms. Among the existing instance seg-
mentation methods, most high-precision models are constructed based on the idea of
two-stage object detection. SDS (Simultaneous Detection and Segmentation) [11] is the
earliest instance segmentation algorithm, which simultaneously realizes object detection
and semantic segmentation for the first time. Although it shows simplicity in its struc-
ture and is not ideal in segmentation results, it remains fundamental for the subsequent
two-stage instance segmentation algorithm. Mask R-CNN [12] is one of the most typi-
cal two-stage instance segmentation algorithms, which adds a full convolution branch
to Faster R-CNN [13] to generate segmentation results and uses a bilinear interpolation
method to improve the segmentation accuracy of pixels in the feature region pooling
layer in order to better detect small targets. With further research from Kirillov et al.,
improved algorithms based on Mask R-CNN have been continuously proposed, such as
Mask Scoring R-CNN based on optimized mask evaluation criteria [14] and PointRent [15],
which takes the image segmentation task as a rendering task. Meanwhile, along with the
development of instance segmentation algorithms, the Detectron2 proposed by Facebook
AI Research [16] provides a platform for researchers to share and download state-of-the-art
algorithms, which could simplify researchers’ work. Most two-stage instance segmentation
algorithms are top–down algorithms, following the operation logic of first detection and
then segmentation. Correspondingly, there are some bottom–up instance segmentation
algorithms that first segment and then cluster. SGN proposed by Liu et al. [17] performs
pixel clustering from both horizontal and vertical dimensions to find instance compo-
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nents, and finally synthesizes these components into instance masks. SSAP [18] calculates
the probability of two pixels hierarchically belonging to the same instance and proposes
a cascading graph-partitioning module to generate instances in a coarse-to-fine order.
Although the accuracy of these two-stage algorithms is relatively improved, it is still lim-
ited in special tasks, thereby making it difficult for these algorithms to further improve the
segmentation speed due to their serial operation logic. Compared with two-stage meth-
ods, the single-stage detector YOLACT proposed by Bolya et al. [19] greatly improves the
segmentation speed of the model by running object detection and semantic segmentation
in parallel. Chen et al. [20,21] further studied the use of anchor-free designs such as center
point mechanisms. Compared with the anchor-based instance segmentation algorithm,
anchor-free models remove the limitation of anchors with a higher accuracy.

Along with the growing research on instance segmentation algorithms, researchers have
also applied the instance segmentation algorithm to the power industry. Wang et al. [22]
conducted the detection of insulator status by using Mask R-CNN to detect and segment
insulator infrared images with a transfer learning strategy. Han et al. [23] embedded an
attention mechanism in the encoding stage of U-Net, improving the accuracy of insulator
monitoring. Ma et al. [24] used the foreground segmentation of RGB-T images of power
equipment to enhance the mask extraction of regular images, realized automatic mask
annotation, and improved the efficiency of data annotation. Li et al. [25] proposed an insu-
lator infrared image segmentation algorithm based on dynamic masks and box annotation,
which alleviates the problems of inaccurate positioning, low recognition efficiency, and
segmentation difficulties in insulator images against complex backgrounds.

Researchers have also carried out corresponding research on the task of insulator
defect detection and segmentation. Wang et al. [26] proposed an insulator defect detection
algorithm based on ResNeSt and a multi-scale region proposal network, and used data
augmentation to obtain expanded data, achieving a better accuracy performance compared
with other detection networks. Qiu et al. [27] established an insulator image data set
through GraphCut and Laplace sharpening, while the MobileNet backbone was used to
improve the real-time performance of YOLOv4 and a transfer learning strategy was used
to better train the model. Antwi-Bekoe et al. [28] proposed and used a triplet attention
mechanism (TAM) in a feature extraction network to optimize the attention to target
outliers, which improved the detection performance of defective insulators with low extra
costs. Xuan et al. [29] proposed a model based on the CenterMask algorithm to realize the
intelligent identification of insulator defects, in which an improved VoVNet was adopted
as the backbone network and SAG-Mask was added to FCOS to extract the mask image of
the insulator, achieving an improved identification efficiency for insulator defects. These
methods all have their advantages, but they have not achieved good performances in
both speed and accuracy. In order to achieve the fast and accurate instance segmentation
of insulator defects, an improved YOLACT algorithm is proposed in this paper, which
improves segmentation speed as well as segmentation accuracy.

The main contributions of this paper are as follows:

• The backbone network is modified to MobileNetV2, aiming to greatly reduce the
computation of the model. Meanwhile, an improved scSE module with a serial
structure and skip connections is proposed and embedded into the MobileNetV2 to
enhance the feature extraction.

• A feature fusion structure is proposed in the FPN. We first process P3–P7 with ECA-Net
and up-sample the feature maps to the same size. Then, P3 and P4 are added to the
top layers, while P5–P7 are added to the bottom layers across double layers. After
the feature maps are fused, they are down-sampled to the original size for the next
modules in the model.

• A bounding box loss function that covers the area deviation, center deviation, and
shape deviation is designed to better limit the generation of redundant bounding
boxes, namely RIoU Loss. The model is trained to generate bounding boxes more
accurately with the new loss function.
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3. Instance Segmentation Framework Based on Improved YOLACT

YOLACT (You Only Look At CoefficienTs) is a simple and fast real-time instance seg-
mentation model. The overall architecture design is lightweight. Its segmentation accuracy
and speed are well-balanced, which makes it convenient for deployment on edge devices.
The YOLACT network consists of two parallel processing branches: the mask prediction
branch, Protonet (prototype mask branch), and the object detection branch prediction head.
The Protonet branch learns the feature representation of the target instance in the image
and generates prototype masks for a single instance using a fully convolutional network
structure, which contains the semantic and shape information of the target instance. The
prediction head predicts the corresponding mask coefficients for each candidate box to ob-
tain the position of instances in the image. The two branches perform parallel calculations,
greatly improving the running speed of the entire model. Finally, the mask coefficients are
fused with the prototype mask through matrix multiplication to obtain the final prediction
result, shortening the inference time of the model and meeting real-time requirements.
Despite its balanced performance in real-time instance segmentation, YOLACT has a lower
accuracy compared to two-stage instance segmentation algorithms, while YOLACT’s detec-
tion speed can still be improved, as it does not use a lightweight backbone network [30].
Therefore, this paper will mainly improve the network from the perspective of accuracy,
while also improving the inference speed of the network. The overall network structure of
the improved YOLACT is shown in Figure 1.
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Figure 1. Structure of the improved YOLACT network. 

The improved YOLACT model consists of five parts: (a) a backbone network, (b) a 
feature fusion network, (c) a head network, (d) a prototype mask network, and (e) a hybrid 
module. The backbone used in (a) is MobileNetV2, and the modified FPN module will be 
introduced in the next section. In the outputs of three branches of (c) the head network, a 
is the number of anchor boxes, c is the number of categories, and k is the number of pro-
totype masks. For the quick and accurate segmentation of insulator images, we improve 
the backbone network, FPN module, and bounding box loss function, respectively, taking 
the characteristics of insulator defect segmentation into consideration, so as to improve 
the segmentation performance of the model. 

  

Figure 1. Structure of the improved YOLACT network.

The improved YOLACT model consists of five parts: (a) a backbone network, (b) a
feature fusion network, (c) a head network, (d) a prototype mask network, and (e) a hybrid
module. The backbone used in (a) is MobileNetV2, and the modified FPN module will be
introduced in the next section. In the outputs of three branches of (c) the head network,
a is the number of anchor boxes, c is the number of categories, and k is the number of
prototype masks. For the quick and accurate segmentation of insulator images, we improve
the backbone network, FPN module, and bounding box loss function, respectively, taking
the characteristics of insulator defect segmentation into consideration, so as to improve the
segmentation performance of the model.

3.1. MobileNetV2 Embedded with Serial-scSE Attention Module

The original YOLACT network used the ResNet-101 deep residual network as its
feature extraction network, which not only ensured the accuracy of YOLACT in detection,
but also induced huge computational complexity. In order to reduce the computational
complexity of the backbone network, this paper introduces MobileNetV2, which reduces
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the parameter and computational complexity of the model by using deep separable con-
volutions and linear bottlenecks. Compared with ResNet-101, although MobileNetV2
significantly reduces the number of parameters and computation, it does not lose much
accuracy [8]. Considering the speed and accuracy performance of the network, it is chosen
as the new backbone network. In order to ensure the accuracy of the model to meet the task
of insulator segmentation, this paper introduces an attention mechanism for the backbone
network. Attention mechanisms have shown outstanding performances in improving
the performance of convolutional networks, but most attention methods sacrifice model
speed for a better accuracy performance. To balance the accuracy and speed, an S-scSE
(Serial-scSE) module based on the scSE mechanism [9] is designed and embedded into
MobileNetV2. The structure of Serial-scSE is shown in Figure 2.
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The original scSE block runs two sub-modules independently and in parallel, and
sums the feature maps output by the two modules to obtain the final feature map UscSE.
Due to the small size of the insulator defect, the detection accuracy is very sensitive to
the spatial information of the feature map. Referring to the structure of CBAM [31], this
paper improves the scSE into a serial structure so that the feature map is first processed by
the channel attention module of the cSE (Spatial Squeeze and Channel Excitation Block)
and then transmitted to the sSE (Channel Squeeze and Spatial Excitation Block) module.
As shown in Figure 2, the Serial-scSE attention structure consists of cSE and sSE through
serial connection.

As a set of feature maps U is input into the S-scSE module, supposing that the size of
the input feature maps is H × W × C, they are firstly processed by the channel attention
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module cSE. The cSE first converts the feature maps into another form: U = [u1, u2, u3, . . ., un],
where U ∈ RH×W×C and uk ∈ RH×W×1, then generates a weight vector of Z ∈ R1×1×C

through the mixed pooling layer, which is global average pooling in the original scSE. In
the defect detection, most of the defect parts have a higher brightness, and the mixture of
GAP (global average pooling) and GMP (global maximum pooling) is used to better focus
on the defective part in the insulator defetct image. The element zk in Z can be calculated
by Equation (1):

zk = α × 1
H × W ∑H

i ∑W
i uk(i, j) + β × Max(uk(i, j)) (1)

where α and β are the weights of GAP and GMP. Z is then converted into a new vector Z′

through two 1 × 1 convolution layers, and the non-correlation is increased by the Sigmoid
and normalization layer to obtain Sigmoid(Z′). Finally, U is calibrated by Sigmoid(Z′) to
obtain the feature map UcSE. The calculation can be expressed as follows:

UcSE =
[
σ
(
z′1

)
u1, σ

(
z′2

)
u2, σ

(
z′3

)
u3, . . . , σ

(
z′c

)
uc
]

(2)

where σ(z′k) represents the relative importance of channel k. After the feature maps are
processed by cSE, they are transmitted into the sSE module.

The goal of the sSE module is to recalibrate the importance of each element in every
channel. sSE also first transforms the feature maps into the form: U = [u1,1, u1,2, u1,3, . . ., uH,W],
where ui,j ∈ R1×1×C. After 1 × 1 convolution, the obtained weight matrix is represented as
W, and then after being processed in the Sigmoid and normalization layer, it is multiplied
by each element with the original feature map to obtain UsSE. The calculation is as shown
in Equation (3):

UsSE =
[
σ
(

W1,1
)

u1,1, σ
(

W1,2
)

u1,2, σ
(

W1,3
)

u1,3, . . . , σ
(

WH,W)uH,W
]

(3)

where Wi,j represents the relative importance of each element in a single channel. Furthermore,
residual connection is constructed between U and UsSE to prevent gradient disappearance.

The output feature map US–scSE can be expressed as:

US–scSE = U + UsSE(U cSE) (4)

where U is the input feature map, UcSE is the feature map of the channel attention output
with global maximum pooling, and UsSE(UcSE) is the output feature map of spatial attention.
It is added to the original feature map in the end to obtain the final output.

3.2. Modified FPN Based on Feature Fusion

After realizing the light weight of the model, in order to further optimize its accuracy
performance, this paper improves the feature fusion network in the model. The FPN net-
work will fuse the features of different feature layers, and then predict on the fused feature
map. In the original YOLACT model, the FPN module passes the P3–P7 output feature
maps to the target detection module, and the P3 feature map is directly used as the input
for the prototype mask branch. The high-level feature map has rich semantic information
and the use of high-level feature maps is conducive to the network’s understanding of
the target. In the original YOLACT algorithm, the P3 layer, which is the input of the
prototype mask branch, does not use the high-level feature information, while P5–P7 do
not use the bottom-level information. This design has the disadvantage of using the feature
information, which limits the accuracy of the model’s detection and segmentation. In order
to make full use of the information of each layer, a feature fusion structure is proposed.
Figure 3 shows the structure of FPN with feature fusion.
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As shown in Figure 3, the P4–P7 feature map is firstly up-sampled by bilinear in-
terpolation to achieve the same size as P3, which is recorded as E3–E7. Then, they are
weighted and added to another layer. Specifically, E5, E6, and E7 are added to E3, E4, and
E5, respectively, which brings the high-level information to the lower layer. Meanwhile, E3
and E4 are added to E6 and E7, enhancing the location information of the top-layer maps.
After the E3–E7 maps are obtained, the next step is to down-sample them back to their
original size, in which we use convolution and the Sigmoid layer, generating M3–M7 maps.
Finally, the M3–M7 maps are passed to the Prediction module and Protonet. However,
considering that the scale span from the P3 feature layer to the P7 feature layer is too large,
skip connection is used between Pi and Mi in order to avoid the gradient disappearance
or gradient explosion that may occur in training. The calculation process of Mi can be
expressed by the following formula:

Mi =

{
Sigmoid(Pi + Conv(αi+2 × upsample(Pi+2) + Pi), if i = 3, 4, 5
Sigmoid(Pi + Conv(αi−3 × upsample(Pi−3) + Pi), if i = 6, 7

(5)

where Conv represents convolution using 3 × 3 or 1 × 1 kernels and different steps, upsample
represents up-sampling the Pi feature map to the size of P3, and αi represents the weight
hyper-parameter of the i-th layer.

The new feature fusion method improves the input maps of the detection module and
proto-mask module by using feature fusion, but with an additional attention module added,
the feature maps could be further improved. Therefore, this paper introduces ECA-Net
to optimize the overall quality of the feature map output by the FPN. ECA-Net proposes
a dimensionless local cross-channel interaction strategy, which performs the appropriate
cross-channel interactions while reducing the model complexity and maintaining its accu-
racy performance [10]. The process of the ECA structure is to first perform global pooling,
then pass through a partial connection layer FC[k], and finally activate through a layer
of Sigmoid. FC[k] is a connection operation of k nodes, which is not a conventional full
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connection, and it is implemented in the code through one-dimensional convolution. The
overall operation of ECA can be expressed as:

ECA(x) = x × σ
(

Conv1×1
1d (GMP(x))

)
(6)

where x represents the input tensor, σ is the Sigmoid activation function, and Conv1×1
1d

represents one-dimensional 1 × 1 convolution. GMP represents global maximum pooling,
as we use it instead of GAP (global average pooling) in this paper. Due to the fact that all
levels of the feature maps output by FPN will be used by subsequent modules, the ECA
module is placed after each feature layer Pi output by the original FPN in this paper. The
improved feature fusion module and ECA calculation process are shown in Figure 4.
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3.3. Improved Bounding Box Loss Function for Redundant Boxes

The original YOLACT network uses Smooth L1 as the loss function for bounding
boxes, which was proposed in Faster R-CNN. Smooth L1 can calculate the loss of the length
and width of the prediction box and the offset of the horizontal and vertical coordinates of
the center point, as shown in the following formulas:

LsmoothL1 = ∑
i={x,y,w,h}

SmoothL1
(
igt − ip) (7)

SmoothL1(x) =
{

0.5x2, i f |x| < 1
|x| − 0.5, otherwise

(8)

In the above formulas, xp, yp, wp, and hp, respectively, represent the horizontal and
vertical coordinates of the center point of the prediction box and the width and height of
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the prediction box, while xgt, ygt, wgt, and hgt, respectively, represent the horizontal and
vertical coordinates of the center point of the ground truth box and the width and height of
the ground truth box.

This paper notes that, although YOLACT is a single-stage instance segmentation
algorithm, its mask segmentation is not separated from object detection. In fact, although
the prototype mask branch is independent from the Prediction module, the final instance
mask segmentation quality of YOLACT still depends on the accuracy of the prediction
boxes output by the Prediction module, so the quality of the prediction boxes also affects
the segmentation quality. However, the Smooth L1 bounding box loss function ignores
a lot of information, especially as it does not take into account three important pieces of
information: area deviation, center deviation, and shape deviation. In the experiment, this
paper found that the lack of this information in the Smooth L1 during training can lead to a
low quality of the model’s prediction box, thereby limiting the overall detection accuracy.

For the insulator defect instance segmentation in this paper, due to the small size
of the target instance, the detection of insulator defects is more sensitive to the area of
the prediction box than a normal-sized target. It is likely for the instance segmentation
algorithm to recognize the same target instance as multiple different instances, generating
too many prediction boxes and leading to false detection and segmentation, ultimately
reducing the accuracy of the model. As shown in Figure 5, this paper notes that the area of
the redundant prediction box of these insulators is generally smaller than the area of the
ground truth box, and it is very likely to appear inside the ground truth box.
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In response to the above situations, a new loss function, RIoU Loss (Restrained-IoU
Loss), is designed, which includes factors such as the intersection over union, center
deviation, and shape deviation between the generated box and the ground truth box in the
bbox loss calculation range. Meanwhile, it increases the punishment for small prediction
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boxes within the ground truth box and ultimately calculates the quality of the predicted
box more accurately than the original loss function. According to the RIoU Loss function,
the RIoU function is also obtained. The calculation process of RIoU Loss and RIoU is
as follows:

RIoU Loss = 2(1 − IoU)2 +
x2

o + y2
o

w2
c + h2

c
∗ IoU + arctan

(
wgt

hgt − wp

hp

)2

∗ IoU2 (9)

RIoU = 1 − RIoU Loss (10)

In the above equations, xo represents the difference between the ground truth box
center abscissa and the predicted box center abscissa, while yo represents the difference
between the two vertical coordinates. Their sum represents the square of the distance
between the two center points. wc represents the width of the minimum bounding rectangle
of two boxes, hc represents the height of the minimum bounding rectangle, and the sum of
the squares of these two is also the square of the diagonal length of the minimum bounding
rectangle. wgt and hgt represent the width and height of the ground truth box, while wp and
hp represent the width and height of the predicted box, respectively. It can be seen that the
value of the RIoU Loss may be greater than 1, but it should be limited to between 0 and 1
so that it can allow the RIoU function to work normally. The limitation for RIoU Loss is
as follows:

RIoU Loss =

{
1, i f RIoU Loss > 1
RIoULoss, i f RIoU Loss ≤ 1

(11)

As shown in Equation (9), the proposed loss function consists of three parts. The
left item is a penalty term for small prediction boxes. If the box is smaller relative to the
ground truth box, it is more likely to be suppressed. When the IoU reaches a larger value,
the loss value will be smaller, while when IoU reaches a smaller value, the loss value will
rapidly increase. The middle term is a penalty term for the degree of deviation from the
center of the prediction box. The farther the prediction box deviates from the center of the
ground truth box, the easier it is to suppress it. The last item is a penalty term for shape
similarity. When the aspect ratio of the predicted box differs significantly from the ground
truth box, it indicates that the shape of the predicted box is incorrect and does not meet the
requirements of the model. When the IoU of the prediction box is small, the loss value of
the area penalty term is already large, which means that the quality of the prediction box
is considered poor. When the IoU is large, we pay more attention to the center deviation
and shape deviation. Hence, these two penalty terms are multiplied by the IoU and IoU2,
respectively, to enhance their effectiveness, particularly when the IoU is large.

The three penalty terms proposed in this paper share a common principle: their values
will rapidly increase with the degree of deviation from the correct box, and when the IoU is
small, the penalty for the IoU is the main term. When the IoU is large, center deviation and
shape deviation become the main penalty terms. This design aims to effectively minimize
redundant target boxes and prevent the algorithmic misdetection of targets. Figure 6
shows a comparison of the RIoU Loss with the IoU Loss and GIoU Loss in three scenarios,
with the red box representing the ground truth box and the green box representing the
predicted box.

The IoU of the green box and the red box in Figure 6 is 0.45. The predicted boxes
in (a) and (b) have the same shape and are similar rectangles to the ground truth box.
While (a) has no center deviation, (b) deviates from the center of the ground truth box.
Furthermore, (c) has no center deviation, but its aspect ratio is different from the ground
truth box. Although the IoUs are both 0.45, the center deviation and shape deviation bring
about additional penalties when calculating the RIoU loss function. The IoU Loss and
GIoU Loss do not take into account the distance that the box deviates from the ground
truth box, nor do they consider the shape of the predicted box. Therefore, it can be seen
that neither the IoU loss function nor the GIoU loss function can effectively evaluate the
quality of the box.
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4. Experiment and Analysis
4.1. Environment and Data Set Settings

The experiment is based on the Pytorch 1.8.1 deep learning framework, running on
Python 3.7 and a 64-bit Windows 10 operating system. The CPU is Ryzen 5600X @ 4.0 GHz,
the GPU is NVIDIA RTX 3060Ti, and the graphic memory is 8 GB. CUDA version 11.1 and
cuDNN version 8.1 are used as GPU accelerators. The publicly available data set used
in this study is picked from IDID [32], totaling 500 initial images. In this paper, insulator
defect images are annotated manually. To avoid over-fitting, image augmentation methods
are used to preprocess the images. The images are augmented mainly through methods
such as random cropping, random rotation, random mirroring, and random noise, as well
as a combination of the above transformations. Finally, 4000 images are obtained and used
to train the model, and the data set is allocated in a proportion of 3:1 as the training set
and validation set. There are two classes of insulator defects, where class1 is a broken disk
which is represented as defect1 and class2 is a burned disk which is represented as defect2.
During training, the learning rate lr is set to 10−4, the BatchSize is set to 4, and the number
of iterations is set to 15,000.

4.2. Visualization Results of the Model

Figure 7 shows the prototype mask and segmentation results generated by the im-
proved model. In Figure 7, the first row of images is the original images entered into the
model. The second row to the fourth line is the partial output of the prototype mask mod-
ule, where the second row is the enhanced mask for the foreground target (i.e., the possible
insulator defect instance target), the third row is the enhanced mask for the background
target, and the fourth row is the mask for enhancing or suppressing different foreground
targets, respectively. The prototype mask module generates a total of 32 prototype mask
images. These prototype mask images are multiplied by the mask coefficients output by the
prediction head and then linearly added to obtain the final segmentation mask, as the last
row shows. More detailed segmentation results of the original model and the improved
model are compared in Figures 8 and 9.

In the left part of Figure 8, it can be seen that the problems of false detection that
occurred in the original model are well resolved and redundant boxes of instances are
suppressed in the improved model. Meanwhile, the right part of Figure 8 shows that
some target boxes that were wrongly suppressed are retrieved in the improved model. We
compare the specific bounding box and segmentation mask between YOLACT and the
proposed model in Figure 9. In the original model, the target bounding box did not cover
the entire target instance, and some target pixels were mistakenly divided into backgrounds.
However, due to the improvement in the feature fusion module and RIoU Loss function
in this paper, the position of the predicted box in the segmentation results generated by
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the improved method is more accurate. At the same time, the new feature fusion method
enriches the position information contained in the feature map of the input prototype mask
module, making the mask segmentation closer to the ground truth label.
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Figure 10 shows the loss curves obtained by training YOLACT using Smooth L1 and
training the improved model using the RIoU Loss function. The value of Smooth L1 is
dependent on the image size, while RIoU Loss has the characteristic of scale translation
invariance and it is independent of the image size. In order to make the value of the RIoU
Loss closer to Smooth L1 so that it can fit the model better, the weight of the Smooth L1
loss is set to 1.5 while the weight of the RIoU loss is set to 7. Due to hardware limitations,
especially the limited memory size of the GPU, this paper cannot take a larger value for the
BatchSize and there are significant differences in the feature information between different
batches, which inevitably leads to significant fluctuations in the loss value during the
training process, and the small size of the instance target aggravates this situation. Due to
the use of a lightweight backbone network, the improved model loss convergence speed
is slightly slower than that of the original model. In order to obtain a better accuracy
performance, this paper doubles the number of training iterations in the experiment, but
due to the light weight of the model and the difficulty in learning the small defect object, it
is found that the accuracy does not increase significantly after another 15,000 iterations of
training and, sometimes, the accuracy will decline slightly. Based on the consideration of
the balance between training time cost and the accuracy performance that the model can
achieve, the number of iterations is set to 15,000.
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4.3. Ablation Experiments

Ablation experiments are conducted in this paper based on the improved backbone
network module, FPN module, and loss function. AP (Average Precision) is used as the
model accuracy index, FPS (Frame per Second) is used as the model real-time performance
index, and the baseline for comparison is the original YOLACT model with ResNet-101 as
the backbone network. The experimental results are presented in Tables 1–3, which test
the accuracy and speed of the model based on each improvement point, as well as the
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specific time consumption of each module. The FPN+ in the tables represents the improved
FPN module.
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Table 1. Results of ablation experiments.

Model Backbone FPN+ RIoU
Loss

Mask
mAP/%

Bbox
mAP/%

Mask
AP50/%

Bbox
AP50/% FPS

YOLACT ResNet-101 × × 31.32 55.28 74.94 95.05 34.9
Model1

MobileNetV2

× × 30.53 50.40 74.89 92.87 78.0
Model2

√
× 33.28 51.30 75.23 92.41 72.3

Model3 ×
√

34.15 51.42 75.11 92.83 78.1
Ours

√ √
37.14 51.98 76.82 92.55 72.3

Table 2. Results of ablation experiments on ResNet-101 backbone network.

Model Backbone FPN+ RIoU
Loss

Mask
mAP/%

Bbox
mAP/%

Mask
AP50/%

Bbox
AP50/% FPS

YOLACT

ResNet-101

× × 31.32 55.28 74.94 95.05 34.9
Model1

√
× 34.54 56.91 76.43 95.29 29.7

Model2 ×
√

34.87 57.12 76.72 95.16 34.8
Model3

√ √
38.66 58.05 77.50 95.47 29.8

It can be seen from Table 1 that, after the model introduces the modified MobileNetV2
as the backbone network, due to the sharp decrease in the network model size compared
with the use of ResNet-101, while less channels and anchors are used in the Prediction
module, the detection speed is immediately increased by 43.1 FPS, which is nearly twice
the speed of the original model. However, the lightweight structure also leads to the mask
mAP and bbox (bounding box) mAP being decreased by 0.79% and 4.88%, respectively,
which is an inevitable defect of the lightweight backbone network. It can also be noted
that the decrease in the mask mAP is much smaller than that of the bbox mAP. The reason
is that, for the single-stage algorithm YOLACT, its Prediction module outputs bounding
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boxes for the instance targets, the Protonet module outputs the prototype mask images,
and the two branches work in parallel and independently, and the location of the bbox
will not affect the generation of the prototype mask. While the use of fewer anchors limits
the performance of the Prediction module, the Protonet is unaffected, so the mAP of bbox
decreases more than the mask mAP. After using feature fusion and introducing an ECA
attention mechanism into the FPN module, the overall output of the FPN is optimized,
resulting in a significant improvement in the accuracy of the final mask and bounding
box. The RIoU Loss function improves the network performance while only affecting the
training speed, so it will not reduce the speed performance of the network. Although these
improvements in accuracy are based on increasing the additional computational load of
the network, these additional computational loads do not have a significant impact due to
the model being lightweight. Compared with the original network, the improved network
only loses 3.30% of the bounding box accuracy, but increases the mask accuracy by 5.82%
and the detection speed by 37.4 FPS. In order to verify the effectiveness of the improved
FPN module and RIoU Loss function, experiments are also conducted on the ResNet-101
backbone network, and the results are shown in Table 2.

Table 3. Time consumption comparison of different structure (ms).

Model Backbone FPN+ RIoU
Loss Backbone FPN Detect Others Total

YOLACT

ResNet-101

× × 13.13 0.87 15.47 5.11 34.58
Model1

√
× 13.25 3.22 15.50 5.10 37.07

Model2 ×
√

13.18 0.87 15.23 5.22 34.50
Model3

√ √
13.19 3.21 15.58 5.25 37.23

Model4

MobileNetV2

× × 5.66 0.90 8.01 5.10 19.67
Model5

√
× 5.48 3.20 8.03 5.22 21.93

Model6 ×
√

5.52 0.89 8.15 5.15 19.71
Ours

√ √
5.59 3.23 8.02 5.15 21.99

Similar to the data in Table 1, it is also shown in Table 2 that the use of the improved
FPN module and RIoU Loss could both improve the accuracy performance of the model
based on the ResNet-101 backbone network. But without a lightweight structure, the
real-time performance is limited, as the improved FPN module increases the inference time
of the model. In a scenario with low real-time performance requirements, the ResNet-based
model can also be used to achieve a higher accuracy.

Figure 11 shows a comparison of the APS, APM, and APL between the original YOLACT
and the improved model in this paper. APS is the average precision for small objects
(area < 32 × 32 pixels), while APM is for medium objects (32 × 32 pixels < area < 96 × 96 pixels)
and APL is for large objects (area > 96 × 96 pixels).

In Figure 11, it can be seen that the average precision of the bounding boxes of objects
in all sizes is decreased, which is caused by the joint action of the lightweight backbone
network and other improvement points in this paper. Since the proposed model in this
paper improves the input feature map of Protonet, although the accuracy of bboxes is
reduced, the segmentation accuracy of the network for targets of various sizes is still
improved. Table 3 provides a more detailed comparison of the time consumption after the
introduction of each module.

As the model improvements in this paper are carried out in a more lightweight way,
the overall time consumption added to the network is less, and it will not significantly
affect the real-time performance of the model. Furthermore, since we use fewer channels
in the backbone and detection module, the time for both modules is significantly reduced.
The increased time consumption of the model is mainly concentrated in the FPN module
and object detection module. In Table 3, Others represents the parts of the model that
will not be affected by the changes, such as data loading and copying. As observed from
Tables 1 and 3, the improved model achieves a better balance between accuracy and speed
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compared to the original model, and is more suitable for instance segmentation tasks of
insulator defect images.
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4.4. Comparison with Other Models

In order to further validate the instance segmentation effect for insulator defects of the
proposed method, the proposed method is compared with other state-of-the-art algorithms,
mainly comparing the inference speed and average mask accuracy of the model. The results
compared with other models are shown in Table 4.

Table 4. Comparison with other models.

Model Backbone FPS Mask mAP/%

Mask R-CNN [12] ResNet-101 6.2 37.4
Solov2 [33] ResNet-101 31.1 37.0
YOLACT ResNet-101 34.9 31.3

YOLACT++ [34] ResNet-101 32.4 32.7
Ours MobileNetV2 72.3 37.1

As shown in Table 4, the proposed algorithm still has a gap compared to other ad-
vanced methods in accuracy, but it also achieves an average mask accuracy of 37.1%
and achieves the optimal detection speed. Compared with other models, our model
is more suitable for task scenarios with certain requirements for real-time performance
and accuracy. Furthermore, since the enhancement measures implemented in this paper
do not significantly increase the model’s scale, its accuracy performance can be further
enhanced by introducing a more intricate attention structure and other methodologies.
Therefore, this method has certain potential and advantages in the insulator defect instance
segmentation scenario.

5. Conclusions

In this paper, an improved YOLACT model is proposed to better complete the instance
segmentation of insulator images, and the accuracy and speed of the model are both
optimized. Firstly, MobileNetV2 is used as the lightweight backbone network and a Serial-
scSE attention module is proposed and embedded in the backbone network. Then, the
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FPN in the algorithm is improved with feature fusion, which connects feature maps across
layers. Afterward, the ECA attention module is also introduced into the modified FPN
module, greatly improving the quality of the overall output feature map of the FPN module
and optimizing the segmentation results of the model. Finally, in response to the problem
that the original model’s bounding box loss function cannot train the model well, a new
bounding box loss function, RIoU Loss, which covers area deviation, center deviation, and
shape deviation, is designed to enhance the training effect of the model. The experimental
results show that the improved model improves the mask accuracy by 5.82% with only
a 3.30% loss in the bounding box accuracy, and also increases the FPS by 37.4%. The
algorithm in this paper still has a gap in accuracy compared with other state-of-the-art
algorithms. From a practical perspective, in future studies, the accuracy performance of the
model can be further optimized by introducing other attention mechanisms and improving
the prediction head.
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