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Abstract: Back-Support Industrial Exoskeletons (BSIEs) can be beneficial in reducing the risk of
injury due to overexertion during trunk flexion tasks. Most real-world tasks include complex body
movements, leading to mixed outcomes that necessitate field-based methods for detecting overall
physical demands. Monitoring fatigue can be beneficial in this regard to ensure that benefits of
BSIEs are translated to the real world. Our experiment included 14 participants, who performed
30 repetitions of 45◦ trunk-flexion while assisted by a BSIE, first without fatigue and then at medium-
high back fatigue (7/10 in the Borg scale). We extracted 135 features from recorded muscle activity,
trunk motion, and whole-body stability across bending, transition, and retraction portions of each
trunk-flexion cycle. Four classification algorithms, namely Support Vector Machine (SVM), Logistic
Regression (LR), Random Forest (RF), and XGBoost (XGB), were implemented to assess fatigue
prediction. XGB (Accuracy: 86.1%, Recall: 86%, Specificity: 86.3%) was effective in classifying
fatigue with data obtained from a single EMG sensor located on the lower back (erector spinae)
muscle. Meanwhile, stability measures showed high predictability with both RF (92.9%, 91.9%,
94.1%) and XGB (93.5, 94.1%, 93.1%). Findings demonstrate the success of force plates, and when
replaced by pressure insoles, they can facilitate real-world fatigue detection during BSIE-assisted
trunk-flexion tasks.

Keywords: assistive devices; ergonomics; biomechanics; human muscle fatigue; wearable technology;
machine learning; trunk bending; evaluation

1. Introduction

Wearable assistive devices such as exoskeletons have been developed to address
discomfort, pain, and injuries resulting from repetitive manual tasks. The prevalence of
musculoskeletal injuries from overexertion and bodily reactions has surged in recent years.
For instance, in the U.S. alone, there were approximately one million reported cases of
overexertion injuries in 2021–2022 [1]. Although traditional ergonomic controls such as
workforce training, workstation redesign, safety protocols, and use of material handling
equipment (cranes, lifts, etc.) may be beneficial in reducing injury rates, they are often
expensive, require company-wide implementation, and offer less flexibility with variation
in tasks [2,3]. In most cases, despite implementing traditional ergonomic controls, workers
continue to face escalating demands driven by ever-increasing consumer needs [4]. In
response to these challenges, wearable assistive devices, such as Exoskeletons (EXOs),
have emerged as promising solutions to augment human capabilities and mitigate the
risk of injury. EXOs are typically categorized according to the body region they support,
i.e., the upper body (e.g., arm/shoulder/back) or lower body (knee/ankle) [5,6]. Of all
body regions, the lumbar region of the lower back is particularly susceptible to injury,
with the highest reported injury rate of approximately 17% [7]. Back-Support Industrial
Exoskeletons (BSIEs) offer support to the wearer’s torso during tasks requiring trunk flexion,
effectively reducing the strain on lower back muscles and potentially lowering the risk
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of injury in this vulnerable area [8–10]. Studies have demonstrated significant reductions
in lower back muscle activity when using BSIEs during static posture maintenance tasks
involving trunk bending [9,11,12] and dynamic lifting tasks [13–18]. However, evaluations
conducted in field environments have yielded mixed results regarding the effects of BSIEs
on the human body, as outlined in our previous research [6].

Fatigue, often stemming from repetitive muscle activation, renders workers more
susceptible to injury, as it compromises the neuromusculoskeletal systems [19]. When the
demands placed on the body exceed its capacity to generate essential forces, it can result in
failure, diminished work quality, performance errors, and increased injury risk [20]. Conse-
quently, estimating fatigue levels during task performance becomes crucial for designing
safer and more efficient work environments. Traditionally, fatigue has been assessed subjec-
tively using scales [21], and objectively by monitoring changes in muscle force generation
capacity. It is defined as “the inability of muscles to sustain force generation over time”
in the [22]. Engaging in activities while fatigued can lead to detrimental effects, such as
impaired balance and reduced control over body movements, thereby escalating the risk
of falls [23,24]. While Back-Support Industrial Exoskeletons (BSIEs) may offer benefits
in reducing the rate of muscle fatigue, they might also increase users’ susceptibility to
falls [25], particularly with additional weight (2.2–4.5 kg), and the assistive torque provided
could impact the wearer’s stability [23]. These concerns are exacerbated during dynamic
tasks with increased inertial forces and in awkward or asymmetric postures [18,26–28]. To
ensure the safety and efficiency of EXOs, it is crucial to integrate advanced technologies
through which EXOs can provide optimum assistance to wearers, improving their wearer’s
experience and reducing the risk of injuries.

Machine learning algorithms, particularly classification methods, have emerged as
powerful tools across domains of manufacturing [29], construction [30], and healthcare [31]
to analyze complex data and for making predictions. In healthcare, these algorithms of-
fer advantages by improving disease diagnosis, assessing risks, and tailoring treatment
plans based on learned data patterns [32]. Specifically, mathematical models are used to
identify pertinent features from provided datasets, which are then employed for prediction
of future states, or classification of the existing data into different groups. In the con-
text of predicting differences in physiological conditions, machine learning classification
algorithms play a pivotal role [33,34]. These include (a) decision trees, which partition
the feature space into distinct regions based on simple decision rules, are interpretable,
and are suitable for tasks with categorical outcomes [35], (b) Support Vector Machines
(SVM), which aim to find the hyperplane that best separates different classes while max-
imizing the margin between them, making them effective for binary classification tasks
with high-dimensional feature spaces [36], and (c) ensemble methods such as Random
Forests and Gradient Boosting, which combine multiple classifiers to improve predictive
performance and robustness [37–39]. Previous studies have demonstrated the utility of
machine learning techniques in detecting fatigue during tasks such as walking, thereby
reducing the risk of injury due to overexertion. By analyzing various physiological signals,
including body movement [40–44], electromyography (EMG) signals [45], stability [46], and
heart rate [40,41], machine learning models can accurately classify individuals into fatigued
and non-fatigued states. Moreover, incorporating wearable sensors and advanced signal
processing techniques enables real-time monitoring of fatigue levels, allowing for timely
interventions to prevent overexertion-related injuries. Overall, machine learning-based
fatigue detection systems can be helpful in enhancing workplace safety.

Past studies on fatigue detection conducted controlled laboratory experiments com-
prising fatiguing tasks, with fatigue progression tracked using both subjective and objective
measurements. Subjective scales, such as the Borg scale, have been widely used to ob-
tain a measure of global fatigue, which has been utilized as a reference for objective data
while training fatigue detection models [47,48]. Thus, using objective data obtained from
sensors, such models can predict perceived exertion levels. Meanwhile, one of the most
common methods for quantifying localized fatigue is by recording muscle activity using
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surface electromyography (EMG) [43,49]. In a recent study, Root-Mean-Square envelopes
of raw EMG signals were used among the feature set to detect fatigue level during walking
tasks [43]. Fatigue is also known to influence postural control and movement coordination,
specifically leading to altered movement kinematics (e.g., range of motion, velocity, and
jerk) [40,48,50]. These changes in kinematic parameters with fatigue progression have been
tracked using motion capture systems, including wearable sensors and infrared camera
systems [43,48,51–53]. For instance, changes in gait kinematics can serve as reliable indica-
tors of fatigue during walking [42,54]. Likewise, features such as joint angles, velocity, and
acceleration extracted from position data (of 39 markers) obtained from infrared cameras
were utilized to predict fatigue during repetitive manual tasks [53]. Alterations in motor
control and their resulting variations in body movement due to fatigue are also observed
in whole-body stability measures. For instance, deviations in the center of pressure (COP)
measured using force plates have been reported to be correlated with fatigue [51,55–57].
A combination of multiple sensor systems has also been utilized to improve prediction
performance, such as obtaining features from both EMG and motion capture systems [43].
Overall, efforts demonstrate efficacy of biomechanical data acquisition systems in develop-
ing objective approaches of fatigue detection.

Monitoring overall demands using multiple sensors may be challenging given the
current limitations of sensor technologies as well as their intrusive nature, and intricacies
of evaluating EXOs in real-world industrial scenarios [6]. Meanwhile, subjective ratings of
fatigue may be biased. Additionally, most industrial tasks typically incorporate designated
rest breaks to facilitate recovery. Since EXOs are still in early implementation stages, much
remains unknown about their effects, including changes in optimal work–rest ratios, which
are valuable in designing task parameters. Given the limitations of subjective ratings
and the challenges of monitoring fatigue using multiple sensors, there is a pressing need
to develop objective approaches for detecting fatigue while using EXOs. Such objective
approaches can provide more accurate and unbiased fatigue detection, ensuring the safety
and well-being of workers. The novelty of our study lies in the fact that this is the first study
to develop an EXO-specific fatigue detection model to facilitate an accessible objective
assessment of the devices in field environments. This study aims to (a) develop a model
to predict fatigued states using objective biomechanical data and (b) determine specific
measures (such as muscle activity, motion, and balance) that contribute to the highest
predictability. Prior to conducting the study, we hypothesized that muscle activity measures
would be most effective in classifying states of fatigue. For developing the fatigue detection
model, we conducted a controlled experiment wherein study participants performed
repetitive trunk flexion tasks. A detailed account of our experimental design, physiological
data collection and feature engineering has been presented in Section 2. Subsequently,
model development using common classification algorithms and their performance has
been provided (Section 3). Lastly, we relate findings from our study to real-world scenarios
(Section 4) and propose a novel design for portable EXO-specific fatigue detection system.
Overall efforts presented in this study may be beneficial in developing approaches for
monitoring benefits/limitations of exoskeleton-assisted industrial activities.

2. Materials and Methods
2.1. Participants

Fourteen young male adults from college population were recruited per the inclu-
sion criteria of: (a) anthropometric measurements (height: 5–6 ft., weight: 120–200 lbs.),
(b) exercise frequency of twice/week, and (c) no incidents of back/lower body muscu-
loskeletal disorder in <6 months. Table 1 shows body measurements of study participants,
as recorded on the first experimental session. We obtained written informed consent from
all participants prior to data collection, as approved by the Rochester Institute of Technol-
ogy’s Institutional Review Board, Human Subjects Research Office (HSRO#01113021) in
accordance with the tenets of the Declaration of Helsinki.
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Table 1. Demographics of participant pool showing the Mean, standard deviation (SD), and the
ranges (expressed as Maximum–Minimum) for anthropometric dimensions of participant age, height,
weight, body mass index, chest/hip circumference.

Demographic Information Mean (SD) Range of Values

Age (yrs.) 20.21 (2.6) 18–28
Height (cm) 179.1 (3.7) 172–186
Weight (kg) 72.9 (6.2) 65.68–82.44

Body mass Index (kg/m2) 22.7 (2.4) 19.42–27.56
Chest Circumference (cm) 89.5 (3.9) 84–96
Hip Circumference (cm) 86.6 (6.0) 80–98

2.2. Approach
2.2.1. Experimental Tasks

A wire grasping task was selected by grasping two wire connectors placed ~10 inches
apart with their fingers. This ensured consistent hand movement across experimental trials.
The wiring setup included a portable adjustable stand in front of the participant such that
the subjects could bend at a ~45◦ sagittal flexion angle. Tasks included performing trunk
flexion tasks in two ways: (a) repetitive bending and (b) intermittent bending. Thirty cycles
of repetitive bending were performed once without fatigue, and then again at medium-high
level of fatigue. To simulate fatigue, we incorporated a task cycle with 30-s sustained trunk
flexion that was performed intermittently in addition to standing still tasks (15 s) before
and after the sustained portion. For intermittent task cycles, a work–rest ratio of 60:15 s
was selected. This task was selected to simulate realistic task cycles as in industrial work.
Durations, work–rest ratios, and number of cycles for the tasks were set based on a pilot
study. The same tasks were also performed in asymmetric postures but were not included
as a part of dataset in this study.

2.2.2. Exoskeleton Device

Trunk flexion tasks were performed while wearing a BSIE. Among the several types,
passive ones are affordable, compact, and are more likely to be adopted by the workforce.
Thus, we used a passive rigid BSIE, specifically the BackX Model AC (SuitX, Emeryville,
CA, USA), with actuators located on each side of the hip. The BSIE selected for our study,
as shown in Figure 1, consisted of a chest pad to support the trunk when performing trunk
flexion, specifically offloading upper-body weight to the front region of the thigh using
mechanical linkages. Among the three provided support levels, we selected the device at
medium (~25 lbs.), which was kept consistent across participants.
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Figure 1. Schematic showing (a) sensors for data acquisition systems consisting of surface electromyo-
graphy, motion capture, and force plates used in this study and (b) the experimental setup used in
the study.

2.2.3. Data Acquisition

Measures of interest in this study included muscle demands in lower back and leg
regions, trunk movement, and whole-body stability. Both lower back and leg regions were
selected as participants in our pilot study reported prominent presence of fatigue in legs.
Thus, the muscle groups of interest included the left/right erector spinae longissimus
(LES/RES) and the left/right biceps femoris muscles (LBF/RBF). Both muscle groups are
known to contract the most during trunk flexion as these muscle groups are responsible for
pulling the weight of the upper torso and torso to ensure a stable posture. We implemented
electromyography (EMG) to record muscle activity during the repetitive bending task using
four sensors of the Trigno Wireless EMG system (Delsys, Natick, MA, USA, 1200 Hz). We
followed the protocols provided by SENIAM [58] for placing the sensors on respective
muscle groups using double-sided tapes. To segment the data into different portions
as well as to detect trunk movement, an optoelectronic motion capture system (VICON,
Hauppauge, NY, USA, 100 Hz) was used. This included 20 reflective markers placed on the
upper body (three on the upper back, two on the middle back, and three on the hip) and
lower body (three on each leg and three on each foot) of each participant (Figure 1). Marker
placement locations were determined based on guidelines provided by VICON [59]. For
determining impacts on balance, two force plates were used (AMTI, Advanced Mechanical
Technology, Watertown, MA, USA), where participant stood upon floor-embedded force
plates (AMTI OR6-6 platform, MA, USA, 1000 Hz). All three systems were time-synced
using the VICON NEXUS system.

Fatigue level in back and legs was obtained subjectively and was used to drive the
duration of tasks. Perceived ratings of exertion (RPE) were obtained using the Borg RPE
CR-10 scale [60,61]. The scale consists of levels denoted by numbers ranging from 0–10,
where levels 0, 1, 2, 3, 4, 5, 7, 10 represent ‘no exertion’, ‘very slight’, ‘slight’, ‘moderate’,
‘somewhat severe’, ‘severe’, ‘very severe’, and ‘maximal’ levels of fatigue, respectively.
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2.3. Experimental Design and Procedure

Due to inclusion of fatigue, multiple sessions were scheduled on separate days per par-
ticipant, to avoid potential carry-over effects. The overall study comprised three separate
sessions (training/session 1, session 2, session 3) with a ~48 h gap between each session
for muscle recovery. We trained and familiarized the participants with study protocol and
the BSIE. Upon signing the consent form, participants first performed a wall-sit task for
self-calibration of the Borg RPE CR-10 scale. This was followed by attachment of electrodes
and sensors, and MVCs from all four muscles (LES, RES, LBF, and RBF) were recorded
by manually restricting body movement while instructing participants to exert maximal
effort in the opposite direction. The first session concluded with participants performing
two repetitions of each experimental task with/without assistance, and then familiarizing
themselves with the BSIE. Adjustments were made according to the manufacturer provided
instruction manual. Proper fit was subjectively confirmed with the participants and the ad-
justments were recorded for subsequent sessions. Each of the two subsequent experimental
sessions included performing bending tasks with/without the BSIE. While this study only
considered dataset for symmetrical bending, asymmetric postures were also performed
with a fifteen-minute break between the posture conditions.

Protocol for experimental tasks in each condition consisted of performing 30 cycles
of repetitive bending at the start (RPE in back: 0 (no exertion)) and at the end (RPE in
back: 7 (medium-high exertion)). Task cycles with 30-s sustained bending, and two 15-s
standing still activities were performed with 15-s intermittent breaks until participants
reached a medium-high fatigue level. We decided these durations based on our pilot
study. RPE ratings in the back region were obtained from participants on the BORG CR-
10 scale after each task cycle. After performing 30 repetitive bending cycles at the end,
the experimental condition was concluded. The second session ended when two/four
conditions were completed, and participants were recalled for performing the third session
after a minimum period of 48 h to allow complete muscle recovery.

2.4. Data Pre-Processing and Feature Engineering

The Nexus 1.7.1 (VICON, Hauppauge, NY, USA) software was used to export data
from each sensor/marker of the EMG, Force Plate, and motion capture systems in a single
(.csv) file that represented 30 cycles of repetitive bending. We developed a custom MATLAB
code to import data from the excel file. Data obtained from the force plate and the motion
capture system will be filtered using a second-order lowpass digital Butterworth filter
with a normalized cutoff frequency of 10 Hz. Meanwhile, the EMG was filtered using a
Butterworth filter in the 30 Hz and 300 Hz band [62,63]. To evaluate variations across the
bending/retraction cycles, we segmented the activity using the position in the z direction
of the upper back marker by detecting bending start/end and retraction start/end portions.
To ensure consistency, the middle 40% of the range of movement, scaled from 0–1, was
selected as shown in Figure 2. Each repetitive bending task was divided into 30 distinct
bending (BD), retraction (RT), and transition (TS) portions. The TS portion was defined as
the spatial movement from the detected end of bending to the detected start of retraction,
which represents the portion where participants switched from bending to retraction.
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Figure 2. Schematic showing segmentation of each bending and retraction cycle from the upper back
marker during 30 cycles of a repetitive trunk flexion task based on type of spatial activity categorized
as bending, retraction, or transition movement.

After segmenting the repetitive bending cycles into distinct portions based on spatial
location of the trunk, we calculated measures from the EMG, force plate, and motion data.
As the raw EMG data cannot be directly used for processing, correlation, or comparison, we
calculated the Root-Mean-Square (RMS) of the signal. Using the RMS, we determined peak
amplitude of muscle activity in each of the four muscle groups (LES, RES, LBF, and RBF)
for each portion (bending/transition/retraction) of each trunk flexion cycle. Normalization
was performed using peak values for each EMG sensor on the back and legs obtained
from MVC trials. Time-series data were converted to the frequency domain using the Fast
Fourier transform (FFT) to calculate the median frequency of the signal. Values for the
first trunk flexion cycle were taken as a reference to calculate change in normalized peak
amplitude and median frequency for each subsequent trunk flexion cycle. This led to a
total of 48 features that represented muscle activity.

For the trunk movement measure, a total of 54 features were extracted from 3 trunk
markers located on the center of upper back, lower back, and hip. First, the norm of velocity
and acceleration was calculated based on position of each of the three markers. Using
the segmented portions, maximum, mean, and variance were calculated for both norm
of velocity and acceleration for each portion of each trunk flexion cycle. Lastly, stability
measures included features extracted from the Ground Reaction Forces (GRF) and Center
of Pressure (COP) location. Specifically, exported files from the VICON Nexus software
included COP locations and GRF for each of the two force plates, as well as combined COP
and GRF values. Using COP coordinates, we calculated the maximum deviation from the
mean values over each portion of each trunk flexion cycle, as well as velocity (based on
position data in the horizontal plane). Mean, peak, standard deviation, and variation in
the velocity of COP and GRF were then calculated per portion of each of the 30 cycles for
all trials performed by all study participants. Obtained results for all three measures were
exported as a separate Excel (.csv) file with each column representing a feature, and rows
representing each trunk flexion cycle. Table 2 shows the total number of features extracted
from measures of trunk movement, muscle activity, and whole-body stability.
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Table 2. Features per portion of trunk flexion cycle (bending, transition, and retraction) extracted
from the measures of trunk movement, muscle activity, and whole-body stability.

Measure (Sensor) Total Sensors Total Features Sensor Location Features per Portion

Trunk Movement
(Motion Capture

System)
3 54 Upper back, lower

back, hip

Maximum of norm of velocity, mean
of norm of velocity, variance in the

norm of velocity.
(per marker)

Muscle Activity
(Electromyography) 4 48

Left and right erector
spinae, left and right

biceps femoris

Peak amplitude of RMS of signal,
median frequency, change in peak

amplitude of RMS of signal, change in
median frequency.

(per sensor)

Whole-Body Stability
(Force Plates) 2 33

Floor-embedded, one
force plate underneath

each foot

Maximum distance of COP, maximum
GRF at left/right foot, maximum

combined GRF, mean of combined
GRF, standard deviation in GRF, peak

COP velocity, mean COP velocity,
standard deviation of COP velocity in
sagittal and coronal plane, variance in

COP velocity, standard deviation of
combined GRF.

2.5. Classification Algorithms and Model Development

We developed custom-tailored code in Python to train and test machine learning
models. Pre-labeled results of feature engineering were imported as a table, followed
by separation based on type of measure. Our dataset consisted of feature groups for the
following scenarios: (a) trunk motion measures, (b) muscle activity features from all four
sensors (LES, RES, LBF, and RBF), (c) features from lower back sensors, (d) features from
LES, € features from RES, and (f) whole-body stability features. Four machine learning
classification algorithms, namely Support Vector Machine (SVM), Logistic Regression (LR),
Random Forest (RF), and XGBoost (XGB), were applied to determine fatigued state over a
single bending/retraction cycle. As per the literature, these approaches are widely utilized
and have demonstrated strong performance in the development of human-movement-
based models [37,40,64]. Feature normalization through standardization was utilized in
the implementation of the SVM and LR methods. A train–test split ratio of 0.8 to 0.2
was employed on the selected datasets to partition the dataset into training and testing
subsets for model training and evaluation, respectively. Lastly, we implemented k-fold
cross-validation with five folds to ensure robustness in our model evaluation process.
The performance of each algorithm was evaluated based on the metrics described in the
subsequent section.

2.6. Performance Evaluation

The performance of all four machine learning models was assessed by comparing
the predicted fatigue labels with the ground truth data using measures of accuracy (A),
sensitivity/recall (R), specificity (S), Precision (P), F1-score (F1), and G-index (G), as shown
in Table 3. For this study, true positive (TP) denotes the trunk bending activity labeled as
fatigued correctly, true negative (TN) is the trunk bending activity labeled as not fatigued
correctly, false positive (FP) is the trunk bending activity labeled as fatigued incorrectly,
and false negative (FN) is the trunk bending activity labeled as not fatigued incorrectly.
Accuracy indicated the ability of the model to detect fatigued state of the trunk bending
activity correctly. Sensitivity and specificity are the ability of the model to recognize the
two states, namely performing bending while fatigued and without fatigue. Precision is the
reliability of the model’s predictions of the fatigued state. The F1-score is the harmonic mean
of sensitivity and precision, while the G-index is defined as the Euclidean distance between
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the point that associates with the best classifier on the receiver operating characteristic
(ROC) curve with the point associated with our model. For assessing the model based on
G-index, we used: (a) optimum if GI ≤ 0.25; (b) good if 0.25 < GI < 0.70; (c) random for
GI = 0.70; and (d) bad for GI > 0.70. Feature importance values provide insights into the
relative significance of each feature in predicting the target variable, with higher values
indicating greater importance. Importantly, the sum of all feature importance values equals
1, offering a normalized measure of their collective relevance. As such, feature importance
values were calculated for high performing algorithms to identify contributions of specific
features towards overall model performance.

Table 3. Measures for performance evaluation of classification algorithms. TP: trunk bending
activity labeled as fatigued correctly, TN: trunk bending activity labeled as not fatigued correctly,
FP: trunk bending activity labeled as fatigued incorrectly, and FN: trunk bending activity labeled as
not fatigued incorrectly.

Performance Measure Acronym Relation to Study Aims Formulation

Accuracy A Ability of the model to detect fatigued
state correctly. A =

(
TP+TN

TP+FP+TN+FN

)
× 100%

Sensitivity/Recall R Ability of the model to correctly identify
all instances of the fatigued state. R =

(
TP

TP+FN

)
× 100%

Specificity S Ability of the model to correctly identify
non-fatigued states. S =

(
TN

TN+FP

)
× 100%

Precision P Reliability of the model’s predictions of
the fatigued state. P =

(
TP

TP+FP

)
× 100%

F1-score F1
A metric to evaluate the overall

effectiveness of the model in detecting
fatigued states.

F1 = 2 ×
(

R×P
R+S

)
× 100%

G-index GI Provides an overall performance of the
model in detecting fatigued states. GI =

√
(1 − R)2 + (1 − P)2

3. Results
3.1. Differences across Classification Algorithms and Measures

Table 4 shows the values of accuracy, specificity, and sensitivity with different clas-
sification algorithms categorized according to the type of measures and their respective
features. The outcome of our analysis showed that the classification algorithms RF and XFB
led to higher accuracy (A), recall (R), and specificity (S) than the SVM and LR algorithms for
all three types of measures. Highest values were seen for the measures of muscle activity
with RF (A: 94.5%, R: 93.6%, S: 95.5%) and XGB (A: 94.6%, R: 94.9%, S: 94.5%) algorithms
with 48 features obtained from all four EMG sensors. This was followed by whole-body
stability and the least predictability was seen for trunk motion measure. Values reduced
with reduction in the number of sensors (as well as features), yet the good predictability
was obtained using RF and XGB algorithms. For instance, XGB (A: 86.1%, R: 86%, S: 86.3%)
was effective in classifying fatigue with data obtained from a single EMG sensor located on
the lower back (erector spinae) muscle. On the other hand, using the data obtained from
the force plate with RF (A: 92.9%, R: 91.9%, S: 94.1%) and XGH (93.5, 94.1%, 93.1%) led to
high predictability. Overall outcomes show that floor-embedded force plates, and EMG
sensors can be more effective in detecting fatigue compared to trunk movement.
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Table 4. Outcomes showing the values of accuracy (A), sensitivity/recall (R), specificity (S), precision
(P), F1 score (F1), and G-index (GI) with different classification algorithms categorized according to
the type of measures of trunk motion (UB: upper back, LB: lower back, Hip: hip), muscle activity
(LES: left erector spinae, RES: right erector spinae, LBF: left biceps femoris, RBF: right biceps femoris),
and whole-body stability along with their respective features.

Measures Number of
Features

Classification
Algorithm A R S P F1 GI

Trunk Motion
(UB, LB, Hip) 54

SVM 62.5 67.5 57.3 - - -

LR 67.8 69.5 66.2 - - -

RF 79.6 77.4 81.7 82.1 0.80 0.28

XGBoost 80 79.7 80.3 80.5 0.79 0.28

Muscle Activity (LES,
RES, LBF, RBF) 48

SVM 74.4 69.2 79.9 77.6 0.72 0.38

LR 76 75.4 77 76.6 0.75 0.34

RF 94.5 93.6 95.5 93.7 93.6 0.09

XGBoost 94.6 94.9 94.5 94.5 94.6 0.08

Muscle Activity (LES,
RES) 24

SVM 75.3 72.5 78.4 77.2 0.74 0.36

LR 69.4 66.8 72.3 70.9 0.68 0.44

RF 90.5 88.7 92.5 90.6 0.89 0.14

XGBoost 91.3 91.5 91.2 91.2 0.91 0.12

Muscle Activity (LES) 12

SVM 75.7 74.7 77.1 76.6 0.75 0.35

LR 66.9 64.7 69.5 68.2 0.65 0.48

RF 84.7 84.7 85 82.4 0.81 0.26

XGBoost 85.1 85.4 84.9 85.2 85.2 0.21

Muscle Activity (RES) 12

SVM 64.7 62.5 67.5 66.47 0.63 0.50

LR 61.7 58.7 65.3 63.1 0.60 0.55

RF 84.6 84.1 85.2 86.1 0.84 0.22

XGBoost 87.1 86.7 87.7 87.6 0.87 0.18

Muscle
Activity—single

sensor (avg(LES, RES))
12

SVM 64.7 68.6 72.3 71.5 0.69 0.42

LR 64.3 61.7 67.4 65.6 0.62 0.51

RF 84.6 84.4 85.1 84.2 0.82 0.24

XGBoost 86.1 86 86.3 86.4 43.1 0.19

Whole-Body Stability
(Force Plate L/R foot) 33

SVM 61.1 49.2 73.1 64.4 0.55 0.61

LR 52.9 59.5 46.7 53.2 0.56 0.62

RF 92.9 91.9 94.1 94.5 0.94 0.09

XGBoost 93.5 94.1 93.1 93.3 0.94 0.10

3.2. Feature Importance Values

Outcomes of performance evaluation showed high performance of RF and XGB
classification algorithms. To identify specific contributions of features, feature importance
values for Random Forest (RF) and XGBoost (XGB) algorithms were analyzed across
measures of muscle activity (four sensors and single-sensor contributions), trunk motion,
and whole-body stability. Looking at trunk motion as shown in Figure 3, acceleration
parameters for the hip marker during the retraction portion emerged as the top contributors
for RF (0.03–0.04), followed closely by parameters for the transition phase. Particularly,
‘Max_normAccHIP1_R’, ‘Mean_normAccHIP1_R’, ‘var_normAccHIP1_R’, which denotes
the maximum value, mean value, and variance of the norm of acceleration of the hip marker
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during retraction portion showed the highest importance for RF. Meanwhile, XGB showed
the ‘Mean_normVelUB1_I’ feature, denoting the average of the norm of velocity of the
upper back marker during transition as the highest contributor. Overall, the features related
to bending exhibited lower importance values (<0.02) across both RF and XGB algorithms.

In the analysis of muscle activity (Figure 4), ‘delta’ parameters, representing changes
in muscle activity over time, were identified as the most influential features for both RF and
XGB algorithms. Specifically, the ‘delta_MF_s4_I’ feature, denoting the change in median
frequency of the EMG sensor placed on the right leg, showed the highest importance
for RF, while ‘delta_EMG_s1_I’, which denotes the change in amplitude of sensor on the
left lower back, displayed highest importance with XGB. Notably, features from sensors
placed on the left (Figure 5) and right erector spinae (Figure 6) exhibited distinct patterns
of importance, with peak activity and ‘delta’ parameters demonstrating high relevance
during specific phases of movement. When only the features from EMG sensor placed
on the left lower back were considered, ‘delta_EMG_s1_R’ and ‘delta_EMG_s1_I’ features
representing the change in amplitude during the retraction and transition portions of trunk
flexion cycles were most prominent with both RF and XGB algorithms. On the other hand,
considering the sensor on right lower back, ‘nPeak_RES_I’, which denotes the normalized
peak amplitude during transition portion, displayed the highest importance for both the
RF and XGB algorithms.
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Figure 6. Feature importance values for measures of trunk motion for Random Forest (RF) and
XGBoost (XGB) classifiers (note: features are displayed in the format ‘value/featurename_portion’,
with portions as B: bending, I: transition, R: retraction).

Looking at the features obtained from whole-body stability (depicted in Figure 7),
‘MeanCOPvel_I’, which represented the mean velocity of the Center of Pressure (COP)
during the transition phase emerged as the most significant feature for both RF (0.07) and
XGB (>0.1). Similar to the measures of muscle activity and trunk movement, top features
from the stability measures were also associated with the transition and retraction phases,
emphasizing the importance of these phases in detecting fatigue.
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4. Discussion

This study focuses on developing an exoskeleton-specific fatigue detection model
through a controlled laboratory experiment where study participants performed 30 repeti-
tive trunk flexion tasks with/without medium-high back fatigue while assisted by a BSIE.
Our detailed analysis included segmenting each bending cycle into three portions based
on the trunk movement as bending, transitioning from bending to retraction, and retrac-
tion. This led to 135 features from measures of muscle activity in the lower back and legs,
trunk motion, and whole-body stability during each trunk flexion and return cycle. While
prior studies have developed similar fatigue detection models by recording physiological
signals [40–43,45,46,54], this study is the first to develop a task- and exoskeleton-specific
fatigue detection model. The fatiguing task selected for this study included intermittent
trunk flexion task cycles with sustained bending and short duration relaxation breaks
(15 s intervals), as most real-world tasks are defined as cycles with a diverse set of static,
sustained, and dynamic activities. Between intermittent task cycles and repetitive tasks, we
performed feature analysis on repetitive tasks, as they provided higher consistency between
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no fatigue and medium-high fatigue levels, as well as a higher amount of datapoints, which
are crucial factors to develop efficient machine learning models.

We assessed the performance of four classification algorithms (SVM, LR, RF, and
XGB) in detecting fatigue while performing BSIE-assisted trunk flexion tasks. These algo-
rithms were primarily selected based on previous studies that developed similar models
to detect/classify fatigue levels [43,45]. The results of our analysis demonstrated that
the Random Forest (RF) and XGBoost (XGB) algorithms consistently outperformed the
Support Vector Machine (SVM) and Logistic Regression (LR) algorithms in terms of accu-
racy (A), recall (R), and specificity (S) across all three types of measures—muscle activity,
whole-body stability, and trunk motion. Similar outcomes have been reported in past
studies, where RF and Gradient Boosted Decision Tree algorithms showed better perfor-
mance over SVM [35,38,43]. Particularly noteworthy were the high values obtained for
measures of muscle activity, with the RF (A: 94.5%, R: 93.6%, S: 95.5%) and XGB (A: 94.6%,
R: 94.9%, S: 94.5%) algorithms utilizing 48 features from all four EMG sensors. High ac-
curacy from EMG measures was expected due to the correlation of muscle fatigue and
global fatigue [36,65,66]. However, placing four EMG sensors in real-world scenarios may
be infeasible due to challenges in field evaluations, especially while wearing EXOs [6]. Sub-
sequent analyses revealed a reduction in values with a decrease in the number of sensors
(and features), yet RF and XGB algorithms consistently demonstrated good predictability.
For instance, XGB achieved good performance (A: 86.1%, R: 86%, S: 86.3%) when utilizing
data from a single EMG sensor located on the lower back (erector spinae) muscle. Interest-
ingly, employing data obtained from the force plate yielded high predictability with RF
(A: 92.9%, R: 91.9%, S: 94.1%) and XGB (A: 93.5%, R: 94.1%, S: 93.1%) algorithms. This could
have been due to a combination of kinematic (movement in COP) and kinetic (ground
reaction forces/GRF) features provided by force plates, as opposed to motion or muscle
activation alone. These findings suggest that floor-embedded force plates may offer greater
effectiveness in detecting fatigue.

The dominance of ‘delta’ parameters in both RF and XGB algorithms (Figure 4) sug-
gests that changes in muscle activity over time play a crucial role in predicting fatigue
during trunk bending tasks. Therefore, when using EMG systems, multiple repetitions of
trunk flexion tasks may be required to accurately classify fatigue level. Meanwhile, looking
at trunk motion, it was expected that movement differences between with vs. without
fatigue could be clearly seen towards the end-effector (upper back) rather than the hip
region. For instance, the upper-body region was found to be most effective in predicting
fatigue during sit-to-stand activities [41]. However, the higher importance attributed to
acceleration parameters for the hip marker during the retraction phase (RF algorithm) un-
derscores the significance of this phase in trunk motion analysis and its potential correlation
with fatigue. Meanwhile, the lower importance values associated with bending parameters
suggest that while trunk bending is a critical component of the activity, other phases such
as retraction and transition may have greater predictive power for fatigue. This could be
because transition and retraction phases require higher effort to work against gravitational
forces, especially given the added weight of the BSIE. Looking at stability, the prominence
of features related to the mean velocity of the Center of Pressure (COP) during the transition
phase suggests that maintaining stability during transitions between different phases of
trunk bending is crucial for fatigue prediction (Figure 7). The consistency of top features
being associated with the transition and retraction phases across measures of whole-body
stability, muscle activity, and trunk motion indicates the importance of these phases in
assessing overall stability and fatigue risk during trunk bending activities. Overall, these
inferences underscore the multidimensional nature of fatigue prediction during trunk
bending activities, emphasizing the importance of exploring diversity in physiological
measures and their corresponding features in developing accurate predictive models.

Outcomes from this study may be used to develop a portable wearable system, or even
a module attachment for BSIEs to indicate fatigued states in their wearers. One example
is shown in Figure 8, similar to previously proposed mobile monitoring devices [67,68].



Appl. Sci. 2024, 14, 3563 17 of 22

Our study shows the success of force plate and single-sensor EMG systems for classifying
fatigued states during trunk bending tasks assisted by a BSIE. Among these two sensor
systems, EMG requires skin preparation, attachments/taping, and may not be optimal
for continuous monitoring of workers. On the other hand, force plates can be embedded
underneath the floor. While EMG-derived features may offer advantages in detecting
muscle fatigue in specific muscle groups, force plate system can provide a comprehensive
assessment of overall body movement, reflecting a global measure of fatigue. This shows
potential opportunities to replace force-plates with insole pressure sensors that provide sim-
ilar measures, specifically acceleration, plantar pressure, COP, and GRF at each foot [35,46].
Our study employed two force plates, each supporting one foot, potentially facilitating
a seamless transition to a pressure insole system. This transition could pave the way for
more accessible and minimally invasive fatigue detection among BSIE users.
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The literature shows several studies focused on developing fatigue detection models
using machine learning methods. These studies utilize sensor outputs to predict perceived
fatigue levels [53,69]. It is important to acknowledge that such models are trained on
datasets generated from experiments, with predicted fatigue labels reflecting respective
experimental conditions. Consequently, the model’s ability to provide reliable predic-
tions in real-world settings depends on the similarity between the task and the training
dataset [41,43]. This study introduces an EXO-specific model for fatigue detection. Specif-
ically, the machine learning model demonstrated in this article was trained on a dataset
derived from a controlled laboratory experiment where participants performed repetitive
trunk flexion tasks while wearing a BSIE. Objective data, obtained through motion capture,
EMG, and force plate systems, were used to extract features, which were then labeled based
on each participant’s perceived exertion for each trunk flexion cycle. Notably, reported
perceived fatigue levels may be influenced by the perception of task demands, which is
potentially impacted by wearing an EXO. Wearers of EXOs might report lower RPE values
due to the assistance provided by the BSIE. For instance, wearing BSIEs has been shown
to enhance maximum acceptable limits by 6% [70]. However, it is also plausible that EXO
wearers may feel more empowered (even with actuator assistance turned off), and thus,
inclined to report lower RPE values than they would without the EXO. A lack of evidence
exists regarding how wearing an EXO might influence the perception of fatigue. Conversely,
objective measurements derived from sensor readings may also vary. For instance, studies
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have reported lower peak amplitude and median frequency of EMG signals in the lower
back during initial and fatigued states when assisted with EXOs [71,72]. Similarly, the
structural components of the device can impact natural body movement [73], thereby af-
fecting kinematics and stability measures. Consequently, a model developed using training
datasets without consideration of EXOs may not be suitable for fatigue detection during
EXO-assisted tasks. By developing an EXO-specific model, our study aims to address the
potential discrepancies in fatigue level prediction, ensuring that predicted outcomes are
more aligned with realistic scenarios.

Although our article demonstrates high performance in detecting fatigue, our study
is subject to a few limitations. The participants in this study included average-sized
adult males, and generalizing findings from this study to a wider population would
require recruitment of participants of varying gender, anthropometric measurements, and
demographics. To confirm whether outcomes obtained from laboratory-based equipment
(e.g., force plate) provide similar results as their portable counterparts, future endeavors
will involve obtaining similar measures as force plates, but with a pressure insole system.
This would also include assessing the performance of insole systems during real-world
trunk bending tasks outside the laboratory settings. The presented findings in this work
can be helpful to ergonomists in implementing BSIEs in industrial scenarios. The dataset
in this study consisted of 30 cycles of repetitive trunk flexion performed with/without
medium-high fatigue. Our next step would include conducting a more comprehensive
study by increasing the number of experimental cycles and recruiting a much larger sample
size. Future work could also delve into field evaluations, focusing on muscle demands in
trunk musculature, such as the trapezius and oblique muscles, especially relevant for tasks
involving asymmetric postures. Additionally, exploring lower body kinematics, stability
measures based on foot contact area derived from marker positions, and a comparative
analysis between the demands imposed on wearers of BSIE across newer and different
types of these wearable assistive devices.

5. Conclusions

Monitoring fatigue levels can be crucial to ensure the safe and effective use of EXOs
in real-world scenarios. Using an experiment involving fourteen participants who per-
formed repetitive trunk flexion tasks with/without fatigue, we extracted features from
muscle activity, trunk motion, and whole-body stability. Our analysis employed four
classification algorithms, i.e., SVM, LR, RF, and XGB, to predict fatigue levels. Notably,
XGB demonstrated high accuracy, recall, and specificity in classifying fatigue using data
from a single EMG sensor placed on the lower back (erector spinae) muscle. Addition-
ally, stability measures showed promising predictability, specifically when using the RF
(A: 92.9%, R: 91.9%, S: 94.1%) and XGB (A: 93.5%, R: 94.1%, S: 93.1%) algorithms. A subse-
quent feature importance analysis demonstrated prominence of transition portion between
bending/retraction portions, and retraction portions of the trunk flexion cycle. These find-
ings underscore the potential of utilizing force plates, with the prospect of replacing them
with pressure insoles, to facilitate real-world fatigue detection during BSIE-assisted trunk
flexion tasks. Overall, efforts presented in this study demonstrate the potential benefits of
integrating technologies with EXOs by utilizing machine learning algorithms to enhance
workplace safety and optimize the utilization of assistive devices in industrial settings.
Further research can delve into developing accurate portable sensing technologies to enable
efficient evaluation of EXOs in real-world industrial scenarios.
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