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Abstract: Ocean Bottom Node (OBN) acquisition is a technique for marine seismic survey that
has gained increased attention in recent years. The removal of shear wave noise from the vertical
component of receivers plays a crucial role in the subsequent processing and interpretation of OBN
data. Previous solutions suffer from noise residue or signal impairment for complex noise and signal
overlap scenarios. In this work, we present and explore a self-supervised deep learning approach
to attenuate shear wave noise in OBN data. It applies a deep neural network (DNN) to perform
adaptive subtraction and comprises two steps to remove the noise associated with the two horizontal
components of receivers, respectively. The two horizontal components are considered as noise
reference and are sequentially fed into the DNN, and the DNN predicts the actual leaked noise from
the contaminated vertical components data. The self-supervised method achieves improvements in
the signal-to-noise ratio (SNR) on a set of synthetic data. The implementation of our method on field
data demonstrates that it effectively attenuates the shear wave noise and preserves the valid signal.

Keywords: OBN; shear wave noise attenuation; self-supervised; deep learning; adaptive subtraction

1. Introduction

Ocean Bottom Node (OBN) acquisition is one of the technologies used in marine seis-
mic surveys. OBN acquisition offers several advantages in contrast to the Towed Streamer
(TS), Ocean Bottom Seismometer (OBS) and Ocean Bottom Cable (OBC) acquisition, such
as the deployment flexibility of the system and the ability to record a wider azimuth and
higher quality of seismic data. In view of the escalating challenges associated with a marine
seismic survey and the continuous demand for high-quality seismic data, OBN acquisition
has been recently used as an appealing alternative [1,2].

The OBN acquisition system acquires data from dual sensors (hydrophone and geo-
phone) placed on the seafloor, which record both the pressure and particle motion of the
wavefield. The data from the hydrophone are denoted as the P-component, while the
three-component geophone records data comprise a vertical component (Z) and two hor-
izontal components (X and Y). A major advantage of multi-component data acquisition
is the capability to achieve up- and down-going wavefield separation through combining
the hydrophone and vertical geophone, which is one of the effective ways to implement
the ghost reflection suppression [3–5]. These processing steps rely on the assumption
that vertical component geophone records the pure pressure wave mode only (while the
horizontal component geophone records shear wave) and that the recorded data are noise
free. However, in field acquisition, due to the complex seafloor structure and poor coupling
of the OBN, the geophone data may be contaminated by a various noises [4,6,7]. In par-
ticular, the shear wave noise leaked into vertical component degrades the effectiveness
of the ghost reflection suppression and is detrimental to further processing steps. As a
result, the vertical component shear wave noise attenuation is an essential step in OBN
data processing.
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The aforementioned process of shear wave attenuation is inherently a subfield of the
denoising problem. The removal of noise (including random and coherent) is a common
and crucial task in seismic data processing, with varying definitions of noise and signal
in different scenarios. In OBN data, the pressure wave recorded by the Z-component
geophone is regarded as a valid signal and the leaked shear wave (X- and Y-component) in
the Z-component as noise. Shear wave exhibits nonrepeatable, incoherent, and random
behavior in common shot gathers (CSGs), while they are characterized by high amplitudes
and successive events like coherent noise in common receiver gathers (CRGs) [8,9]. Treating
it as coherent noise attenuation, most of the research on OBN data Z-component shear
wave removal has been conducted in CRG, as is the case in this paper.

Common coherent noises in seismic data include linear noise, surface wave, ground-
roll, and multiple wave, etc. [10]. Previous attempts to suppress coherent noise can be
roughly classified into filtering- or prediction-based methods. Filtering-based methods
utilize the differences in velocity, dip, and frequency of the signal and noise to design
filters [11,12]. These methods are effective when the signal and noise are separable in the
transform domain, but they do not work well when dealing with complex field data due to
the overlap in the signal and noise [13]. The prediction-based method is to predict the noise
and subtract it from the noisy data, also known as matching subtraction. The least-squares
adaptive subtraction method introduced by Verschuur et al. [14] is widely used for multiple
removal [15–18]. Similarly, Wang and Wang [13] used two horizontal component data as
the reference signal and applied the adaptive subtraction method on OBC data to suppress
the shear noise in the Z-component. Jeong and Tsingas [19] combined the filtering-based
method with adaptive subtraction to remove shear wave noise of OBN data. However,
when the noise energy is stronger than the signal, the effective signal may be attenuated
during the matching subtraction process [20].

Deep learning, as a subset of machine learning, has been growing rapidly in recent
years in areas such as image processing, speech recognition, and natural language pro-
cessing [21,22]. Deep learning learns and makes predictions from complex datasets by
training deep neural networks (DNNs), which are artificial neural network (ANN) struc-
tures with multiple hidden layers. DNNs are able to learn abstract feature representations
by combining multiple nonlinear mapping functions, especially complex nonlinear rela-
tionships [23,24]. In recent years, deep learning methods have been developing rapidly
in the field of geophysics, with applications in almost all stages of seismic processing
and interpretation [25], including denoising [10], velocity model building [26], first break
picking [27], interpolation [28], inversion [29,30] and fault identification [31].

Removal of random noise using deep neural networks is usually trained based on
large training sets where the inputs are contaminated data and the corresponding outputs
are the clean data, which is referred to as supervised learning. The superior performance
of DNNs relies on the extent to which the training set consisting of noisy–clean data
pairs agrees with the distribution of the field data [32]. To address this problem, many
researchers have proposed unsupervised and self-supervised denoising approaches that
only require the contaminated data [33]. For example, Qiu et al. [34] selected favorable
network architectures based on the impedance difference of noise and seismic data as a
prior model for seismic data denoising and designed a stopping criterion to automatically
acquire potentially clean seismic data. Xu et al. [35] proposed a self-supervised method
that combines the capacity of a deep denoiser and the generalization abilities of hand-
crafted regularization for seismic data random noise attenuation. At the same time, all
supervised, unsupervised/self-supervised methods have also made a lot of progress in
coherent noise removal [10,36]. Yuan et al. [37] developed a generative adversarial network
(GAN) training by data pairs with and without ground roll to attenuate the ground roll
in seismic data. Wang et al. [38] proposed a self-supervised deep neural network method
based on a hybrid loss function including localized wavefield characteristics to remove
multiple waves. Li et al. [39] applied an adaptive subtraction method based on U-Net
to represent the complex nonlinear relationship between real and modeled multiples.
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Liu et al. [40] developed a convolutional neural network (CNN)-based matching algorithm
to attenuate surface-related multiples.

For field OBN data, the clean Z-component data are unavailable, therefore the applica-
tion of supervised learning is limited. Wang et al. [20] combined synthetic data with field
data to construct a training set to reduce the discrepancy with field data. It trained the
network as a shear wave noise extractor and then was applied to the field Z-component
data. In this work, we explore a self-supervised learning approach for shear wave noise
adaptive subtraction in OBN data inspired by the methods of multiple wave removal [39,40].
To the best of our knowledge, this study first applies a self-supervised learning approach
to shear wave noise suppression. Specifically, we conduct adaptive subtraction using a
deep learning method. The horizontal component of OBN data are the noise model that is
fed into the constructed DNN, and the output of the neural network is the actual leaked
shear wave in the Z-component recordings. The method does not require clean data and
is a self-supervised learning approach. We perform numerical experiments on synthetic
datasets, and quantitative and qualitative analyses verify the feasibility and effectiveness
of the method. In addition, the experimental results of applying the proposed method
to field data show that the method effectively removes the noise without damaging the
valid signals.

The subsequent sections of this paper are organized as follows. In Section 2, we
give detail of the proposed self-supervised shear wave noise adaptive subtraction method.
In Section 3, we demonstrate synthetic and real data examples to verify its effectiveness.
Then, we present the discussion in Section 4 and a summary in Section 5.

2. Methodology
2.1. The Framework of Self-Supervised Shear Wave Noise Adaptive Subtraction

In OBN acquisition, the data recorded by vertical component (Z-component) geophone
consist of pressure wave (P-wave), unwanted shear wave (S-wave) and other possible noises
such as environmental noise and backscattering noise [19]. Assuming a 2-D Z-component
profile Z ∈ Rnt×ns in CRG, the seismic data can be expressed as

Z = ZP + ZS + N, (1)

where nt and ns indicate the number of time samples and shot indexes, and Z denotes the
fully recorded seismic data. The matrix ZP is the recorded P-wave data that are considered
as valid signals. ZS represents the S-wave noise and N for other noises. ZP, ZS and N are
all with the same dimension as Z. Other noises in the Z-component geophone record are
not taken into account in this paper, then Equation (1) is simplified as

Z = ZP + ZS. (2)

The traditional adaptive subtraction approach estimates a matching filter in every 2D
data window [39], and its mathematical model can be expressed as follows:

zP = z − Sw, (3)

where the vector zp and z with dimension ntns × 1 denote the estimated P-wave data and
the fully recorded seismic data in a single 2-D data window, respectively. S ∈ Rntns×pq

is a convolutional matrix constructed via the S-wave noise model. w ∈ Rpq×1 denotes a
matching filter and also represents the degree of shear wave leakage, where the p and q
denote the temporal and spatial length of the filter, respectively. Due to the nonstationarity
of the seismic data, the leakage weighting is varying in both time and space. The traditional
method estimates w by minimizing the objective function in Equation (4)

f (w) = ∥z − Sw∥2
2. (4)
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This least-squares problem is usually solved using the conjugate gradient least-squares
(CGLS) solver and the iterative reweighted least-squares (IRLS) method [19], considered
as the linear regression problem. In this way, the data information of different windows
cannot be utilized at the same time, and the denoising effect is related to the window
size, the step size, the number of iterations and other factors. Moreover, there is a more
complex characteristic for the actual data. In this paper, DNN is used to realize adaptive
subtraction. The nonlinear mapping between the noise model and the noisy data is fitted
by designing a proper neural network structure and loss function. The fact that the DNN’s
training task of minimizing the loss function is similar to the minimization of the objective
function in the conventional approach. As a result, the network is able to predict the actual
shear wave noise in the Z-component data. In addition, the method performs directly on a
profile of data, fully utilizing the time and space information for signal preservation and
better denoising.

To introduce the mathematical model of the proposed method, we define f (•; Θ) as the
output of a neural network with weights Θ on input •. Figure 1 shows the workflow of the
proposed method, and the structure of the deep neural network is presented in Section 2.2.
Since the shear wave noise in the Z-component data is related to the two horizontal
components (X- and Y-component), we take the X- and Y-component as noise models in
two successive steps to remove the noise related to the X-component (denoted by ZSX) and
the noise related to the Y-component (denoted by ZSY), respectively.

Figure 1. The workflow of self-supervised shear wave noise adaptive subtraction in OBN data.
In the first step, the X-component data are input into the network to predict the noise related to
the X-component, then subtract the noise from the noisy Z-component data. In the second step,
the Y-component data are input to the network to predict the noise related to the Y-component, and
the denoising result is obtained by subtracting the predicted noise.

First, the X-component data (X) are input into the neural network as a noise model
with the following loss function (seen in Equation (5)).

L1(Θ1) = ∥Z − f (X; Θ1)∥2
2. (5)

In this way, the output of the network f (X; Θ1) is expected to be the predicted noise
associated with the X-component after training, which is essentially an estimate of the
true noise with respect to the X-component (symbolized by ẐSX) in Z-component data.
Subtracting ẐSX from Z yields the updated Z-component data Z′ with leaked X-component
noise removed (seen in Equation (6)).
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Z′ = Z − ẐSX = Z − f (X; Θ1). (6)

Naturally, in the second step, Z′ will be further denoised as the updated noisy data
by repeating the above steps using Y-component data (Y) as the reference noise model.
After feeding Y into the network and optimizing the network parameters with Equation (7)
as the loss function, the final denoised Z-component (Zd) can be reconstructed as follows:

L2(Θ2) = ∥Z′ − f (Y; Θ2)∥2
2. (7)

Zd = Z′ − ẐSY = Z − ẐSX − ẐSY = Z − f (X; Θ1)− f (Y; Θ2). (8)

In this case, the minimization of the loss function (Equations (5) and (7)) corresponds
to the minimization of the objective function (Equation (4)) in the traditional method, while
the network parameters correspond to the leakage coefficients (W). Moreover, DNNs can
learn nonlinear mapping relationships, in contrast to the linear iterations of traditional
adaptive subtraction, to better represent the complex relationships of data.

2.2. Network Architecture

The network we used is based on U-Net. U-Net is a fully convolutional network,
first proposed by Ronneberger et al. [41], and widely used in various domains due to its
outstanding generalization ability. The U-Net is composed of two parts: the contracting
path, known as the encoder, is used for extracting features and context information; and a
symmetric expanding path responsible for resolution restoration, which can be understood
as a decoder. The features extracted by the encoder are incorporated together with the
feature maps in the decoder through skip connections. Compared to the standard convolu-
tion neural network (CNN), U-Net uses skip connections so that the low- and high-level
features of the input data do not decay inside network propagation. These architecture
choices collectively contribute to the effectiveness of the U-Net. The structure of the U-Net
network used in this paper is shown in Figure 2.

Figure 2. The architecture of U-Net used for shear wave attenuation of OBN data.

The input to the network is the reference noise (X- or Y-component data), and the
output is expected to be real noise. The encoder on the left consists of four blocks, each
containing two convolutional layers and a maximum pooling layer for downsampling,
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with a total of four downsamplings. After one downsample operator, the number of feature
channels is doubled, and the length and width of the feature map halved. The decoder on
the right contains four blocks consisting of two convolutional layers, a upsampling layer
and a splicing of the feature maps from the corresponding decoder. The last layer of the
decoder is a convolutional layer. The size of the convolution kernels of all layers is 3 × 3,
and the number of feature channels in each convolutional computation is shown in Figure 2.
Except for the last layer, batch normalization (BN) is applied after each convolutional layer
to mitigate over-fitting and reduce the training time [42], and the LeakyReLU activation
function [43] is used to enhance the nonlinearity.

3. Experiments

In this section, we apply the proposed method on one set of synthetic data and one
field data for numerical experiments to verify the effectiveness of our method. The set of
synthetic data is obtained by forward modeling on the Pluto model (Figure 3) to obtain
clean P-wave signal data, and a total of 94 receivers and one seismic source are deployed
with a recording time of 7 s and a sampling interval of 2 ms. The P-wave signal data are
regarded as clean Z-component data. Then, we add horizontal component data (Figure 4b,c)
from the field data in various proportions to obtain a set of noisy Z-component data. Such
an approach mimics the actual situation where noise behaves as coherent noise in CRG,
and the proportions and experimental details are described in Section 3.1. Field OBN
data used in this paper were collected in offshore China. We select part of the data
from one of the CRGs for testing. Each component of the geophone data contains 94
traces of seismic data, and there are 3501 time samples with a time interval of 2 ms in
each trace. The size of synthetic data and field data for experiments are both 3501 × 94.
Before feeding the data into the network, we pad zeros around the data according to the
structure of the U-Net (Figure 2) to ensure that the size of the data remains consistent after
the convolution operation and then normalize the data between 0 and 1. The processed
data are input into the network for training, utilizing the Adam optimization algorithm.
In addition, all experiments are implemented on the Pytorch 1.10.2 framework with CPU
and GPU calculations.

Figure 3. Pluto velocity model used for synthetic data generation. The red asterisk represents the
location of the source, while the green triangles indicate the position of the receivers.
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Figure 4. Synthetic data and X- and Y-component field data. (a) Synthetic P-wave data (synthetic
clean Z-component data). (b) X-component of field OBN data. (c) Y-component of field OBN data.

3.1. Synthetic Example

Figure 4a shows the synthetic seismic data obtained from the Pluto velocity model,
denoted as P. Figure 4b,c show the X- and Y-component from the field data, denoted as
X and Y, respectively. For a clear display, the amplitude of the X- and Y-component are
magnified by two times. Due to the complexity of the causes of shear wave leakage, it
is difficult to model leaking weighting coefficients that are sufficiently approximate to
the actual situation. We add X and Y to the clean P-wave data (P) in a fixed ratio and
perform numerical experiments in the simplified case. The synthetic noisy Z-component
data (denoted as Z) are obtained through Equation (9), where α represents the proportion
of added noise. We set α to 0.5, 1, and 2, respectively, then generate three clean and noisy
data pairs (denoted as Dataset 1-1, 1-2 and 1-3) for experiments. In the network training,
the learning rate is set at 0.001, the batch size is fixed to 1, and the number of iterations is
500. The network hyperparameters are selected by trial and error.

Z = P + α(X + Y). (9)

The noisy data (Figure 5a–c) in the synthetic dataset show a large amount of noise with
different amplitudes, and in many regions, the noise overlaps the valid signal, such as the
blue rectangles area. The second row of Figure 5 displays the denoising results of applying
the proposed method, and the predicted noise and the error of the denoising result with
respect to the clean data are shown in the third and last rows in Figure 5, respectively.
In the denoising results (Figure 5d–f), it can be seen that the large amount of shear noise
shown in the noisy data has been eliminated. The similarity of the denoising results to the
clean data (Figure 4a) demonstrates the effectiveness of the denoising method. The error
graphs (Figure 5j–l) show that there is only a weak residue of noise in the denoising
results. Moreover, no significant signal leakage is observed in the predicted noise and error
diagrams. To better analyze the results, we give the magnified display results of the two
blue rectangles. It can be seen that most of the noise is removed in the noise–signal overlap
region, and there is little damage to the signal. The above results indicate that the method
in this paper can achieve both signal protection and noise removal, and it is still effective in
the signal–noise overlap region.
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Figure 5. Synthetic data example. First row: noisy data of Dataset 1-1 (a), Dataset 1-2 (b) and
Dataset 1-3 (c). Second row: noise attenuation results of Dataset 1-1 (d), 1-2 (e) and 1-3 (f). Third
row: predicted noise of Dataset 1-1 (g), 1-2 (h) and 1-3 (i). Bottom row: difference between the
denoising results and clean data of Dataset 1-1 (j), 1-2 (k) and 1-3 (l) by subtracting Figure 4a from
(d–f), respectively. The two blue rectangles above each image are magnified correspondingly in the
lower left and lower right of the figure.
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Additionally, we report the signal-to-noise ratio (SNR) as a quantitative metric to
analyze the denoising results. The SNR is calculated as follows:

SNR = 10 × log10
∥S∥2

∥S′ − S∥2 , (10)

where S is the clean signal and S′ represents the reconstructed data. As we know, a higher
SNR means a better quality of data. After denoising, the SNRs of noisy data from Dataset
1-1, 1-2 and 1-3 are improved from 6.55 dB, 0.53 dB, −5.49 dB to 16.12 dB, 13.47 dB, 9.47 dB,
respectively, indicating the effectiveness of the proposed method. Table 1 shows the SNRs
of the data before and after denoising.

Table 1. SNRs of synthetic data examples before and after denoising.

Dataset 1-1 Dataset 1-2 Dataset 1-3

Noisy data 6.55 dB 0.53 dB −5.49 dB
Denoising result 16.12 dB 13.47 dB 9.47 dB

3.2. Field Example

Figure 6a shows the raw hydrophone component data, and Figure 6b shows the
raw Z-component data. It can be seen that the Z-component has a lower signal-to-noise
ratio compared to the P-component data, which affects subsequent data processing and
interpretation. The original horizontal X- and Y-component in the field data are shown in
Figure 4, which are pre-processed and then sequentially fed into the network to predict
the noise in the noisy Z-component (Figure 6b). The similarity between the shear wave
noise in the Z-component and two horizontal component data suggests that it is reasonable
to use the X- and Y-component data as the initial noise model. In the network training,
the learning rate is set to 0.001, the batch size is fixed to 1, and the number of iterations is
1900. The network hyperparameters are selected by trial and error.

Figure 6. Field OBN data example. (a) Raw P-component data. (b) Raw Z-component data.

To analyze the denoising results, we plot the original Z-component data and the
denoising results by applying the proposed deep learning method for shear wave noise
attenuation in Figure 7. Black arrows point out much obvious noise, and red arrows
indicate signals. Figure 7b,c show the denoising results and predicted noise by the proposed
method. The blue rectangle of the noisy Z-component is where the noise amplitudes are
large. The noise overlaps the signal and even masks the valid signal. The proposed method
in this paper effectively suppresses the shear wave noise. The magnified display results of
the data corresponding to the blue rectangles in Figure 7 are shown in Figure 8. The black
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and red circles indicate the area where the noise and signal overlap. Our method exhibits
effective denoising in these region. Particularly, the red circles highlight that our method
achieves signal recovery while denoising. In addition, the continuity of the valid signal
is improved.

Figure 7. Field data example. (a) Raw Z-component data. (b) Denoising result by the proposed
method. (c) Predicted noise by the proposed method. The blue rectangular areas are seismic data
from time sampling points 500–1500. Black arrows point out several obvious noise and red arrows
indicate signals.

Figure 8. Magnified display results of the blue rectangular areas in Figure 7. (a) Raw Z-component
data. (b) Denoising result by the proposed method. (c) Predicted noise by the proposed method. The
black and red circles indicate the area where noise and signal overlap.

For field data, we cannot use SNR as a metric for evaluating the denoising results
due to the unavailability of clean data. Inspired by Jeong and Tsingas [19], we utilize the
raw P-component data as a reference to evaluate the denoising results since the pressure
wave recorded by a hydrophone is not disturbed by shear wave noise. Figure 9a shows
the auto-correlation of P-component data used as a reference. Figure 9b shows a cross-
correlation plot between the P-component and the raw Z-component, and Figure 9c shows a
cross-correlation plot between the P-component and the denoised Z-component. Compared
with Figure 9b, Figure 9c has a higher similarity with Figure 9a, which indicates that the
proposed method effectively suppresses the shear noise while retaining the desired signal.
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Figure 9. Correlation plots of the P-component [Figure 6a] with respect to (a) hydrophone (auto-
correlation), (b) raw Z-component [Figure 6b (also Figure 7a)], and (c) denoised Z-component
[Figure 7b], respectively.

Furthermore, we estimate the local slope using the dip2d function in the Pyseistr pack-
age [44] to analyze the denoising effect. Figure 10a shows the estimated local slope of the
P-component data which are considered as the reference indicating denosing performance.
Figure 10b shows the estimated local slope of the raw Z-component data, and Figure 10c
shows the result obtained by the proposed denoising method, which better matches the
reference. The second row of Figure 10 shows the estimated local slope at time sampling
points 500–1500 in the first row, showing more clearly the similarity between Figure 10c
and Figure 10a. These results indicate that the proposed method in this paper can remove
the shear wave noise with protection of the signal, which verifies the effectiveness of
the method.

Figure 10. Local slope estimated from the CRGs of the P-component [Figure 6a] (a) hydrophone,
(b) raw Z-component [Figure 6b (also in Figure 7a)] and (c) denoised Z-component [Figure 7b],
respectively. The second row (d–f): Magnified display result of the estimated local slope at time
sampling points 500–1500 in the first row.
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4. Discussions
4.1. Order of Denoising

Since the shear noise in the Z-component is related to both of the two horizontal
components, we need to consider a different denoising order. First, we do not consider
the case of removing the noise related to both components simultaneously, as this would
make it difficult for the network to distinguish the features of the noise and the signal.
After removing one first, the SNR of the data is improved and the features of the other are
more easily recognized by the network. Different from the previous operation of removing
X- and Y-component leakage successively, we consider the case where the noise related to
the Y-component is removed first in step one and then the noise of the X-component in the
second step.

Table 2 shows the denoising results and SNRs before and after denoising on the
synthetic Dataset 1-1, 1-2 and 1-3 by first removing the noise related to the Y-component
and then removing the noise related to the X-component. The network training parameters
are the same as those in Section 3.1 for comparison. Combined with Table 1, it can be seen
that both denoising orders improve the SNRs of the original data, with little difference in
the magnitude of the improvement.

Table 2. SNRs of synthetic data examples before and after denoising for removing Y-component first.

Dataset 1-1 Dataset 1-2 Dataset 1-3

Noisy data 6.55 dB 0.53 dB −5.49 dB
Denoising result 16.36 dB 14.69 dB 11.14 dB

Considering that the X- and Y-components of the field data may leak noise in dif-
ferent proportions, we generated a second set of clean–noisy data pairs in the manner of
Equation (11).

Z = P + αX + βY. (11)

We generate a total of six clean–noisy data pairs by setting different combinations of
values for α and β and then perform numerical experiments under two denoising orders.
The network parameters are all set with reference to Section 3.1. The SNRs before and after
denoising are shown in Table 3. Denoising order I means that the noise associated with
the X-component is removed first, followed by the noise associated with the Y-component,
and order II is reversed. These results show that both denoising orders improve the SNRs
of the data in various scenarios. Additionally, the proportion of noise leakage associated
with each component is stronger, achieving better denoising results by removing the noise
first. At the same time, this is also related to the energy strength of the two horizontal
components themselves. Overall, removing the component that leaks stronger noise first
can achieve better denoising results. For the field data, we cannot know the proportion
of noise leakage. By comparing the data, we can roughly see that the energy of the noise
related to X-component is slightly stronger than that of the Y-component (seen in Figure 11).
Therefore, for field OBN data, we choose to remove the noise related to the X-component
first and then remove the noise related to the Y-component.

Table 3. SNRs of the second set of synthetic data examples before and after denoising.

Dataset 2-1
(α = 1, β = 0.5)

Dataset 2-2
(α = 0.5, β = 1)

Dataset 2-3
(α = 2, β = 1)

Dataset 2-4
(α = 1, β = 2)

Dataset 2-5
(α = 2, β = 0.5)

Dataset 2-6
(α = 0.5, β = 2)

Noisy data 3.62 dB 1.81 dB −2.40 dB −4.21 dB −1.01 dB −3.77 dB
Order I 15.61 dB 13.43 dB 13.13 dB 8.18 dB 15.57 dB 8.17 dB
Order II 14.74 dB 16.27 dB 10.76 dB 13.59 dB 10.84 dB 14.83 dB
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Figure 11. Comparison of the three components of field OBN data. (a) From left to right, the Y-, Z-, X-
and Z-component. (b) From left to right, the Z-, X-, Z- and Y-component.

4.2. Hyperparameters

The settings of the hyperparameters affect the performance of the network, with in-
appropriate settings potentially leading to the over-fitting or under-fitting of the model.
Network parameter regularization also has the effect of avoiding over-fitting. It is im-
portant to note that, in our context, over-fitting refers to the presence of some signals in
the noise predicted by the network, resulting in signal damage in the output. Conversely,
under-fitting means that the true noise was not adequately predicted, leaving some noise
in the result. In this section, we conduct experiments when removing the noise related
to the X-component (step one) for synthetic data to examine the impact of the learning
rate and network parameter regularization. The initial learning rate is set to 0.001, and the
coefficient for network parameter regularization is set to 0. We then vary the parameter
values for testing.

Figure 12 demonstrates the changes in the loss function values and corresponding
SNRs for network training at a learning rate of 0.001. Figure 13 depicts the variations
in the loss function values and SNRs for network training at a learning rate of 0.01 and
0.0001, respectively. With a learning rate of 0.01, the model exhibits over-fitting after
approximately 50 iterations, causing the loss function to oscillate widely and rendering the
model unstable. When the learning rate is 0.0001, the SNR increases very little as the values
of loss function decrease, indicating under-fitting. Therefore, setting the learning rate to
0.001 gives more reasonable results. Furthermore, using network parameter regularization
brings no significant improvement to the denoising effect in our tests (seen in Figure 14).
Consequently, we choose a learning rate of 0.001 without network parameter regularization
as the optimal configuration during network training.

Figure 12. Loss function and SNR curves in network training without network parameter regulariza-
tion (learning rate = 0.001).
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Figure 13. Loss function and SNR curves in network training without network parameter regulariza-
tion. (a) Learning rate = 0.01. (b) Learning rate = 0.0001.

Figure 14. Loss function and SNR curves in network training (learning rate = 0.001). (a) Weight
decay = 1 × 10−6. (b) Weight decay = 1 × 10−8.

4.3. Limitation and Future Work

The proposed method in this paper does not require clean data. The network learns
the features of the noise from the noise model and makes predictions, essentially employing
self-supervised learning. However, this does not mean that our method is fully automatic.
It is necessary to adjust the network parameters accordingly to different data features due
to the complexity of field data. In addition, the time cost on network training is insufficient
for industrial applications. Therefore, future work will focus on improving the efficiency.
Meanwhile, different DNN structures to replace U-Net to further improve the results can
be considered. Combinations with filter-based methods can also be investigated.

5. Conclusions

In this paper, we provide a new solution to attenuate the shear wave noise in OBN
data. Our method leverages self-supervised deep learning to perform an adaptive subtrac-
tion of shear wave noise. Compared with traditional adaptive subtraction, this method
utilizes the rich information within the data and the powerful nonlinear fitting capability of
DNN. Experiments on synthetic data verify the feasibility and effectiveness of the method.
Simultaneously, the application on field data demonstrates that the proposed method
effectively removes the shear wave noise while protecting the signal. We also conducted a
comprehensive investigation of the denoising order and parameter settings of our method,
providing insights into their influence on the denoising results. In conclusion, the proposed
method can effectively remove the shear wave noise in the Z-component while preserving
the signal, showing potential applications in the processing of data for OBN acquisition.
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The following abbreviations are used in this manuscript:

OBN Ocean Bottom Node
TS Towed Streamer
OBS Ocean Bottom Seismometer
OBC Ocean Bottom Cable
CSG common shot gathers
CRG common receiver gathers
DNN deep neural network
ANN artificial neural network
GAN generative adversarial network
CNN convolutional neural network
CGLS conjugate gradient least squares
IRLS iterative reweighted least squares
BN batch normalization
Leaky ReLU leaky rectified linear unit
SNR signal-to-noise ratio
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