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Featured Application: Brain computer interface for communication with patients in the Completely
Locked-In state.

Abstract: In a completely locked-in state (CLIS), often resulting from traumatic brain injury or
neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), patients lose voluntary muscle
control, including eye movement, making communication impossible. Brain-computer interfaces
(BCIs) offer hope for restoring communication, but achieving reliable communication with these
patients remains a challenge. This study details the design, testing, and comparison of nine visuo-
auditory P300-based BCIs (combining different visual and auditory stimuli and different visual
layouts) with a CLIS patient over ten months. The aim was to evaluate the impact of these stimuli in
achieving effective communication. While some interfaces showed promising progress, achieving
up to 90% online accuracy in one session, replicating this success in subsequent sessions proved
challenging, with the average online accuracy across all sessions being 56.4 ± 15.2%. The intertrial
variability in EEG signals and the low discrimination between target and non-target events were the
main challenge. Moreover, the lack of communication with the patient made BCI design a challenging
blind trial-and-error process. Despite the inconsistency of the results, it was possible to infer that the
combination of visual and auditory stimuli had a positive impact, and that there was an improvement
over time.

Keywords: brain computer interface; completely locked-in state; electroencephalography; longitudinal
study; P300; event-related potentials; amyotrophic lateral sclerosis

1. Introduction

Brain computer interfaces (BCIs) interpret brain signals, allowing communication
with computers by bypassing the usual neuronal muscular pathways [1]. Brain signals
can be obtained through various techniques, including electroencephalography (EEG),
electrocorticography (ECoG), functional near-infrared spectroscopy (fNIRS), or functional
magnetic resonance imaging (fMRI), with EEG being the most commonly used. When a
patient loses the ability to move all voluntary muscles except the eyes, they are referred to as
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being in a locked-in state (LIS) [2,3]. This state is commonly associated with motor neuron
degenerative diseases, such as ALS, as well as stroke and traumatic brain injury. Several
studies report that patients in LIS can use BCI and eye-tracking assistive technologies to
communicate with people in their environment [4,5]. However, when patients’ voluntary
eye movements fade, and a patient enters a completely locked-in state (CLIS), they lose
the ability to control eye-tracking devices, making the use of BCIs the only available
means of communication. Unfortunately, BCIs still remain very ineffective for the CLIS
population (see Table 1 for main results related to the current state of the art). Even
binary YES/NO communication is very difficult to obtain accurately and systematically.
CLIS patients cannot control eye and eye lid movements, leading to eye dryness and the
potential development of corneal ulcers without proper care. Visual-only BCIs might not
provide the desired outcome of a possible method of communication, although Steady
State Visual Evoked Potential (SSVEP) interfaces have proved to be effective in [6]. In
this study, authors used SSVEPs evoked by LEDs and instructed patients to either attend
or ignore the presented stimuli, detecting user intention though SSVEP power spectral
density (PSD). For one of the patients transitioning from LIS to CLIS and experiencing loss
of eye movement control, the LED was positioned approximately 15◦ from the center of
the optic axis to enable attention shifts without requiring the patient to direct their gaze.
Auditory BCIs usually have a lower classification result in healthy populations than visual
BCIs but remain one possible via for patients in CLIS, as the auditory system is believed to
remain intact until late stages of the disease. Pires et al. [7] used an auditory and a hybrid
audiovisual oddball paradigm with spoken words to try to communicate with a CLIS
patient, showing a better neurophysiological signal with the auditory interface than with
the hybrid interface, although no effective communication was achieved. Guger et al. [8]
used vibrotactile stimulation with two or three stimulators (one in each wrist, which were
associated with yes and no answers, and a third one in the shoulder that acted as a distractor)
and used the oddball paradigm to provide a binary communication system. Han et al. [9]
used a left motor imagery and mental subtraction task to implement a binary classifier,
achieving up to 87.5% online performance with a CLIS patient. Naito et al. [10] tested an
fNIRS-based BCI with 17 CLIS patients performing mental tasks associated with yes/no
answers. Ardali et al. [11] also used an fNIRS-based BCI to obtain yes/no answers from
CLIS patients by associating semantic content with the questions. Chaudhary et al. [12]
tested, very recently and for the first time, an intracortical BCI with a CLIS patient. The
patient was implanted with two 64-microelectrode arrays in the supplementary and primary
motor cortex. The BCI paradigm was based on an auditory neurofeedback strategy to
communicate. The brain signals allowed differentiation between low-pitched and high-
pitched tones, with an accuracy above 80% on most days. This strategy was then employed
in a speller interface that allowed the patient to communicate freely. The patient could
correctly spell 131 characters per day, which is a promising result, although it has the
disadvantage of being highly invasive. For a recent review on BCIs used with patients in
LIS and CLIS, please refer to [13].

The state of the art presented above shows that clinical experiments with CLIS patients
are quite insipient, very experimental, and currently limited to yes/no detection. Further
studies are needed, and these studies should be longitudinal in nature to gain a better un-
derstanding of patients’ brain states, including attention spans, fatigue, and variability [14],
and to adjust interfaces to the specificities of each patient. The trial-and-error approach in
the design process takes time, especially considering the possibility that patients may not
fully comprehend the mental tasks proposed [15,16]. Achieving a long-term, at-home BCI
system remains a distant goal that requires substantial progress.

In this study, our primary objective was to establish communication with a CLIS
patient utilizing a P300-based BCI. The option of using a P300 oddball paradigm relied
on the fact that this approach has been the most common and reliable for long-term use
of BCI with patients in late ALS stages including LIS, offering the benefit of possibly
being seamlessly used when patients transition from LIS to CLIS [17]. Over the course
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of ten months, we followed the patient while developing and testing various P300-BCI
versions that we expected to address communication challenges and overcome the patient’s
difficulties. Therefore, the interfaces were designed with a patient-centered approach, but
the iterative process design turned into a blind trial-and-error endeavor due to the patient’s
lack of communication. We developed and tested nine interfaces encompassing different
visual, auditory, and hybrid audiovisual stimuli. Some of these interfaces were also tested
in a systematic way by a control group of five participants for validation and comparison.

Table 1. BCIs studies with CLIS patients. NA—Not available. * Considering only 7 of the 17 CLIS
patients.

Authors Participants Data
Acquisition Stimuli Performance

(Nr. of Sessions)

Naito et al., 2007 [10] 17 ALS CLIS fNIRS Auditory yes/no
questions (binary) 79.6% * (NA)

Ardali et al., 2019 [11] 4 ALS CLIS fNRIS Auditory yes/no
questions (binary) 56.9% (46)

Pires et al., 2022 [7] 1 ALS CLIS EEG Visuo-auditory P300
paradigm (7-class) 30% (1)

Okahara et al., 2018 [6] 3 ALS 1 progressed
to CLIS EEG

Steady-state visual
evoked potentials

elicited by blue and
green LEDs (binary)

80% (191)

Guger et al., 2017 [8] 3 ALS CLIS EEG Vibrotactile P300
paradigm (binary) 70%, 90% (NA)

Han et al., 2019 [9] 1 ALS CLIS EEG Motor imagery (binary) 87.5% (4)

Chaudhary et al., 2022 [12] 1 ALS CLIS Intracortical
Auditory

neurofeedback (binary
with decision tree)

>80% (135)

2. Methods
2.1. Participants

Each developed interface underwent pilot testing with healthy volunteers before being
evaluated with the patient to ensure proper functionality of the interfaces and the intended
effects. Systematic tests involving a control group and a subset of the developed BCIs were
then performed for reference and to compare neuronal patterns and performance with
those obtained with the patient.

2.1.1. CLIS Patient

The patient, a 54-year-old female with limb onset ALS diagnosed 46 months prior
to the initial BCI session, in February 2023, had an ALS functional rating scale-revised
(ALSFRS-R) score of 1. At the beginning of the experiments, she had no eyelid and vertical
eye movements and could no longer use the eye-tracking device she used previously. She
had slight horizontal movement of the eyes, interpreted as a ‘Yes’ response, while the
absence of movement indicated a ‘No’. Only the patient’s husband could interpret the
slight eye movement.

Although she had lost control of the eye-tracking device, it continued to serve as a
means for her family to discern whether her eye was open and to detect attempts at eye
movement, which were indicative of communication efforts. The patient subsequently
entered CLIS some months later. Despite the loss of direct communication, the ERP
waveform analysis suggested that the patient retained visual, hearing, and cognitive
functions, which motivated us to continue the experiments. Table 2 summarizes the main
clinical characteristics of the patient 8 months after the initial BCI session.
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Table 2. CLIS patient characteristics.

Characteristic Patient

Age 54
Gender Female
ALSFRS-R 1
Diagnosis/onset ALS/Limb
Time since onset 57 months
Ventilation/nutrition Tracheotomy/Gastrostomy
Movement control No
Hearing Yes
Tactile sensitivity Yes
Understands what is asked Authors believe so
Attention spans Unknown
Medication Fluoxetine

This study was approved by the Ethical Committee for Health of the University
Hospital Center of S. João, Porto (CHUSJ), complying with the code of Ethics of the
Declaration of Helsinki. Informed consent was obtained from the patient’s husband. The
decision to participate in this study was made by the patient’s family after meetings with
the research team and the medical staff of the CHUSJ palliative care service where the
patient was being followed.

2.1.2. Control Group

The control group consisted of 5 (5 female) healthy volunteers (22.0 ± 2.0 years) with
normal or corrected vision and hearing. An informed consent was given by each participant.

2.2. Data Acquisition

A 16-channel g.USBamp acquisition device (g.tec medical engineering GmbH, Schiedl-
berg, Austria) was used to acquire EEG signals at a sampling rate of 256 Hz. EEG was
acquired with 16 g.Ladybird electrodes (Fz, Cz, C3, C4, CPz, Pz, P3, P4, P07, P08, POz, Oz,
FPz, FCz, FC1, and FC2) placed in a g.GAMMAcap2 (g.tec medical engineering GmbH,
Austria) according to the extended international 10–20 System. The right earlobe was
used as reference and the AFz channel for ground. All electrodes were connected to a
g.GAMMAbox (g.tec medical engineering GmbH, Austria). Signals were filtered by a band-
pass filter between 0.1 and 30 Hz and a notch filter at 50 Hz to eliminate the powerline
interference. Data were acquired, processed, and classified in real-time in a Highspeed
online processing Simulink framework.

2.3. Experimental Protocol

The experiments with the patient were conducted at her home. The patient was in a
wheelchair, in a reclined position. The visits to the patient were done in the late morning
when the patient showed longer attention spans, according to information provided by the
husband. Each visit lasted no longer than two hours. We performed 16 visits to the patient
for data acquisition and testing. At each visit, we performed one or more sessions, where
we tested the same or different interfaces. A total of 31 sessions were conducted during the
16 visits.

The developed interfaces comprised visual (text, symbols, and images), auditory
(spoken words and white noise), or hybrid stimuli (combining visual and auditory stimuli).
The visual stimuli were presented via a screen located at approximately 1 m from the
patient’s line of sight, and the auditory stimuli were presented through earphones. The
stimuli differed on the different interfaces, as explained in Section 2.4.1, but the number
of symbols remained the same during our experiments. The BCIs evaluated in this study
consisted of a P300 oddball paradigm (1 Target and 6 standards (non-Targets)), consisting
of seven stimuli that provide a small Portuguese lexicon, namely ‘SIM’ (Yes), ‘NÃO’ (No),
‘TOSSE’ (Cough), ‘TV’, ‘AJUDA’ (Help), ‘SONO’ (Sleep), and ‘STOP’, which, according
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to the patient’s family members, were the main needs of the patient. The stimuli had a
duration of 550 ms and an interstimulus interval (ISI) of 100 ms.

Each online session was preceded by a calibration to obtain training data for fitting the
classification model. The calibration process (Figure 1a) consisted of the patient focusing
on one word at a time and mentally counting the number of times each word appeared
on the screen and/or was spoken. Each target word was repeated 9 times interleaved
with the non-target words, according to the oddball paradigm, to induce the target-related
potentials. In total, there were 12 words in the training sequence, corresponding to 108
(12 × 9) target trials and 648 (12 × 9 × 6) non-target trials.

Figure 1. Experimental protocol for (a) the calibration; and (b) the online classification sessions.
The interval between each selection is set to 4 s. During online sessions, the number of stimulus
repetitions may be adjusted based on the participant’s performance. Each word (stimulus) can be
associated to a visual or auditory stimuli. Each online session consisted of 10 selections.

During the online session (Figure 1b), the patient was asked to perform a copy-paste
task, wherein she was instructed with one word and required to mentally count the number
of times the specified word occurred. The number of repetitions for each selection was
adjusted to 9, although different numbers of repetitions were tested in some sessions for
comparison. Each copy task consisted of 10 selections.

After the fourth visit to the patient, due to the very low BCI performance achieved,
two modifications were introduced to the experimental procedure: (1) only the words ‘SIM’
and ‘NÃO’ were used in the training sequence, while the P300 oddball paradigm with
the seven symbols remained the same; and (2) in the copy task, we started applying a
filter in the classification algorithm, limiting the selections to ‘SIM’ and ‘NÃO’ choices,
i.e., transforming the 7-class problem into a binary classification. The oddball paradigm
with the seven symbols remained the same as in calibration.

The control group performed the experiments in a laboratory environment, always
using the 7-class BCI.

2.4. BCI Paradigm Design: Visual and Auditory Stimuli

The visual and auditory stimuli were implemented recurring to the Psychophysics
toolbox [18,19] in Matlab R2021b, running on a laptop with the Windows 11 operating
system. Visual stimulation was displayed to the participants on the laptop’s built-in 15.6′′

screen to avoid multi-screen desynchronization of the stimuli, and the auditory stimulation
was delivered through Mi In-Ear Headphones Basic (Xiaomi Communications Co., Ltd.,
Beijing, China).

2.4.1. Stimuli

The BCI was implemented using the g.tec’s Highspeed Simulink framework. The
g.USBamp driver set the sampling rate for EEG acquisition and triggered both visual and
auditory stimuli. The psychophysics routines for stimuli implementation were embedded
in a 2-level Simulink s-function. The stimuli consisted of text words, spoken words, white
noise audio, standard face images, and family face images.
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The audio files were recorded in a Huawei P20 lite phone with Lexis Audio Editor
version 1.2.158, converted from mono to stereo, and saved in the wav audio format. These
files were then edited to increase the volume and filtered to reduce background noise in
Audacity (Audacity Team, version 3.3.2). The white noise audio file was generated in
Matlab 2021b.

The standard face images were obtained from the Radboud Faces Database [20]. Pa-
tient’s family member’s photos were obtained from the patient’s caregiver. The background
was removed from the images and changed to black, leaving only the family members’
faces visible.

2.4.2. BCI Versions and Iterations

The different interfaces tested were developed according to the patient’s needs for
basic communication, with the goal of providing a small lexicon. The interfaces were
designed iteratively, aiming to overcome the challenges posed by the lack of eye movement
and aiming to simplify the interface and increase the patient’s attention and engagement.
Table 3 lists the iterations of the developed BCIs. In the following section, we describe
the several iterations and their rationale (videos for each interface are available at https:
//home.isr.uc.pt/~gpires/videos/BCI4ALL/videos.html (accessed on 11 March 2024),
except for the familiar faces’ interface due to privacy reasons).

Table 3. Iterative design of the BCI interfaces (interfaces highlighted in bold were tested online with
the patient).

Iteration Interface Visual Stimulation Audio Stimulation

1 Va Arrow layout with words ON in green -

2 AVa Arrow layout with words ON in green Spoken words
2 AVNa Arrow layout with words ON in green 4 spoken words and 3 white noise

3 Vsf Standard face in small central layout -
3 Vff Familiar faces in small central layout -
3 AVsf Standard face in small central layout Spoken words
3 AVff Familiar faces in small central layout Spoken words

4 AVNsf Standard face in small central layout 4 spoken words and 3 white noise
4 AVNff Familiar faces in small central layout 4 spoken words and 3 white noise

5 Vsf Standard face in grid layout -
5 Vff Familiar faces in grid layout -
5 AVsf Standard face in grid layout Spoken words
5 AVff Familiar faces in grid layout Spoken words
5 AVNsf Standard face in grid layout 4 spoken words and 3 white noise
5 AVNff Familiar faces in grid layout 4 spoken words and 3 white noise

6 Vsf Standard face in grid layout with
‘SIM’/‘NÃO’ on the same side -

6 Vff Familiar faces in grid layout with
‘SIM’/‘NÃO’ on the same side -

6 AVsf Standard face in grid layout with
‘SIM’/‘NÃO’ on the same side Spoken words

6 AVff Familiar face in grid layout with
‘SIM’/‘NÃO’ on the same side Spoken words

6 AVNsf Standard face in grid layout with
‘SIM’/‘NÃO’ on the same side 4 spoken words and 3 white noise

6 AVNff Familiar faces in grid layout with
‘SIM’/‘NÃO’ on the same side 4 spoken words and 3 white noise

7 AVNw Words in grid layout with ‘SIM’/‘NÃO’
on the same side, words ON in green

4 spoken words and 3 white noise

https://home.isr.uc.pt/~gpires/videos/BCI4ALL/videos.html
https://home.isr.uc.pt/~gpires/videos/BCI4ALL/videos.html
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As a starting point, we used the visual interface tested in [7], adjusted to seven
Portuguese text words (‘Sim’, ‘Não’, ‘Tosse’, ‘Ajuda’, ‘TV’, ‘Sono’, and ‘Stop’) associated to
arrow symbols. The stimuli were highlighted by switching color from gray to green. The
symbols were positioned close together to be within the patient’s foveal region. Given the
poor ERP results obtained with this interface obtained in the first sessions, we decided to
replace the text/arrow symbols with larger images covering the entire range of the screen.
At the flash time, the text word was replaced by an image of an emotionally neutral person.
The rationale of using faces as stimuli was to trigger ERPs related to face detection and
processing and to increase task engagement [21–23]. Given the improvements in ERPs and
in performance, we replaced the standard face with 7 images of the family, expecting to
further improve task engagement and enhance ERPs.

Given the vision impairments in CLIS patients related to the absence of gaze move-
ments and eye dryness, auditory stimuli were added to the previous interfaces. The
auditory stimuli were the 7 spoken words. Purely auditory interfaces and hybrid visuo-
auditory interfaces were created.

Expecting to increase selective attention to ‘SIM’ and ‘NÃO’ options, the previous
versions were modified, replacing the spoken words ‘Sono’, ‘Ajuda’, and ‘Stop’ with white
audio noise.

To further improve the visual component of the ERP, a new grid layout was developed,
consisting of two rows and four columns with both the words and the familiar and standard
faces displayed in a larger size. The distance between the patient and the screen was
adjusted to ensure full view of the grid layout in the foveal region.

Given the significant gaze restriction, the last modification to the visual component of
the interface involved relocating the ‘SIM’ and ‘NÃO’ words from opposite columns to the
same column within the layout. This adjustment was made to ensure that the target stimuli
were in a smaller visual local field.

All visual interfaces mentioned above had an audiovisual version with all spoken
words and an audiovisual version with three words as white noise and the remaining
as spoken words. Figure 2 shows the final visual layout with the ‘AJUDA’ word in the
ON state.

Figure 2. Final grid layout of the interface with the standard face as the ON stimuli used in the AVNsf
BCI. In this screenshot, the word in the ON state (target event) is ‘AJUDA’. See demonstration videos.
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2.5. Classification Pipeline

The classification pipeline is similar to that used in [7,24]. A 1 s EEG segment (epoch)
is extracted for each event in the oddball paradigm. The segments are averaged according
to the number of repetitions used and then normalized to have zero mean and standard
deviation of 1. Then, the EEG of the 16 channels is projected with a statistical spatial
filter called Fisher Criterion Beamformer (FCB) [25] into two projections, aiming to si-
multaneously increase the discrimination between target and non-target epochs and to
reduce space dimensionality. The best features of the projections are then selected using
the r-squared method and used for classification with a Naïve Bayes classifier. The BCIs
tested with the patient include a postprocessing filter to exclusively select ‘YES’ or ‘NO’
target options. The BCI pipeline from stimulation to classification is depicted in Figure 3.
A demonstration code for this classification pipeline is available in Matlab and Python at
https://github.com/gpiresML/FCB-spatial-filter (accessed on 11 March 2024).

Figure 3. Overview of the BCI pipeline used in this study. The participant engages in the task with a
P300-based BCI based on visuo-auditory stimulation. The collected data undergoes preprocessing
followed by feature extraction, where the most relevant features are selected for classification using a
Naïve-Bayes classifier across seven possible classes. A Yes/No filter may be used to limit the choice
to only these two classes, and finally feedback is provided for the detected symbol/word.

3. Results
3.1. Neurophysiological Analysis

The datasets obtained from each session were pre-processed and analyzed using
Matlab R2021b and EEGLAB v2021.1 [26].

3.1.1. CLIS Patient

Figure 4a shows the ERPs for target and non-target events at channel PO8 obtained
during the calibration in the session that provided the best online BCI performance (AVNsf,
which achieved 90% accuracy for the two-class BCI) at channel PO8. The P300 component
can be seen in this experiment with an amplitude of −3.06 µV, as well as a N400 ERP with
an amplitude of −8.15 µV, which can be associated with semantic and face processing [27].
These two components are also statistically different between target and non-target stimuli,
which shows that the patient was perceptually and cognitively aware and performing the
task correctly.

https://github.com/gpiresML/FCB-spatial-filter
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Figure 4. (a) ERPs for the target and non-target stimuli obtained in one calibration session for the
AVNsf condition for the CLIS patient at electrode PO8. The green bars indicate time windows where
target and non-target ERPs were statistically different (two-paired t-test, p < 0.05); (b) Grand average
ERPs for the control group under the same condition. EEG data were not normalized for both groups.

Unfortunately, this well-defined and discriminative pattern was not consistent across
sessions and interfaces. Figure 5 displays the ERPs average for target and non-target events
for all V, A, AV, and AVN conditions on channels Fz and POz, along with the time windows
where the target and non-target events are statistically different (green bars, two-paired
t-test, p < 0.05). In contrast to the previous case (involving only one session), plots in
Figure 5 do not exhibit the expected target ERPs. Additionally, we observe that target and
non-target ERPs are very similar. Although there are time segments showing statistical
significance, they are widely spread and not associated with well-defined peaks. The
absence of well-defined patterns in the waveform makes data analysis more challenging
in narrowing down relevant time windows. The audio component shows an increase in
the amplitude in the frontal region, which is not observed in the occipitoparietal region.
For both the A and V conditions, time windows where the target and non-target events are
statistically different are very few and small (around 450 ms and 650 ms at POz for the V
condition, and around 300 ms at Fz and 450 ms at POz for the A condition). However, when
we combine visual and audio stimulation in both the AV and AVN conditions, the number
and width of statistically different time windows increase (large discriminative window
between 500 and 700 ms at POz for the AV condition, and several discriminative windows
between 450 and 650 ms in the AVN condition for the same electrode). This indicates that
the hybrid interfaces have a better potential for online classification in this patient than a
V-only or A-only type of stimulation.
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Figure 5. Patient’s average ERPs for the target and non-target stimuli responses across all sessions
of each interface type (V, A, AV, and AVN) in different brain regions—electrodes Fz (left) and POz
(right). In the green regions there are statistically significant differences between the target and
non-target stimuli (two-paired t-test, p < 0.05). The data were normalized to have zero mean and a
standard deviation of 1.

To infer the variability of the intertrial signal, a representative example, collected from
one session with the AVNsf condition, is shown in Figure 6a. The color map displays
inconsistent amplitude across trials, indicating a lack of coherence in the perceptual and
cognitive processing of the oddball paradigm. In contrast, in Figure 6b, the color map from
one of the control group participants for the same condition shows consistent intertrial
responses to the stimuli. Furthermore, the variability was quantitatively measured through
the signal-to-noise (SNR) ratio. For example, data collected using the AVNsf interface for
the patient have an SNR of −16.50 dB, whereas for the control group, the SNR ranges
from −3.26 to −13.73 dB, using the same interface. The r-squared metric used for feature
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selection ranged from 0.046 to 0.115 for the patient, compared to 0.193 to 0.491 in the
control group.

Figure 6. ERP color maps obtained in EEGLab at the POz electrode during one calibration session for
the AVNsf condition, shown for both the patient (a) and participant P1 from the control group (b).
Each line represents one trial of the session. The average of the amplitudes for the trials is shown at
the bottom of the figure, generating the ERP graph. These color maps provide illustrative examples
of the intertrial variability observed in the patient’s data during the same session, compared to a
representative participant of the control group. In the patient’s data, intertrial variability is evident in
the columns of the color map, where both positive and negative amplitude values occur for the same
time point in subsequent trials. Conversely, the ERP color map of participant P1 exhibits consistent
amplitudes across trials.

3.1.2. Control Group

The control group ERPs exhibit the typical ERP response for oddball paradigms, with
the presence of the N200 peak with a −4.65 µV amplitude, and the P300 peak, with a 4.48 µV
amplitude at electrode PO8 for the target stimuli in the AVNsf condition, as depicted in
Figure 4b. Furthermore, there are statistical differences between the target and non-target
stimuli from 70–150 ms, 190–500 ms, and 600–700 ms (two-paired t-test, p < 0.05). There is
no noticeable N400 component, although there is a negative peak around 650 ms.

3.2. Online and Offline BCI Performance

Figure 7 shows the online classification accuracies across sessions for the BCIs tested
on the patient. A linear regression is fitted for each tested BCI to infer whether there was any
performance tendency (only for those interfaces which were tested at least in three sessions
and discarding the first four sessions, where the seven-class BCIs were tested). Additionally,
the regression considering all interfaces together was also obtained. Accuracies of 80%
and 90% were obtained in sessions 8, 12, and 9, with the first two for the AVNff interface
and the last for the AVNsf interface. Overall, 59.1% of all sessions were above chance level
once the two-class BCI was employed. The average online classification accuracy for the
two-class BCI was 56.4 ± 15.2%.
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Figure 7. Online classification achieved by the patient for the different interfaces in each session
(typically, each visit consisted of two sessions). The overall classification tendency (linear regression
fitting) for the two-class BCI is depicted with thick dark blue line, while the classification tendencies
for the Vff, AVff, and AVNff conditions are shown in yellow, green, and light blue, respectively. The
remaining interfaces were not tested a sufficient number of times to provide reliable tendency fitting.
The online operation was always performed with nine repetitions. Starting from the fifth visit, the
classification algorithm began using a filter that delimited the choice to ‘Yes’ or ‘No’ (binary selection),
instead of the seven words.

The classification results vary from session to session within the same interface. For
instance, in one session, the highest accuracy was 90% with AVNsf, whereas in the subse-
quent session, it dropped to 30%. These inconsistencies in results indicate that different
factors influence the user’s performance. Additionally, they highlight the difficulty of
drawing conclusive comparisons between interfaces based solely on their performance.

Looking at the overall tendency, we observe an increase of classification over time.
When considering the interfaces individually, the use of familiar faces led to an improve-
ment in classification performance when using both hybrid AV interfaces. Conversely, the
use of visual-only interfaces resulted in a decline in classification across sessions.

Figure 8 depicts the boxplots illustrating the distribution of the classification perfor-
mance obtained during both calibration and online operation phases for the two-class
BCIs. The results from calibration data were obtained using five-fold cross-validation. The
highest median value in online classification was observed with the AVff condition. The
highest accuracy in online classification was achieved with the AVNsf interface, reaching
90%, while the same interface also yielded the lowest classification result of 30%. The
classification accuracy obtained from calibration data was significantly higher than that
obtained online. This discrepancy highlights a lack of generalization in the classification
models, likely due to the very high EEG variability. Therefore, the high classification results
observed in offline calibration sessions did not translate to similar high classification results
in online sessions. All results were obtained for nine repetitions.
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Figure 8. Average classification results obtained for the different interfaces, including both calibration
and online sessions. High offline classification results from the calibration sessions (obtained with
five-fold cross-validation) did not translate into high classification results in the online sessions. All
results were obtained for nine repetitions.

For the control group, the classification results for the online sessions are presented
in Table 4. The AVNsf condition yielded the highest average online classification of
98.0 ± 4.5% with Nrep averaging 2.6 repetitions, while the worst-performing condition
was Vsf with 88.0 ± 16.4%. Therefore, these results confirm the expected impact of the
different stimulation features.

Table 4. Control group online classification performance.

Participant
Vsf AVsf AVNsf

Accuracy (%) Nrep Accuracy (%) Nrep Accuracy (%) Nrep

1 100 1 100 1 100 1
2 100 1 100 1 100 1
3 70 3 80 3 100 3
4 70 5 80 4 100 4
5 100 4 100 4 90 4

Mean ± sd 88.0 ± 16.4 2.8 ± 1.8 92.0 ± 11.0 2.6 ± 1.5 98.0 ± 4.5 2.6 ± 1.5

As referred above, there was a notable disparity in classification performance between
calibration and online operations across most patients’ sessions. However, for the control
group, online classification performance aligned closely with calibration, suggesting that
the proposed classification approach effectively handles the relatively stable data of the
able-bodied group, but struggles in generalizing to the highly variable data of the patient.
Further research into more effective signal processing and classification approaches identi-
fying feature invariant spaces is required. Some progress has been made in this domain by
exploring the use of Riemannian geometry [28], although additional efforts are needed to
overcome this challenge.
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4. Discussion

The main goal of this study was to establish an effective communication channel
with a CLIS patient. With this purpose, we tested multiple stimulation modalities with
various features and combined different layouts and stimulation strategies. Our aim was to
identify an effective combination that allows the exploration of perceptual and cognitive
functions believed to be common among individuals in CLIS. The rationale behind the
modifications implemented in the nine BCI versions was two-fold. Firstly, we aimed
to adjust the interfaces to accommodate the perceptual limitations of the patient, which
involved testing different visual layouts and stimuli sizes. Secondly, we sought to enhance
selective attention and task engagement by introducing stimuli based on images with
emotional content and using auditory white noise stimuli associated to non-target events to
draw attention to target events. The study shows that the different types of BCI stimulation
caused different responses but also that the responses greatly varied within the same type
of stimulation. Both the AV and AVN conditions showed larger discrimination windows
when compared to visual and auditory-only conditions. This positively correlates with
the online performance, where these conditions also attained better results more times.
The visual-only conditions showed lower results, likely influenced by possible eye vision
deterioration and the patient’s tendency to close their eyelids, impacting BCI performance.
Nevertheless, the visual component remained important, especially when combined with
auditory stimuli, as the combined performance surpassed that of visual-only and auditory-
only conditions.

The control group achieved very high classification results for all interfaces requiring
a low number of repetitions to control the BCI system. This outcome was anticipated
due to the simplicity of the BCIs affirming their functionality and the effectiveness of
the classification pipeline. The best performing interface for this group was the AVNsf
condition, with 98.0 ± 4.5% accuracy for 2.6 ± 1.5 repetitions for the seven-class BCI, which
englobed audiovisual stimulation with the white noise audio component. However, no
conclusions about the influence of the white noise component can be made for the CLIS
patient since the corresponding interface for the patient had both the highest (90%) and
lowest (30%) accuracies for the two-class BCI employed. This leads us to conclude that
performance results heavily rely on the mental state of the participant during the sessions.
The performance fluctuation across sessions may be related to variation in attention and
vigilance, as well as in motivation and mood, due to antidepressant medication. The
significant gap between calibration and online results obtained with the patient underscores
the necessity of exploring alternative classification approaches that are more adaptable
in contexts of high EEG variability. While the current processing methods applied are
well-established and have shown effectiveness in healthy populations and individuals in
advanced stages of ALS, exhibiting relatively stable data, they proved ineffective when
applied to the highly variable data of the CLIS patient.

The neurophysiological results obtained with the control group clearly show the
expected ERPs in oddball paradigms, namely the N200 and P300 components. However,
the neural responses observed in the CLIS patient are inconsistent and do not exhibit
evident N200 and P300 ERPs. Moreover, there is no clear waveform discrimination between
target and non-target responses, as shown in Figure 5. A notable exception comes from
the data collected during one session under AVNsf condition, as depicted in Figure 4,
where the P300 is evident and indicates discriminative power. The N200 is also present but
appears weak and lacks discriminative power. Figure 5 highlights the low discrimination
between target and non-target stimuli, with much smaller time windows observed for the
CLIS patient compared to the control group.

There are several possible causes contributing to the ERP variability, resulting in
atypical average signals and the consequent low SNR and reduced discriminative power.
These factors may include fluctuations in attention and vigilance levels, the cognitive
workload demanded by the task, and the patient’s limited working memory for sustaining
attention on target symbols. These processes, which can be related to reduced executive
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functions, can lead to high variability in ERP latency and amplitude. Additionally, external
factors such as repetitive stimulation, inducing SSVEPs, and distractors from adjacent
stimuli may have also contributed to the variability and decrease in target discrimination.

Nevertheless, the ERPs were more consistent than those obtained in our exploratory
study [7] involving a CLIS patient. Previous research has shown that, while a unique
common pattern in the EEG signal of CLIS patients could not be found, it was common for
the EEG signal to show slowing and attenuation of alpha activity, along with significantly
altered auditory-evoked potential responses compared to those of healthy individuals [29].
Additionally, an ECoG study involving a late-stage ALS patient [30] revealed that the P300
component of the signal, detectable when the patient was still able to communicate through
voluntary muscle control, became undetectable three months after the last communication
was made.

Given the highly atypical nature of the observed patient’s ERP waveforms, further
methods and studies are required to understand what potential (confounding) factors
affects target ERPs and to identify other neural correlates that can help predict BCI perfor-
mance. To further elucidate potential signaling effects, future studies should incorporate
BCI paradigms that systematically assess neural responses at different levels, including
reflexive, perceptual, and cognitive processes and isolating the effects of different stimulus
characteristics. This should occur early on at the LIS stage, when patients can provide more
reliable feedback.

Our study provides valuable insights into potential strategies to enhance the feasibility
and efficacy of BCIs for CLIS patients. However, both neurophysiological and classification
results cannot be generalizable to other CLIS patients, given the significant variability in
individual characteristics and conditions within this population.

EEG-based BCIs are still not a reliable communication system for at-home, day-to-day
use for CLIS patients [17]. Moreover, there are only a handful of successful studies utilizing
a functional BCI-based system for CLIS patients. Although we achieved three sessions with
an online classification equal to or above 80%—surpassing the 56.9% achieved in [11] and
comparable to accuracies in [6,8], all achieved with non-invasive techniques—our results
were not consistent and cannot be considered successful as there was no repetition of those
results. However, this underscores the potential of the proposed approaches to be effective
for these patients.

The use of BCIs for communication in patients in CLIS would improve the quality of
life of these patients by allowing them to regain a voice in the decision-making process of
their caretaking needs, as well as allowing a level of social interaction with their surround-
ings, family members, and caretakers. In other words, this would represent a qualitative
improvement within the goals of personalized medicine.

Longitudinal studies are essential for achieving more effective BCIs and could provide
us with additional insights into the neuronal changes during the transition from LIS to
CLIS [31,32]. For this to happen, BCI studies should start once a patient enters LIS, a state
in which patients can still communicate with eye blinks, eye movements, or alternative
communication tools, such as eye-tracking spellers. The implementation of BCI technology
for patients in LIS allows experimenters to directly question a patient’s comprehension
on how to use the system, and possibly facilitates them becoming proficient users before
entering CLIS. BCI studies starting when the patient enters LIS would also allow a longitu-
dinal assessment of the hypothesis of the extinction of goal-directed thinking [15,31]. This
hypothesis states that there is a reduction in arousal, vigilance, and working memory in
patients in CLIS due to the lack of social-cognitive interaction. The continuous use of BCIs
would allow uninterrupted communication, even after losing eye movements, with family
members and caretakers, preventing a decline in executive function. In [6], a patient who
progressed from LIS to CLIS retained the ability to use the BCI acquired in LIS. Additionally,
introducing the interface before entering in CLIS would enable patients to offer valuable
insights, providing feedback on interface design, and express any concerns or doubts about
how the system operates, which were not possible to ascertain in our study. This would
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enable improved personalization. The introduction of BCI for assistive contexts before
an ALS patient even reaches LIS has been explored in [33,34] showing that the mental
strategies used can become helpful in translating these mental strategies when the patient
reaches more advanced states. Thus, early BCI introduction in earlier stages of ALS, even
in LIS, could help prolong patients’ communication capabilities.

Future work is expected to include larger-scale longitudinal studies, with the inclusion
of both LIS and CLIS patients, to address the aforementioned aspects and achieve a more
optimized combination of stimulation strategies and classification algorithms tailored to
patients’ specific needs. Furthermore, BCI sessions with patients should occur in periods
when the patients are known to be awake/vigilant. It is essential to find biomarkers of
patients’ vigilance levels as well as performance predictors. With these goals, an automatic
vigilance detector is underway towards implementation. Additionally, shorter calibration
sessions are required to reduce patient fatigue. Within our group, efforts have been made to
reduce calibration times, albeit so far only having been tested with healthy participants [28].
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