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Abstract: The importance of highly monitored and analyzed processes, linked by information systems
such as knowledge graphs, is growing. In addition, the integration of operators has become urgent
due to their high costs and from a social point of view. An appropriate framework for implementing
the Industry 5.0 approach requires effective data exchange in a highly complex manufacturing net-
work to utilize resources and information. Furthermore, the continuous development of collaboration
between human and machine actors is fundamental for industrial cyber-physical systems, as the
workforce is one of the most agile and flexible manufacturing resources. This paper introduces
the human-centric knowledge graph framework by adapting ontologies and standards to model
the operator-related factors such as monitoring movements, working conditions, or collaborating
with robots. It also presents graph-based data querying, visualization, and analysis through an
industrial case study. The main contribution of this work is a knowledge graph-based framework
that focuses on the work performed by the operator, including the evaluation of movements, collabo-
ration with machines, ergonomics, and other conditions. In addition, the use of the framework is
demonstrated in a complex use case based on an assembly line, with examples of resource allocation
and comprehensive support in terms of the collaboration aspect between shop-floor workers.

Keywords: human-centered; knowledge graph; Industry 5.0; manufacturing ontology; semantic
reasoning; operator support

1. Introduction

The global economy and the developers of MES (Manufacturing Execution System)
and ERP (Enterprise Resource Planning) systems face the challenge of enhancing produc-
tivity while retaining human labor in the manufacturing sector [1]. With the increasing
diversity and complexity of product lifecycle applications, there is a growing need to
digitize knowledge related to various aspects of the industry, such as process planning,
production, and design. It is suggested that the key drivers for transforming data into
knowledge and advancing process automation through interoperable data will involve
KGs (knowledge graphs), semantic web technologies, and multi-agent systems [2]. Ef-
fective representation and communication of domain knowledge are also vital for smart
manufacturing. The primary focus of Industry 4.0 lies in achieving extensive digitization,
while Industry 5.0 aims to merge cutting-edge technologies with human involvement,
characterized as a value-driven approach rather than a technology-centred approach [3].
Industry 4.0 integrates digital technologies such as IoT, artificial intelligence, big data, and
automation into manufacturing processes to improve their efficiency, productivity, and cus-
tomization. By prioritizing connectivity, data exchange, and smart factories, it establishes a
more adaptable and responsive manufacturing setting. Industry 5.0, an emerging concept
based on Industry 4.0, reintroduces human-centric methods into manufacturing operations.
In contrast to Industry 4.0, which focuses mainly on automation and machine-to-machine
communication, Industry 5.0 emphasizes collaboration between humans and machines.
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The objective is to take advantage of the distinct strengths of humans and machines, such
as creativity, problem-solving, and emotional intelligence, to drive increased levels of
innovation, flexibility, and sustainability in manufacturing. Industry 5.0 strives to achieve a
harmonious balance between technology and humanity, using advanced technologies while
giving priority to human well-being, creativity, and empowerment. Furthermore, there is
growing interest in research areas such as industrial humanization [4], sustainability, and
resilience [5]. Within the context of Industry 5.0, the importance of a Knowledge Graph
(KG) is underscored by its ability to represent and analyze intricate data related to human
operators [6].

The networked data structure of this system effectively records essential operator-
related elements like ergonomics, working conditions, and machine cooperation in a sys-
tematic manner. By utilizing ontologies, a structured understanding of human actions in the
manufacturing setting is achieved, guaranteeing compliance with human limitations and
abilities. The graph’s dynamic query and visualization features support real-time monitor-
ing and flexibility. Consequently, the Knowledge Graph (KG) has become a key instrument
for enhancing human-centered approaches in intricate manufacturing environments [7].

The human-centered aspect of the Industry 5.0 idea [3] strives for improved human–
machine interaction, envisioning robots integrated with the human mind to collaborate
rather than compete [8]. Throughout history, humans have influenced cyberphysical sys-
tems (CPSs) significantly, playing a vital role in their establishment and advancement.
Consequently, human intelligence stands out as a crucial and predominant element in
intelligent manufacturing, aligning with the concept of human-cyber-physical systems
(H-CPSs) [9]. To achieve a suitable level of human–machine fusion, the concept of op-
erator 4.0 [10,11] must be assessed. This concept promotes adaptive automation within
collaborative human-automation work systems, fostering a socially sustainable manufac-
turing workforce. A more recent idea, the concept Resilient Operator 5.0 [12], explores
improving the resilience of human operators to various workplace factors, thus facilitating
the implementation of efficient smart manufacturing systems. Additionally, a proposition
is made to model cognitive abilities and task requirements using a human asset administra-
tion shell [13]. Ontology models can also help contextualize key performance indicators
(KPIs) [14], identify indirect effects or influences, and analyze relationships within a com-
plex network [15]. They can also assist in visually representing KPI themes, developing
dashboards [16], and consolidating KPI-related data [17]. Once this relationship with the
decision variable is established, it enables responsive development and optimization. The
ontologies, semantic tools, and industry standards proposed in this paper can support
the development of systems that enhance operators’ resilience, flexibility, and efficiency.
The primary contribution of this study is the introduction of a framework known as the
Human-Centric Knowledge Graph (HCKG), which models elements related to the human
operator, such as monitoring movement, work environment, and collaboration with robots,
using ontology and standards. The framework is exemplified through an industrial case
study and incorporates graph-based data querying, visualization, and analysis. An instance
involving a complex wire harness assembly process illustrates instances of resource alloca-
tion and comprehensive support for human–machine collaboration. The key innovations
and contributions of this paper include the following:

• Suggested the expansion of automation standards like ISA-95, AutomationML, or B2MML
to cover human-centric processes and the application of semantic technologies.

• Advocated for a Knowledge Graph (KG)-based approach to bolster human-centered
and collaborative manufacturing in Industry 5.0.

• Showcased a replicable industrial case study to validate the concept. Various graph-
based analyses utilizing normal, directed, or hypergraphs will be demonstrated,
such as resource allocation assessment, KPI evaluation, or identification of diverse
collaboration forms between human and machine agents in the assembly process.

This research builds upon a previous conference paper [18], which introduced only a
portion of the concept. Initially, Section 2 presents the current state of the field, pinpointing
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knowledge gaps and motivations. The core contribution of the paper is outlined in Section 3,
where the foundational elements of the HCKG design concept are elaborated. Section 4
outlines a wire harness assembly-based case study to trial the human-centered KG-based
design concept. Lastly, the contributions and potential avenues for future research are
discussed in Section 5.

2. State-of-the-Art—Knowledge Gap and Motivation

The integration of collaborative robots into manufacturing processes, known as human–
robot collaboration (HRC), represents a significant advancement in Industry 4.0. Unlike
traditional industrial robots that are confined to isolated cells, collaborative robots are
designed to work alongside humans, using embedded interaction, sensing, and safety
technologies. This enables a hybrid production environment where human and robot
resources are dynamically allocated to optimize productivity, flexibility, and reconfigurabil-
ity. HRC environments aim to overcome the limitations of manual and robotic assembly
lines by providing a novel approach to task allocation and execution that improves overall
manufacturing efficiency and adaptability [19].

Cyber-Physical Production Systems (CPPS) integrate physical processes with digital
technologies to optimize production processes. These systems enable seamless commu-
nication between physical components and digital systems, fostering an adaptive and
intelligent manufacturing environment that is capable of self-optimization and autonomous
decision-making. Information management of emerging industry trends requires an ef-
fective solution, such as KGs, that uses a graph-based data model to capture knowledge
in application scenarios that involve integrating, managing, and extracting value from
diverse data sources, even on a large scale [20]. Semantic technologies such as ontologies,
graph databases, semantic analytics, and reasoning provide an efficient way to process
large amounts of data from multiple sources by making the entire data set transparent
and accessible [21,22]. Semantic networks and graph-based analytics are recommended to
handle process information using linked data features. Knowledge graph (KG) techniques
are capable of extracting data from structured, semi-structured, or unstructured sources
and then incorporating this information into a graph-based knowledge representation [23].
To improve operator working conditions, various monitoring systems, such as sensor
networks, can be utilized to monitor operator movements and physical states, enabling
the assessment of performance metrics [24,25]. In the process of ontology engineering,
systematically adapting ontologies to different production systems and factory settings
requires a thorough initial requirements analysis to ensure deep understanding [26]. Ex-
isting ontologies are meticulously assessed to facilitate reuse and adaptation through a
modular design. Emphasizing granularity and maintaining consistent naming conventions
requires thorough documentation. Seamless integration with existing factory data sources
is carefully coordinated, and an iterative refinement strategy, supported by expert input
and real-world tests, is integrated [1]. Utilizing specialized software and tools, along with
adherence to standards like the OWL (Web Ontology Language) and the RDF (Resource
Description Framework), coupled with stringent governance, guarantees compatibility
and systematic updates. A knowledge reasoning framework has been suggested, using
semantic data to improve real-time data processing in a smart factory setting [27]. A
machine learning semantic layer has been introduced to complement augmented reality
solutions in the industry, providing an intelligent layer [28]. Operators in an Industry 5.0
environment should be able to interact effortlessly with industrial assets while dealing
with more complex assets. To achieve this development objective, a generic semantics-
based task-oriented dialogue system framework like KIDE4I (Knowledge-drIven Dialogue
framEwork for Industry) can offer a solution to reduce cognitive load [29].

The use of international standards can improve the quality of information systems by
facilitating the interoperability of the software tools used. ISA-95 [30] is one of the essential
standards in the field of integration of enterprise control systems and serves as a widely
used basis for designing Industry 4.0 [31], IIoT (Industrial Internet of Things) [1] or smart
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factories [32] related to MES and MOM (Manufacturing Operations Management). To
create a semantically integrated design concept, the production capability and personnel
models of the ISA-95 standard are recommended as a basis for modeling.

B2MML is an implementation of IEC/ISO 62264 [33] to provide a freely available XML
for manufacturing companies [34]. B2MML standard elements are recommended for the
development of problem-specific ontologies, such as the concept of collaborative assembly
workstations [35], where semantic technologies are used to improve interoperability with
external legacy systems such as ERP and MES. AutomationML [36] aims to standardize the
exchange of data in the engineering process of production systems. In an AutomationML
environment, the IEC 62264-2 personnel model [37] provides a method to model the operator
in a production process with the following elements: personnel class, personnel class property,
person and person property. AutomationML is also recommended as an exchange file format
as a step toward automated job design based on optimized resource allocation [38].

Another important point to consider is that human-centric Cyber-Physical Production
Systems (CPPSs) in smart factories and active collaboration between humans and machines
have introduced an ontological framework known as the PSP ontology (Problem, Solution,
Problem-Solver Ontology) [39]. The research focused on integrating the three main con-
cepts of “Problem-Solving Semantically Profile”, “Problem-Solver Profile”, and “Solution
Profile”. In addition to the semantic representation and reasoning of these core concepts,
the study introduced the contingency vector, competence and autonomy vectors, and the
solution maturity index for CPPS [39]. Moreover, due to the insufficient operator-based
models, particularly in decision-making aspects [40], it is recommended to incorporate the
human operator model into the shop floor control system. Enhancing human–machine
interaction through ontologies is recommended. To prioritize human well-being while
ensuring production efficiency, the development of a human-centred intelligent environ-
ment requires the consideration of various factors. There is a high demand for identifying
suitable factors to evaluate human–robot collaboration and ergonomic conditions for fac-
tory workers [41]. A comprehensive framework is required to evaluate Human–Machine
Interfaces (HMI) and Human–Robot Interactions (HRI) in collaborative manufacturing
settings [42]. A comprehensive systematic review [15] categorized the measures, indicators,
and quality factors used in the HRI literature using a methodical approach. The indicators
are grouped into categories relevant to industry 5.0 research, including physical ergonomics
(safety, physical workload, job design), cognitive ergonomics (mental workload, aware-
ness), performance (efficiency, effectiveness), and user experience satisfaction/hedonomics
(emotional responses, acceptance, attitudes, trust) [15]. In the field of ontology engineering,
especially within the Industry 4.0 framework, a structured series of methodical procedures
is adhered to [43]. Initially, a comprehensive analysis of requirements is performed to grasp
the diverse points of view of stakeholders and establish the goals, extent, and requirements
of the ontologies [44]. Before embarking on any new development, existing ontological
resources are evaluated for potential repurposing, focusing on efficiency and the integration
of well-established concepts. Throughout the development phase, specialized tools are
utilized to define essential elements such as classes, relationships, and axioms. A thorough
assessment process, involving expert evaluations and automated validations, ensures align-
ment with recognized standards and specifications. Elaborate documentation is generated
that elucidates the structure and operation of the ontology to enhance comprehension and
stakeholder participation. The final result is incorporated into the Industry 4.0 setting and,
acknowledging the evolving nature of industrial domains, undergoes regular reviews and
improvements to maintain relevance and efficiency [45].

In summary, the knowledge gaps in a semantic framework to support collaborative
and ergonomic manufacturing include the need for effective human-centered design in-
tegration [46], comprehensive manufacturing ontologies [47], robust semantic reasoning
techniques [48], and advanced operator support tools [49]. Addressing these gaps requires
overcoming challenges related to data integration, data quality, real-time analytics, and
scalability in KG-based frameworks [50]. The motivation of this paper is to propose a
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semantic-based framework for human-centric manufacturing and to present an industry-
related case study of KG utilization. In the following section, the concept of HCKG design
is presented after discussing the motivation for this research.

3. Human-Centered Knowledge Graph-Based Concept towards Collaboration
in Manufacturing

This section delves into the primary contribution of this paper, which is the design
concept of the Human-Centered Knowledge Graph (HCKG). Section 3.1 explores the ac-
tivity model associated with the management of manufacturing operations. Section 3.2
describes the different human–robot collaboration scenarios and the key essential per-
formance indicators of a human-centric assembly process. Lastly, Section 3.3 details the
framework of the HCKG concept. The objective of the HCKG design concept is to establish
a framework to monitor and control human–machine collaboration, improve resilience and
agility, and improve working conditions for operators. The knowledge graph incorporates
monitored data concerning the operator’s activities, the environment, as well as all robots
and equipment within the manufacturing space. Through the analysis of the collected
knowledge graph data, collaboration can be enhanced, work instructions can be customized
for the operator, and any modifications can be adaptively managed. Figure 1 illustrates the
integration approach of the HCKG concept. In the initial segment, the Production Process
element represents the intricate production environment encompassing all human–machine
resources, processes, activities, and interactions. The Monitoring System element interacts
with the production process, collecting historical and real-time data using sensors and
IoT devices. Furthermore, the schema element offers semantic tools to establish a con-
textualized data model, while the meta-information element contains meta-information,
such as industry standards, to ensure reusability. In knowledge graphs, Metal pertains
to data about the data itself, providing details such as its source or properties, whereas
Scheme defines the structure, properties, and relationships within the graph, organizing
and standardizing the data model. The initial segment comprises a variety of structured
and unstructured data sources that require preprocessing.

Figure 1. Integration of the HCKG design concept connected to the production process, using
five segments.

Therefore, the second part involves procedures such as parsing, segmenting, and
consolidating data, which constitute the Data Extraction component. The goal of data
extraction is to recognize and retrieve pertinent information from unstructured or semi-
structured data sources of the initial part and to transform it into a structured form for
analysis and optimization. The third section encompasses the Semantic Annotation and
Reasoning components, which leverage semantic modeling and data analysis in a complex
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KG. The Semantic Annotation module constructs the KG utilizing the schema, meta-
data, and extracted data. This process entails the appending of metadata, standardized
labels, or tags to entities and relationships within the KG, such as industry-specific terms
or concepts from a particular domain. Within knowledge graphs, “metadata” refers to
semantic details that delineate the attributes, context, and connections of the data, thereby
enhancing comprehension and interpretation of the underlying information. It enables
applications to recognize and classify diverse entities more precisely within the KG by
furnishing additional context and facilitating more accurate categorization and identifica-
tion within the data model. The HCKG module signifies the human-centric KG aspect
of the established semantic network, which may encompass the entire KG or only the
portion relevant to shop floor workers, depending on the specific scenario. This section
is elaborated further in Appendix A and the case study in Section 4.2. The Reasoning
component enhances the semantic information for the subsequent segment, the component
Application . The reasoning process relies on the concept that the interrelations and links
among various entities in the KG can be leveraged to derive logical inferences and form
novel predictions. In the realm of analytics and optimization, semantic reasoning plays a
crucial role in uncovering patterns, correlations, and causal connections between entities
within the KG. Through the application of semantic reasoning, patterns and correlations
among various data points can be identified, such as determining which machines are
likely to cause delays on a specific production line. By engaging in reasoning across the
KG, the application can determine the most efficient sequence of steps in the production
process to minimize waste and improve efficiency. Human-centric KG applications can as-
sist in managing alarms, scheduling operations or personnel, optimizing human–machine
interactions, recognizing human activities, or analyzing performance metrics. This topic
is further elaborated in Section 4.3 through a case study. The outcome of the application,
along with the analysis results, leads to the operation response (fifth segment), which is
then directed to the production process component. Examples of responses include change
operation , stop operation , reconfiguration , or maintenance .

3.1. Manufacturing Operations Management

This section delves into an expanded MOM activity model, illustrated in Figure 2,
where the components can be categorized based on the timing of their occurrence during
the execution of the task. Although this aspect of the methodology has been previously
documented by the authors in a conference paper [18], the inclusion of the associated
MOMs here aims to enhance the comprehension of the HCKG framework. The temporal
perspective of the general activity model concerning pre-, during, post-, and reference data
is also emphasized [51]. Moreover, the supplementary modules for extending the standard
activity model of MOM [52] are depicted in brown below.

The MOM approach is designed to provide a detailed insight into the mechanisms
linked to the operator’s role in a general manufacturing task, while also emphasizing the
characteristics of the additional monitoring and support framework components. The
generic activity model is segmented into four sections based on a temporal perspective,
indicated by green labels in the diagram, and is evaluated and deliberated upon in a similar
manner. The Reference Data encompasses all the details regarding individual operators,
including their skills, capabilities, and expertise in specific domains. The Resource and
Definition Management segments of the MOM system compile this data and establish
the foundational information for the subsequent operational segments of the model. As
an expansion of the reference data segment, the Control and Optimization component is
suggested, where the integration of machine learning or artificial intelligence solutions can
enhance the ongoing manufacturing processes.
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Figure 2. Activity model of manufacturing operations management from an operator-centric point of
view [18].

The following section in Figure 2 represents the Pre-work phase, where Detailed
Scheduling is employed based on the Operation Request, and Dispatching tasks are carried
out. These actions ensure that all operators receive proper instructions, are efficiently
scheduled, and are assigned tasks accordingly. The actual work segment of the MOM
delineates the ongoing activities managed by Execution Management, while concurrently
conducting Data Collection. Some elements centered on humans are integrated (marked in
yellow text), such as Collaboration or the utilization of Human Activity Recognition (HAR)
sensor technologies. To enhance real-time operator assistance, additional components like
Alarm management, Monitoring and visualization are included as supplementary features.
An intelligent monitoring system can gather data from various manufacturing parameters
such as temperature, noise, or vibration, and display it graphically in real-time, issuing
alerts in case of anomalies.

In the post-work phase of the task, monitoring of operator activities is carried out
to derive an operational response for the MOM. Additionally, the evaluation of operator
performance is utilized, serving as the foundation for Key Performance Indicators (KPIs)
and Human Resource Effectiveness (HRE), which are crucial components in the Knowledge
Graph (KG) used to establish adaptable and resilient conditions for the operators. The
expansion modules of the activity model are intricately linked to the KG through semantic
technologies. The advancement of intelligent cyber-physical systems establishes an envi-
ronment where each aspect of the intricate manufacturing system, involving humans and
machines, is effectively supervised, and the information systems are compatible. The vital
components of the extended MOM model, viewed from the shop floor perspective, include
Operator Performance Analysis, HAR, and Monitoring, which plays a key role in KPI and
metric evaluation. A thorough examination of operator performance can support skill-
based matching and the development of skill clusters. With the growing need for adaptable
production lines, conventional assembly lines might be substituted by self-sufficient work-
stations, referred to as skill clusters, with mobile robots transitioning between them. In
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addition, skill clusters should be furnished with collaborative robots capable of working
safely and reliably alongside operators.

3.2. Human–Robot Collaboration and Key Performance Indicators

This section delves into the various categories of workstations and collaboration
scenarios that are of significance within the context of the case study under consideration.
In addition, a concise summary of the primary performance metrics related to human-
centered, ergonomic, and human–robot collaboration is provided. Depending on whether
the actors involved are human or robotic, different types of workstations can be identified:
manual, collaborative, and automatic [53]. Within a collaborative workstation setup, further
categorization is established based on the nature of the interaction between human and
robot actors during work tasks, aiming to yield a more comprehensive case study. Figure 3
illustrates three different types of collaboration [42,54]:

1. Separate work: Human and robot tasks are kept apart, and they do not share
workspaces, tools, or workpieces.

2. Sequential collaboration: Although the human and robot actors are in a shared process
flow of a workpiece, tasks are completed in succession. The workspaces, tools, and
workpieces may be shared, but the tasks are strictly serialized such that any sharing is
temporally separated.

3. Simultaneous collaboration: Human and robot tasks are executed concurrently and,
moreover, may involve working on different parts of the same workpiece but are
focused on achieving separate task goals.

4. Supportive collaboration: Humans and robots work together on the same piece of
work to complete a common task.

Figure 3. Separate (1.), sequential (2.), simultaneous (3.), and supportive (4.) types of human–robot
collaborations [42].

The key performance indicators (KPIs) focused on human factors are outlined in Table 1
across six distinct categories: time behavior, physical measures, HR physical measures,
efficiency, effectiveness, and ergonomics. Furthermore, the Operator 4.0 typologies [46]
have been incorporated into these KPIs in the second column, illustrating the potential to
facilitate the establishment of a harmonious relationship between humans and automa-
tion. A study that assesses the quality of human–robot interaction [15] has been partially
referenced, although it does not offer a comprehensive overview of the subject matter. Ad-
ditionally, a paper on ontology-driven KPI metamodeling [14] has been taken into account
in this case study, focusing on a semantic technology perspective.

Table 1. The categorized human-centric KPIs for the case study.

KPI Description Operator 4.0 Type

Time behavior category

Average time to complete task Analytical operator
Collaboration time—Type-3 and Type-4 Collaborative operator

Functional delays Analytical operator
Human operation time Analytical operator

Interaction time Collaborative operator
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Table 1. Cont.

KPI Description Operator 4.0 Type

Response time Collaborative operator
Robot functional delay Collaborative operator
Robot operation time Collaborative operator
Task completion time Analytical operator
Total assembly time Analytical operator
Total operation time Analytical operator

Physiological measures category

Biosignals (temperature, tactile, etc.) Healthy operator
Ergonomics improvement Healthy operator

Muscle activity Healthy operator
Ocular behavior Healthy operator

HR physical measures category

Avg./min. length between a human hand and
a robot hand Collaborative operator

Human–robot distance Collaborative operator

Efficiency category

Availability Collaborative operator
Average robot velocity Collaborative operator

Concurrent activity Collaborative operator
Degree of collaboration Collaborative operator

Layout efficiency Analytical operator

Effectiveness category

Accuracy Analytical operator
Interaction accuracy Collaborative operator
Level of assignment Collaborative operator
Level of interaction Collaborative operator

Overall equipment effectiveness Analytical operator
Real-time human fault Analytical operator
Real-time robot fault Collaborative operator

Ergonomics—environmental category

Environmental condition—noise Healthy operator
Environmental condition—humidity Healthy operator

Environmental condition—temperature Healthy operator
Environmental condition—gases Healthy operator

3.3. Design Structure of the HCKG Concept

This section outlines the methodology and presents a summary of the proposed
development framework in a block format, as illustrated in Figure 4. The main objective
is to integrate the human-centric KG block within a sophisticated industrial setting. The
framework comprises five distinct blocks (or sections), commencing with the metadata
sources from a business or industrial network and culminating in the application that
leverages the information to generate value.

The meta block includes essential data to characterize the business processes and
describable elements of a plant, such as material or information flows, starting from the
foundational level. Markup languages and standards like B2MML (Business To Manufac-
turing Markup Language), AutomationML, or ISA-95 establish the initial framework for
handling and overseeing the diverse data sources and processes within a complex network.
It is advisable to expand existing standards such as ISA-95. A critical aspect of industrial
progress involves utilizing standardized models, which facilitate the seamless integration
of a new design concept into a production system and enhance the adaptability of existing
methodologies, thereby making the learning curve for technical aspects more dynamic.
The next component is the Schema and PPR block, representing the three descriptive on-
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tologies within an Industry 4.0 setting. The product, process, and resource ontologies can
comprehensively depict the entire network in a semantic format. Various assets, whether
physical or human attributes, characteristics, and specific values, are structured as ontology
axioms (individuals) and classified into classes. Furthermore, semantic properties, rules,
and queries support interoperability and the depiction of relationships, such as actors’
capabilities, the sequence of manufacturing activities, or resource allocation. PPR-based
modeling aligns with AutomationML and serves as a method for establishing knowledge-
driven mappings of products, processes, and resources in assembly automation [55]. The
primary advantage of PPR-based modeling lies in facilitating the management of engineer-
ing datasets’ mappings and connecting product attributes to manufacturing processes and
resources. Moreover, knowledge-driven PPR mapping can aid in dynamically configuring
and analyzing assembly automation systems [56]. The IoT Block comprises monitoring
devices and sensors for conducting observations, along with HAR, which are essential
inputs for the higher-level human-centric block—a pivotal component. Additionally, IoT
devices form a complex system that necessitates separate management due to the diversity
of smart devices and sensors. The so-called VAR ontology encompasses three key elements:
tangible assets, intangible assets, and dynamic status.

Figure 4. Theoretical structure of the proposed human-centered knowledge graph-based design
concept [30].

The human-centric block includes the monitoring, evaluation, and operator support
ontologies, with the goal of gathering and analyzing relevant information related to the
production process, collaboration, human activities, or working conditions in the factory.
Its primary aim is to keep the operator informed and assist them in various aspects such
as ergonomics and collaboration. In a setting where humans and robots work together,
feedback is crucial not only from the control or machine perspective but also from the
human perspective, focusing on real ergonomic features, process parameters, and other
input from the operator. Operators on the factory floor can offer valuable insights for the
MOM’s Operations Response, which should be integrated into the semantic-based data
management system supporting CI/CD (Continuous Integration and Continuous Delivery)
practices. The application block encompasses all the valuable information that the HCKG
can provide for tasks like scheduling, resource allocation, enhancing KPIs and HRI factors,
assessing collaboration aspects, or conducting simulations. The end user, whether a process
engineer, factory worker, or production manager, is primarily interested in this segment
as it delivers the final outcome of the semantic-based analysis. The application block can
aid in exploring integrated uncertainty through simulations and assessing collaboration or
business processes. Furthermore, scheduling and allocations can be optimized based on the
performance metrics obtained. Other issues like the cybersecurity of large infrastructures,
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which are not covered here, are likely to remain significant challenges in the foreseeable
future. Subsequently, a case study demonstrating the application of the proposed KG
framework is presented following the discussion on the KG design concept.

4. Human-Centered Knowledge Graph Representation for a Wire Harness
Assembly Process

This section illustrates the implementation of the HCKG approach elaborated in
Section 3. Initially, a case study specific to the industry is outlined in Section 4.1. The
establishment and organization of the generated KG are thoroughly examined in Section 4.2.
Lastly, Section 4.3 demonstrates the visualization and examination of the production data.

4.1. Wire Harness Assembly-Based Case Study

A recent study on research and development [57] emphasized the importance of ex-
ploring collaborative robots in wire harness assembly. The authors of this study also delved
into the analysis and design of Intelligent Collaborative Manufacturing Spaces (ICMS)
using a hypergraph-based approach similar to a referenced benchmark [58]. The wire
harness assembly sector served as the inspiration for the case study discussed in this paper.
Specifically, the case study focused on the manufacturing processes of a multinational wire
harness assembly plant. Detailed information cannot be disclosed due to confidentiality
policies; however, the proposed methodology is continually undergoing validation with
manufacturing experts. Figure 5 illustrates the factory floor layout, featuring a coordinate
system that establishes a grid for assigning operators and production resources like robots
and machinery. The case study incorporates a real-time location system (RTLS) that moni-
tors the whereabouts of assembly workers and assets. The X and Y axes on the shop floor
correspond to potential RTLS-based positions. Distances required for material handling
and transportation can be determined from the grid. Furthermore, the shop floor is divided
into 18 distinct areas, for instance, ST_11, which can accommodate workstations.

Figure 5. The grid layout of the benchmark shop floor.

A dual production system comprising batch and traditional production was specified,
and the workflow is depicted in Figure 6, which is derived from an actual wire harness
industry assembly line. This process involves two assembly lines that share tasks and
resources. The components of these lines are detailed in Table 2. The shop floor includes
two storage areas, multiple buffers, crimping stations, and assembly stations. The second
group of components encompasses human–machine agents, which can be operators or
robots, as well as production line assets, such as machines, tools, screwdrivers, and the AGV
(Automated Guided Vehicle). Additionally, specific capabilities are necessary to perform
designated tasks, along with sensor components, to oversee the collaborative environment.
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Figure 6. The process flow of the wire harness assembly line benchmark.

Table 2. The elements of the wire harness assembly lines.

Work sections of the production lines

Storage [K1, K2]
Buffer [B1, B2, B3, B4, B5, B6, B7, B8]

Crimping stations [Crimping 1, Crimping 2, Crimping 3,
Crimping 4]

Assembly stations [Assembly 1, Assembly 2, Assembly 3,
Assembly 4]

Human–machine members and assets

Operators [O1, O2, O3, O4, O5, O6, O7]
Robots [R1, R2, R3, R4, R5, R6]
AGV [AGV1]

Machines [M1, M2, M3, M4]
Tools [E1, E2, E3, E4, E5]

Capabilities [C1, C3, C6, C7, C8, C9]

A detailed list of activity types for this benchmark problem can be found in
Appendix A in Table A2, encompassing categories such as the crimping process, assembly
process, or material handling, along with the definitions of the outcomes associated with
these activity types. It is crucial not only to define the activity types but also their results for
effective process tracking and collaboration. A more comprehensive overview of the wire
harness assembly benchmark is presented in Appendix B, where each activity type of the
intricate industrial process is outlined in Table A1, followed by detailed descriptions of the
sequence of activities in Tables A3 and A4 of the Appendix B, as highlighted in this study.
In addition to the main elements listed in Table 2, other attributes of the elements include
the following Capabilities necessary for carrying out specific activities: C1—insertion and
laying of parts (cabling), C3—terminal handling, C6—terminal screwing, C7—crimp ma-
chine operation, C8—loading or unloading of the AGV, and C9—workpiece transport on
the shop floor. Moreover, there are specialized tools, some of which are shared across the
process, namely E1—wiring tool, E2—hose tool, and E3–E5—screwdrivers. Additionally,
various unique Machines (M) are allocated to different Crimping Stations, while Tools (E)
are considered communal assets within Assembly Stations.

In Figure 6, the brighter-colored elements represent Production line 1, while the
darker ones represent Production line 2. Shared assets and resources are visualized in
the middle. Material handling steps during production are indicated with arrows, which
can be carried out as a one-piece-flow by operators or through an AGV-based transport
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system. Additionally, the distances over which materials are moved are marked with
purple numbers. The process flow, illustrated in Figure 6, begins at Storage 1, where the
operator known as jumper O1 loads AGV1 (using capability C8) with a batch, which is
then transferred by AGV1 to either Crimping station 1 or 3 (using capability C9), where the
unloading is performed by operator O2 or O5 into the local buffers B1 or B5. The subsequent
steps are identical on both production lines, with the continuation of the process description
focusing on Production line 1. As per the production plan, operator O2 carries out crimping-
related activities listed in Table A2 that necessitate capability C7. Furthermore, machine
M1 is utilized during these crimping activities. Subsequently, operator O2 transfers the
workpiece to operator O3 at Assembly station 1 (one-piece-flow). Operator O3 and robot
R1 collaborate, carrying out activities related to capabilities C1, C3, and C6. Additionally,
tools E1–3 are employed during the activity steps at Assembly station 1. At the conclusion
of the process, operator O3 places the workpiece into buffer B2. Upon the completion of
a full batch, the same operator loads AGV1, which transports the batch of cables to the
subsequent buffer, B3. Subsequently, robot R2 unloads the buffer and performs activities
related to capability C7 and machine M2 at Crimping station 2. Following this, robot R2
transfers the workpiece (one-piece-flow) to operator O4 at the subsequent station, Assembly
station 2. At the final workstation of Production line 1, operator O4 and robot R3 collaborate
to carry out activities requiring capabilities C1, C3, and C6. At the end of the assembly line,
operator O4 places the workpieces into buffer B4. Upon completion of a full batch, the same
operator loads AGV1, which delivers the products to their final destination, Storage 2.

Furthermore, it is important to mention that this case study also includes different
types of sensors, the purpose of which is to make observations about each activity, hu-
man, and machine of the production line, as well as to monitor the working conditions.
These groups of sensors are camera systems, RTLS, robot-embedded sensor data, machine-
embedded sensor data, environmental sensors, and human body sensors.

All three categories of workstations are included in this instance focusing on collab-
orative work. Crimping Station 1 and 3 are characterized as manual workstations, while
Crimping Station 2 and 4 are classified as automatic workstations. The research features
four collaborative workstations, denoted as Assembly stations 1–4. The specific case study
on harness assembly delves into collaboration types 3 and 4. An illustration of concurrent
and supportive collaboration is shown in Figure 7. In this simplified scenario, four distinct
outcomes are observed, corresponding to the tasks executed by the entities Robot 3 and
Operator 4. For instances Result 28 and 31, where both human and robot actors engage in
similar activities on the same product, they engage in supportive collaborations aimed at
achieving the same assembly result. On the contrary, Result 29 and 30 involve different
activities, with human and robot actors operating on the same product simultaneously
but pursuing different objectives. The idle period occurs when Robot 3 must wait for
Operator 4.0 to complete their task, as they share the same workstation.

Figure 7. Gantt chart of collaboration scenarios.

4.2. Development of the Industry-Specific Human-Centered Knowledge Graph

A section of the KG that has been utilized in the case study discussed in Section 4.1
is depicted in Figure 8, excluding the distinct data properties of the ontology classes.
The structural illustration in Figure 8 is segmented into six sets of ontology classes since
the KG comprises multiple sub-ontologies. Moreover, the object properties, representing
relationships among classes, are indicated on the arrows.
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Figure 8. Partial structural diagram of the developed wire harness assembly-specific KG.

Prefixes indicating adapted namespaces from other industry-specific ontologies are
included in the names of the ontology classes. The following list summarises these prefixes
and the ontologies used:

• smo—Smart Manufacturing Ontology [59]: An ontology to model I4.0 production
lines and smart factories based on RAMI 4.0. It highlights the sequence of processes
and machines required for a produced workpiece.

• SOSA—Sensor, Observation, Sample, and Actuator ontology [60]: For modeling the
interactions between the entities involved in terms of observation, actuation, and
sampling. Together with SSN (Semantic Sensor Network), it can be used to describe
sensors and their observations, the involved procedures, the studied features of
interest, the samples used to do so, the feature’s properties being observed or sampled,
as well as actuators and the activities they trigger [61].

• var ontolog y [35]: A core ontology for data exchange in a semantic-oriented framework
to support adaptive, interactive, assistive, and collaborative assembly workplaces.

• hckg—Human-Centric Knowledge Graph: The authors created a set of classes and
properties to model the wire harness assembly-based case study semantically.

The product ontology includes three categories: product, part, and component. The
complexity of this domain, previously addressed by the authors in [62], is not further
explored here. The Process ontology is composed of the subsequent categories: Activity,
Result, and ManufacturingFacility, which encompasses additional subclasses like Storage,
Buffer, AssemblyStation, CrimpingStation, and Capability. The primary category in the



Appl. Sci. 2024, 14, 3398 15 of 27

Resource ontology is Resource, which includes various subclasses such as Tool, Machine,
and Robot. The Robot category is further divided into MobileRobot and IndustrialRobot.
The EnergySupply category is also part of the resource ontology. The Operator category, a
central element of the human-centered HC, is highlighted in green at the center of the HC
structure in Figure 8. The operator category, which semantically characterizes the processes
and impacts related to personnel on the shop floor, is associated with six distinct object
properties. The Monitoring ontology comprises three categories: Sensor, Observation,
and HAR_Analysis, storing the semantic model of sensor devices, their measurements,
observation, and human activity recognition. The Evaluating ontology contains two cat-
egories: KPIStore and LogDataStore, designed to handle data from the aforementioned
three categories. Lastly, in the Operator Support Ontology, the DAS category defines the
digital assistance system. Considering that the categories Operator and Activity are pivotal
in the KG, Tables 3 and 4 provide details on the corresponding object properties.

Table 3. Object properties of the Activity class.

hckg:Activity

component Requires Activity

Connects individuals from the component and activity
classes and provides information about the required

activity to assemble a specific component on the
wire harness.

activity Has Precedence
Since the assembly procedure requires a specific sequence,
certain activities must be finished before another can be

started. This is known as the precedence criteria.

activity Has Result
Describes the intended result of a particular activity. In the
case of collaboration, several activity individuals may be

connected to the same result individual.

activity Requires Resource Interlinks Tool, Machine, or Robot individuals to an
activity as a resource requirement.

activity Requires—Manufacturing
Facility

Workstation requirement of an activity. Connects activity
individuals with the ManufacturingFacility individuals

such as Storage, Buffer, AssemblyStation, or
CrimpingStation.

activity Requires Operator Connects operator individuals to an activity as a
personnel requirement.

activity Requires Capability
Describes the capability requirement of a specific assembly

activity, which has to be conducted by an Operator or
IndustrialRobot.

Table 4. Object properties of the Operator class.

smo:Operator

activity Requires Operator It provides information about a certain operator involved in
certain activities.

operator Allocation

Semantically connects operators with Manufacturing Facility
individuals such as Storage, Buffer, AssemblyStation, or
CrimpingStation. It provides information on where the

operator performs his/her work.

performed By Connects Results with Operators and shows which operator
was involved in which result(s).

equipped To Describes the usage of devices from the Digital Assistance
System by operators.
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Table 4. Cont.

smo:Operator

is-a SOSA: Observable Property
Semantically connects the properties, which are monitored by

sensors with operators and shows how personnel
are monitored.

is-a SOSA: Feature Of Interest Main class of the feature of interest of the SOSA:Observation

smo:hasCapability Shows which capabilities require a specific operator.

In addition, some of the key features of the use of semantic technologies and graph
analysis from a human-centered approach are presented in Table 5 [63]. These analytics
can help to better monitor and understand the HRE [64] and KPI [65] factors. In addition,
Table 5 provides an example of its application for each network metric.

Table 5. KG metrics and analytical features.

Network Metrics Analytical Features of KGs

Centrality
computation

Which are the critical objects in the network?

Detect the most significant influencing factors in the operator’s
environment.

Similarities
between nodes

and edges

How similar are two objects based on their properties and how are they
connected to other objects?

Solve allocation problems concerning operators and resources.

Flows and paths
What is the shortest, cheapest, or quickest way to perform a process step?

Optimise the shop floor layout to best match operator needs.

Cycles
Are there any cycles in the graph? If so, where are they?

Analyze tasks allocated to humans and machines in a collaborative work
environment

Network
communities

What communities can be found in the production network?

Facilitate the design of human–machine collaboration or cell formation.

Once the use case-specific knowledge graph has been established and the necessary
data have been imported into the semantic network, the subsequent stage involves for-
mulating queries and examining the outcomes. Consequently, the subsequent subsection
delves into the examples of graph-based knowledge analyses that were utilized.

4.3. Discussion on KG-Based Analytics of the Use Case

Initially, Figure 9 shows the graphical representation of the complete knowledge graph
(KG) related to the wire harness assembly case study. This visual depiction serves as a
means to validate the manufacturing process. The complete network is illustrated on the
left side, encompassing all properties and entities within the KG, while a more detailed
view is presented on the right side. The orange node corresponds to the equipment E5 and
includes various associated data properties like locationID (18-4), equipmentCondition (86),
equipmentID (E5), equipmentName (screwdriver C), and equipmentType (screwdriver).

All the SPARQL queries that have been developed are accessible on our website at
https://github.com/abonyilab/HCKG (accessed on 14 March 2024). The initial instance
of a SPARQL query-based data mapping, as referenced in [66], is illustrated in Figure 10.
The left section of Figure 10 shows a graphical representation of the query, where four
distinct rules are outlined to achieve the intended result. This particular example aims to
identify RobotAssets categorized as IndustrialRobot s and seeks to present three associated
data elements: Location , EnergySupply , and ManufacturingFacility. On the right side
of Figure 10, a graphical representation of the result of the query is provided. Robot

https://github.com/abonyilab/HCKG
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assets classified as IndustrialRobot s are depicted as orange nodes, each necessitating an
EnergySupply referred to as g2 (electricity). Each IndustrialRobot node is linked to
the corresponding workstation node (ManufacturingFacility ), which represents various
assembly stations, illustrated in purple in this scenario. Lastly, the location data attributes
of the robots are denoted by blue nodes (indicating the robots require two zones on the
shop floor). This type of visual examination can aid in exploring dependencies concerning
specific assets.

Figure 9. Visualization of the entire KG of this case study (on the left-hand side) and some of the
data properties of equipment E5 (on the right-hand side—zoom into the red rectangle).

The resulting graph in Figure 11 illustrates the connections between Actors (operators
or robots) and the Capability entities they are linked to. This illustration can be utilized for
a visual examination of production capability. In Figure 11, it is evident that the majority of
actors possess the capability C8 (AGV loading/unloading). Moreover, robots are limited
to a maximum of two capabilities, whereas operators can concurrently possess up to
four capabilities.

Figure 10. Visualization of the RobotAsset query (on the left-hand side) and the graph visualization
of the result (on the right-hand side).
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Figure 11. Visualization of the Actors-Capability query (on the left-hand side) and the graph
visualization of the result (on the right-hand side).

A more intricate data query aimed at identifying sensor alerts transmitted to DAS
devices is outlined in Figure 12. Initially, the KG is streamlined to include only the sensor,
observation, and observed nodes, which are then refined to encompass sensor instances
categorized under type names starting with “env” or “body”, denoting environmental or
body sensors. Subsequently, additional data are integrated into the dataset, specifying
attributes such as observationValue, warningLimit, and alarmLimit. A subsequent filter is
employed to isolate instances where the observationValue exceeds the warningLimit. The
output comprises a compilation of the DAS device name, the message content, and the
device’s location. On the right-hand side of Figure 12, a graphical representation showcases
only the most pertinent segment of the query outcome. Here, the purple nodes symbolize
the sensor’s location, the red nodes depict the message relayed to the DAS, and the green
nodes correspond to the specific operator integrated into the DAS device, such as Smart
Glass. Notably, in the graph located in the lower right corner of the figure, the locations of
the observation sensor and the DAS device coincide, indicating that they are body sensors.

Figure 12. Visualization of the sensor-observation-DAS query (on the left-hand side) and a graph
visualization of the result (on the right-hand side).

In the context of Operator 7 (O7) and Robots 6–7 (R6 − R7) collaborating at Assembly
Station 4, as depicted in Figures 13 and 14 illustrates the application of the time KPI
for human–machine collaboration. The graph in Figure 14 displays the total duration
of supportive collaboration (type 4). Notably, O7 dedicated more time to collaborative
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assembly with Robots 5 and 6 than to individual tasks. Furthermore, the graph highlights
simultaneous collaboration (type 3), particularly between Operator 7 and Robot 6 in the
last two columns. To analyze both type 3 and the sequence of concurrent collaborative
assembly actions, it is essential to examine the outcomes and precedence of these activities.
Consequently, Figure 15 presents the results of a knowledge graph query visualized through
directed graphs, depicting precedence relationships. In these graphs, yellow nodes signify
the activities, while purple nodes represent the outcomes.

Figure 13. Visualization of human–robot actors and the performed results at Assembly station 4 in
the form of a graph (on the left-hand side) and hypergraph (on the right-hand side).

Figure 14. Distribution of assembly work in terms of operator O7, including the total supportive,
simultaneous, and individual times.

Figure 15. Directed graph result and activity nodes (on the left-hand side) as well as the same result,
including the human–machine actor nodes (on the right-hand side).
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The directed edges represent different object properties of the KG, namely:

• done—activityHasResult object property: shows the result condition of a specific
activity if the assembly task is performed.

• prec.—activityHasPrecedence object property: represents the precedence criteria of an
activity that has to be carried out before the specific activity can be started.

• perform—performedBy object property: describes the human or robot actor that
performs the activity.

The tasks and outcomes that serve as a foundation for analyzing the process flow,
where the order of steps and conditions can be traced from tasks a75 to a83, are presented
on the left side of Figure 15. An expanded visualization, which includes the perform
connections indicating that a human or robotic agent has performed a specific task, is shown
on the right side of the same figure. Examining the inbound and outbound connections
of a directed graph [67] enables the identification of clusters [68] within the network. By
applying this approach, it can be inferred that if a result node has multiple completed
incoming connections, it has been carried out through a collaborative effort involving actors
of type-4 support, as indicated in the instances of tasks a77 − a78 and a81 − a82. In such
scenarios, the actors are required to wait for the completion of the same outcome (priority
is given) before commencing different tasks simultaneously on the same work item.

According to the precedence graph, when two or more activity nodes are assigned the
same precedence (prec. edge) but lead to different outcomes (done edge), it indicates a type-
3 concurrent collaboration. In Figure 15, it is evident that activities a79 and a80 are executed
simultaneously after receiving the same precedence (res63), yet they generate distinct
results upon completion (res64 and res65). The outcome of this section is a conceptual
dashboard, shown in Figure 16, where the percentages indicate the levels of operator
competence and robot health. The findings from the previous query, along with the KPIs in
Section 3.2, can serve as data sources for smart glasses, shop floor dashboards, the DAS, or
other intelligent devices.

Figure 16. Conceptual dashboard for human-centric manufacturing—competence and condition
levels of operators and assets.

5. Conclusions and Future Work

This article introduces the design idea of a Human-Centred Knowledge Graph (HCKG)
that is based on industry norms and semantic technologies related to Industry 5.0 advance-
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ments. A block structure is presented as an enhanced version of the MOM model and the
development framework. The study thoroughly considers the tasks performed by opera-
tors, encompassing movement assessment, collaboration with machines, work sequences,
and ergonomic aspects. It is also emphasized that the integration of activity recognition
technologies can enrich the valuable data within a knowledge graph in a smart factory set-
ting. The issue of insufficient operator monitoring and assistance is discussed in the context
of existing industry standards, advocating for a new human-centric approach to contempo-
rary manufacturing practices. In the coming factories that use knowledge graphs, the data
collection and knowledge exploration processes will be automated, thereby facilitating the
creation of human digital twins and the adoption of Industry 5.0 technologies.

Our objective was to summarize current methods and tools for semantic development
and to introduce a concept for creating standard models of human-centered collaboration,
illustrated through an industrial case study. The key contributions of this paper are as follows.

• Emphasized the importance of incorporating human factors into cyber-physical systems.
• Proposed an expansion of automation standards (ISA-95, AutomationML, B2MML) to

include human-related processes and demonstrated the use of semantic technologies.
• The concept was validated through a replicable industrial case study. Various graph-

based analyses were conducted using different types of graphs such as normal, di-
rected, or hypergraphs, including resource allocation analysis, KPI evaluation, and
the integration of a DAS.

• The application based on HCKG facilitated the identification of various forms of
collaboration between human and machine actors in the assembly process.

• Furthermore, a conceptual design was put forward for a human-centric manufactur-
ing dashboard.

Future research will focus on enhancing the design of human–machine and human–
human collaboration in manufacturing by implementing the HCKG concept in an intelligent
environment. Several areas for improvement should be considered in future studies. One
aspect is the incorporation of additional functionalities within the application block, such
as an uncertainty simulator, a collaboration assessment tool, or an intelligent scheduling
mechanism. Moreover, integrating HCKG into a digital twin and implementing closed-loop
optimization and decision support could further strengthen the proposed approach. Lastly,
it is crucial to encompass the entire HCKG pipeline and establish automated data retrieval
within the shop floor and the semantic network.
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Appendix A. Applied Methodologies and Software Tools

Figure A1 shows several processing stages of a data pipeline based on a study [69]
that aims to create KGs for the automation industry. In addition, an end-to-end digital twin
pipeline [70] has been taken into account.

https://github.com/abonyilab/HCKG
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Figure A1. Knowledge graph pipeline based on [69].

It is beyond the scope of this paper to discuss the data acquisition and import selection
parts of the pipeline. Only the KG, the ontology creation, the data queries, the mapping,
and the data enrichment and visualization will be discussed. The phases, the methods
used, and the different software stages of the industrial case study presented are shown in
Figure A2.

Figure A2. The steps of the applied method.

Before processing the TTL file in a Python 3.12.3 environment using Pyvis (a Python
library for visualizing networks) [71] and KGlab [72,73], the sub-ontologies and the whole
KG were developed using Protégé [74]. Either Protégé or KGlab can be used to import
data into the ontology skeleton and to create axioms and properties in Python. For each
data query, SPARQL language has been used [66]; moreover, Pyvis offers a graphical
representation. Having mapped the semantic data, it was further aggregated in Python
to obtain data-enriched graphs for analysis. Normal, directed, or hypergraphs can also be
used for graph-based visualization of KG data. Finally, as a concept (denoted by a dashed
line in Figure A2), the key information, generated charts, statements, or messages can be
displayed on dashboards and DAS devices, or fill any other elements of the application
block with data, as previously presented in Figure 4.

Appendix B. Assembly Activities of the Wire Harness Production Benchmark

Table A1. Description of the different activity types throughout the wire harness assembly benchmark.

Activity Type ID Description of the Activity Type

t1 Point-to-point wiring on a chassis
t2 Laying in a U-channel
t3 Laying a flat cable
t4 Laying wire(s) onto the harness jig
t5 Laying one end of a cable connector onto a harness jig
t6 Spot-tying onto a cable and cutting it with a pair of scissors
t7 Lacing activity
t8 Lacing activity
t9 Inserting into a tube or sleeve

t10 Attachment of a wire terminal
t11 Screw fastening of a wire terminal
t12 Screw-and-nut fastening of a wire terminal
t13 Circular connector
t14 Rectangular connector
t15 Clip installation
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Table A1. Cont.

Activity Type ID Description of the Activity Type

t16 Loading of the AGV
t17 Transportation
t18 Manual handling of a wire from a buffer
t19 Positioning of a crimp into a vise
t20 Inserting a wire into a crimp
t21 Starting a machine
t22 Crimping
t23 Manual handling of a semi-finished product
t24 Handover of a semi-finished product
t25 Positioning of a crimp into a fixture
t26 Manual handling of a semi-finished product into a buffer
t27 Unloading of the AGV

Table A2. The activity types in the wire harness assembly process and their results.

Crimping Process

t18 Manual handling of a wire from a buffer
Result: One piece of wire is moved to the crimping station from the buffer.

t19 Positioning of a crimp into a vise
Result: Crimp is positioned into a vise.

t20 Inserting a wire into a crimp
Result: Wire is inserted into a crimp.

t21 Starting a machine
Result: Machine is running.

t22 Crimping
Result: Crimping is finished.

t23 Manual handling of a semi-finished product
Result: Semi-finished product is removed from the vise.

t24 Handover of a semi-finished product
Result: Semi-finished product is moved to another station.

Assembly process

t2 Laying in a U-channel
Result: U-channel is laid in the right assembly zone.

t4 Laying wire(s) onto a harness jig
Result: Wire(s) is (are) laid correctly onto a harness jig.

t9 Insertion into a tube or sleeve
Result: Tube is inserted into the correct sleeve.

t11 Fastening of the terminal with screws
Result: Terminal screws are fastened.

t25 Positioning of a crimp into a fixture
Result: Crimp is correctly positioned into the fixture.

t26 Manual handling of a semi-finished product into a buffer
Result: Semi-finished product is placed into the buffer.

Material handling

t16 Loading of the AGV
Result: Parts are loaded on to the rack of the AGV.

t17 Transportation by an AGV
Result: AGV moved the position from the source to its destination

t27 Unloading of the AGV
Result: Parts are unloaded from the rack of the AGV.
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Table A3. The sequence of activities as well as the results of the proposed wire harness assembly
benchmark and their details—Part 1.

Activity ID Activity Type ID Result ID Result Type ID Process Step Number of Process Steps

a1 t16 res1 res_type_16 Storage 1—AGV1 1
a2 t17 res2 res_type_17 Storage 1—Buffer1 1
a3 t27 res3 res_type_27 AGV1—Buffer1 1
a4 t18 res4 res_type_18 Buffer1—Crimping1 Batch size
a5 t19 res5 res_type_19 Crimping1 Batch size
a6 t20 res6 res_type_20 Crimping1 Batch size
a7 t21 res7 res_type_21 Crimping1 Batch size
a8 t22 res8 res_type_22 Crimping1 Batch size
a9 t23 res9 res_type_23 Crimping1 Batch size

a10 t24 res10 res_type_24 Crimping1—Assembly1 Batch size
a11 t24 res10 res_type_24 Crimping1—Assembly1 Batch size
a12 t25 res11 res_type_25 Assembly1 Batch size
a13 t02 res12 res_type_02 Assembly1 Batch size
a14 t02 res12 res_type_02 Assembly1 Batch size
a15 t04 res13 res_type_04 Assembly1 Batch size
a16 t04 res13 res_type_04 Assembly1 Batch size
a17 t09 res14 res_type_09 Assembly1 Batch size
a18 t09 res14 res_type_09 Assembly1 Batch size
a19 t11 res15 res_type_11 Assembly1 Batch size
a20 t11 res15 res_type_11 Assembly1 Batch size
a21 t26 res16 res_type_26 Assembly1—Buffer2 Batch size
a22 t16 res17 res_type_16 Buffer2—AGV1 1
a23 t17 res18 res_type_17 Buffer2—Buffer3 1
a24 t27 res19 res_type_27 AGV1—Buffer3 1
a25 t18 res20 res_type_18 Buffer3—Crimping2 Batch size
a26 t19 res21 res_type_19 Crimping2 Batch size
a27 t20 res22 res_type_20 Crimping2 Batch size
a28 t21 res23 res_type_21 Crimping2 Batch size
a29 t22 res24 res_type_22 Crimping2 Batch size
a30 t23 res25 res_type_23 Crimping2 Batch size
a31 t24 res26 res_type_24 Crimping2—Assembly2 Batch size
a32 t24 res26 res_type_24 Crimping2—Assembly2 Batch size
a33 t25 res27 res_type_25 Assembly2 Batch size
a34 t02 res28 res_type_02 Assembly2 Batch size
a35 t02 res28 res_type_02 Assembly2 Batch size
a36 t04 res29 res_type_04 Assembly2 Batch size
a37 t09 res30 res_type_09 Assembly2 Batch size
a38 t11 res31 res_type_11 Assembly2 Batch size
a39 t11 res31 res_type_11 Assembly2 Batch size
a40 t26 res32 res_type_26 Assembly2—Buffer4 Batch size
a41 t16 res33 res_type_16 Buffer4—AGV1 1
a42 t17 res34 res_type_17 Buffer4—Buffer9 1
a43 t27 res35 res_type_27 AGV1—Storage 2 1
a44 t16 res36 res_type_16 Storage 1—AGV1 1
a45 t17 res37 res_type_17 Storage 1—Buffer5 1
a46 t27 res38 res_type_27 AGV1—Buffer5 1
a47 t18 res39 res_type_18 Buffer5—Crimping3 Batch size
a48 t19 res40 res_type_19 Crimping3 Batch size
a49 t20 res41 res_type_20 Crimping3 Batch size
a50 t21 res42 res_type_21 Crimping3 Batch size
a51 t22 res43 res_type_22 Crimping3 Batch size
a52 t23 res44 res_type_23 Crimping3 Batch size
a53 t24 res45 res_type_24 Crimping3—Assembly3 Batch size
a54 t24 res45 res_type_24 Crimping3—Assembly3 Batch size
a55 t25 res46 res_type_25 Assembly3 Batch size
a56 t02 res47 res_type_02 Assembly3 Batch size
a57 t02 res47 res_type_02 Assembly3 Batch size
a58 t04 res48 res_type_04 Assembly3 Batch size
a59 t04 res48 res_type_04 Assembly3 Batch size
a60 t09 res49 res_type_09 Assembly3 Batch size
a61 t09 res49 res_type_09 Assembly3 Batch size
a62 t11 res50 res_type_11 Assembly3 Batch size
a63 t11 res50 res_type_11 Assembly3 Batch size
a64 t26 res51 res_type_26 Assembly3—Buffer6 Batch size
a65 t16 res52 res_type_16 Buffer6—AGV1 1
a66 t17 res53 res_type_17 Buffer6—Buffer7 1
a67 t27 res54 res_type_27 AGV1—Buffer7 1
a68 t18 res55 res_type_18 Buffer7—Crimping4 Batch size
a69 t19 res56 res_type_19 Crimping4 Batch size
a70 t20 res57 res_type_20 Crimping4 Batch size
a71 t21 res58 res_type_21 Crimping4 Batch size
a72 t22 res59 res_type_22 Crimping4 Batch size
a73 t23 res60 res_type_23 Crimping4 Batch size
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Table A4. The sequence of activities as well as the results of the proposed wire harness assembly
benchmark and their details—Part 2.

Activity ID Activity Type ID Result ID Result Type ID Process Step Number of Process Steps

a74 t24 res61 res_type_24 Crimping4—Assembly4 Batch size
a75 t24 res61 res_type_24 Crimping4—Assembly4 Batch size
a76 t25 res62 res_type_25 Assembly4 Batch size
a77 t02 res63 res_type_02 Assembly4 Batch size
a78 t02 res63 res_type_02 Assembly4 Batch size
a79 t04 res64 res_type_04 Assembly4 Batch size
a80 t09 res65 res_type_09 Assembly4 Batch size
a81 t11 res66 res_type_11 Assembly4 Batch size
a82 t11 res66 res_type_11 Assembly4 Batch size
a83 t26 res67 res_type_26 Assembly4—Buffer8 Batch size
a84 t16 res68 res_type_16 Buffer8—AGV1 1
a85 t17 res69 res_type_17 Buffer8—Buffer9 1
a86 t27 res70 res_type_27 AGV1—Storage 2 1

References
1. Mantravadi, S.; Møller, C.; Chen, L.; Schnyder, R. Design choices for next-generation IIoT-connected MES/MOM: An empirical

study on smart factories. Robot. Comput.-Integr. Manuf. 2022, 73, 102225. [CrossRef]
2. Bai, J.; Cao, L.; Mosbach, S.; Akroyd, J.; Lapkin, A.A.; Kraft, M. From platform to knowledge graph: Evolution of laboratory

automation. JACS Au 2022, 2, 292–309. [CrossRef] [PubMed]
3. Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst.

2021, 61, 530–535. [CrossRef]
4. Tran, T.A.; Ruppert, T.; Eigner, G.; Abonyi, J. Retrofitting-based development of brownfield Industry 4.0 and Industry 5.0

solutions. IEEE Access 2022, 10, 64348–64374. [CrossRef]
5. Grabowska, S.; Saniuk, S.; Gajdzik, B. Industry 5.0: Improving humanization and sustainability of Industry 4.0. Scientometrics

2022, 127, 3117–3144. [CrossRef] [PubMed]
6. Longo, F.; Mirabelli, G.; Nicoletti, L.; Solina, V. An ontology-based, general-purpose and Industry 4.0-ready architecture for

supporting the smart operator (Part I—Mixed reality case). J. Manuf. Syst. 2022, 64, 594–612. [CrossRef]
7. Martynov, V.V.; Shavaleeva, D.N.; Zaytseva, A.A. Information technology as the basis for transformation into a digital society

and industry 5.0. In Proceedings of the 2019 International Conference “Quality Management, Transport and Information Security,
Information Technologies” (IT&QM&IS), IEEE, Sochi, Russia, 23–27 September 2019; pp. 539–543.

8. Nahavandi, S. Industry 5.0—A human-centric solution. Sustainability 2019, 11, 4371. [CrossRef]
9. Zhao, M. Understanding of a New Generation of Intelligent Manufacturing based on RAMI 4.0. Strateg. Study Chin. Acad. Eng.

2018, 20, 90–96. [CrossRef]
10. Gladysz, B.; Tran, T.A.; Romero, D.; van Erp, T.; Abonyi, J.; Ruppert, T. Current development on the Operator 4.0 and transition

towards the Operator 5.0: A systematic literature review in light of Industry 5.0. J. Manuf. Syst. 2023, 70, 160–185. [CrossRef]
11. Ruppert, T.; Jaskó, S.; Holczinger, T.; Abonyi, J. Enabling technologies for operator 4.0: A survey. Appl. Sci. 2018, 8, 1650.

[CrossRef]
12. Romero, D.; Stahre, J. Towards The Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems. Proc.

CIRP 2021, 104, 1089–1094. [CrossRef]
13. Eesee, A.K.; Jaskó, S.; Eigner, G.; Abonyi, J.; Ruppert, T. Extension of HAAS for the management of cognitive load. IEEE Access

2024, 12, 16559–16572. [CrossRef]
14. del Mar Roldán-García, M.; García-Nieto, J.; Maté, A.; Trujillo, J.; Aldana-Montes, J.F. Ontology-driven approach for KPI

meta-modelling, selection and reasoning. Int. J. Inf. Manag. 2021, 58, 102018. [CrossRef]
15. Coronado, E.; Kiyokawa, T.; Ricardez, G.A.G.; Ramirez-Alpizar, I.G.; Venture, G.; Yamanobe, N. Evaluating quality in human-

robot interaction: A systematic search and classification of performance and human-centered factors, measures and metrics
towards an industry 5.0. J. Manuf. Syst. 2022, 63, 392–410. [CrossRef]

16. Portisch, J.; Hertling, S.; Paulheim, H. Visual analysis of ontology matching results with the MELT dashboard. In Proceedings of
the European Semantic Web Conference; Springer: Cham, Switzerland, 2020; pp. 186–190.

17. Amor, E.A.E.H.; Ghannouchi, S.A. Toward an ontology-based model of key performance indicators for business process
improvement. In Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications
(AICCSA), Hammamet, Tunisia, 30 October–3 November 2017; pp. 148–153.

18. Nagy, L.; Ruppert, T.; Abonyi, J. Human-centered knowledge graph-based design concept for collaborative manufacturing. In
Proceedings of the 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), Stuttgart,
Germany, 6–9 September 2022; pp. 1–8. [CrossRef]

19. Nourmohammadi, A.; Fathi, M.; Ng, A.H. Balancing and scheduling assembly lines with human-robot collaboration tasks.
Comput. Oper. Res. 2022, 140, 105674. [CrossRef]

20. Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.;
et al. Knowledge graphs. ACM Comput. Surv. 2021, 54, 1–37.

http://doi.org/10.1016/j.rcim.2021.102225
http://dx.doi.org/10.1021/jacsau.1c00438
http://www.ncbi.nlm.nih.gov/pubmed/35252980
http://dx.doi.org/10.1016/j.jmsy.2021.10.006
http://dx.doi.org/10.1109/ACCESS.2022.3182491
http://dx.doi.org/10.1007/s11192-022-04370-1
http://www.ncbi.nlm.nih.gov/pubmed/35502439
http://dx.doi.org/10.1016/j.jmsy.2022.08.002
http://dx.doi.org/10.3390/su11164371
http://dx.doi.org/10.15302/J-SSCAE-2018.04.015
http://dx.doi.org/10.1016/j.jmsy.2023.07.008
http://dx.doi.org/10.3390/app8091650
http://dx.doi.org/10.1016/j.procir.2021.11.183
http://dx.doi.org/10.1109/ACCESS.2024.3359902
http://dx.doi.org/10.1016/j.ijinfomgt.2019.10.003
http://dx.doi.org/10.1016/j.jmsy.2022.04.007
http://dx.doi.org/10.1109/ETFA52439.2022.9921484
http://dx.doi.org/10.1016/j.cor.2021.105674


Appl. Sci. 2024, 14, 3398 26 of 27

21. Dou, D.; Wang, H.; Liu, H. Semantic data mining: A survey of ontology-based approaches. In Proceedings of the 2015 IEEE 9th
International Conference on Semantic Computing (IEEE ICSC 2015), Anaheim, CA, USA, 7–9 February 2015; pp. 244–251.

22. Gardner, S.P. Ontologies and semantic data integration. Drug Discov. Today 2005, 10, 1001–1007. [CrossRef]
23. Chen, X.; Jia, S.; Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 2020, 141, 112948. [CrossRef]
24. Peruzzini, M.; Grandi, F.; Pellicciari, M. Exploring the potential of Operator 4.0 interface and monitoring. Comput. Ind. Eng. 2020,

139, 105600. [CrossRef]
25. Javaid, M.; Haleem, A. Critical components of Industry 5.0 towards a successful adoption in the field of manufacturing. J. Ind.

Integr. Manag. 2020, 5, 327–348. [CrossRef]
26. Sure, Y.; Staab, S.; Studer, R. Ontology engineering methodology. In Handbook on Ontologies; Springer: Berlin/Heidelberg,

Germany, 2009; pp. 135–152.
27. Wang, S.; Wan, J.; Li, D.; Liu, C. Knowledge reasoning with semantic data for real-time data processing in smart factory. Sensors

2018, 18, 471. [CrossRef] [PubMed]
28. Izquierdo-Domenech, J.; Linares-Pellicer, J.; Orta-Lopez, J. Towards achieving a high degree of situational awareness and multimodal

interaction with AR and semantic AI in industrial applications. Multimed. Tools Appl. 2022, 82, 15875–15901. [CrossRef]
29. Aceta, C.; Fernández, I.; Soroa, A. KIDE4I: A Generic Semantics-Based Task-Oriented Dialogue System for Human-Machine

Interaction in Industry 5.0. Appl. Sci. 2022, 12, 1192. [CrossRef]
30. ANSI/ISA-95.00.03; Enterprise-Control System Integration. Part 3: Activity Models of Manufacturing Operations Management.

International Society of Automation: Research Triangle Park, NC, USA, 2005.
31. Jaskó, S.; Skrop, A.; Holczinger, T.; Chován, T.; Abonyi, J. Development of manufacturing execution systems in accordance with

Industry 4.0 requirements: A review of standard-and ontology-based methodologies and tools. Comput. Ind. 2020, 123, 103300.
[CrossRef]

32. Grangel-González, I.; Baptista, P.; Halilaj, L.; Lohmann, S.; Vidal, M.E.; Mader, C.; Auer, S. The industry 4.0 standards landscape
from a semantic integration perspective. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8.

33. IEC 62264-1:2013; Enterprise-Control System Integration—Part 1: Models and Terminology. ISO: Geneva, Switzerland, 2013.
34. Meilin, W.; Xiangwei, Z.; Qingyun, D. An integration methodology based on SOA to enable real-time closed-loop MRP between

MES and ERP. In Proceedings of the 2010 International Conference on Computing, Control and Industrial Engineering, Wuhan,
China, 5–6 June 2010; Volume 1, pp. 101–105.

35. Fernandez, I.; Casla, P.; Esnaola, I.; Parigot, L.; Marguglio, A. Towards Adaptive, Interactive, Assistive and Collaborative
Assembly Workplaces through Semantic Technologies. In International Conference on Interoperability for Enterprise Systems and
Applications; Springer: Cham, Switzerland, 2020; pp. 39–49.

36. Drath, R.; Luder, A.; Peschke, J.; Hundt, L. AutomationML—The glue for seamless automation engineering. In Proceedings of the
2008 IEEE International Conference on Emerging Technologies and Factory Automation, Hamburg, Germany, 15–18 September 2008;
pp. 616–623.

37. Wally, B.; Huemer, C.; Mazak, A.; Wimmer, M. IEC 62264-2 for AutomationML. In Proceedings of the 5th AutomationML User
Conference, Gothenburg, Sweden, 24–25 October 2018; pp. 1–7.

38. Fechter, M.; Neb, A. From 3D product data to hybrid assembly workplace generation using the AutomationML exchange file
format. Proc. CIRP 2019, 81, 57–62. [CrossRef]

39. Ansari, F.; Khobreh, M.; Seidenberg, U.; Sihn, W. A problem-solving ontology for human-centered cyber physical production
systems. CIRP J. Manuf. Sci. Technol. 2018, 22, 91–106. [CrossRef]

40. Zhao, X.; Venkateswaran, J.; Son, Y.J. Modeling human operator decision-making in manufacturing systems using BDI agent
paradigm. In Proceedings of the IIE Annual Conference, Online, 5–9 September 2005; p. 1.

41. Steinfeld, A.; Fong, T.; Kaber, D.; Lewis, M.; Scholtz, J.; Schultz, A.; Goodrich, M. Common metrics for human-robot interaction. In
Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, Salt Lake City, UT, USA, 2–3 March 2006;
pp. 33–40.

42. Marvel, J.A.; Bagchi, S.; Zimmerman, M.; Antonishek, B. Towards effective interface designs for collaborative HRI in manufactur-
ing: Metrics and measures. ACM Trans.-Hum.-Robot. Interact. THRI 2020, 9, 1–55. [CrossRef]

43. Pereira, R.M.; Szejka, A.L.; Canciglieri, O., Jr. Ontological approach to support the horizontal and vertical information integration
in smart manufacturing systems: An experimental case in a long-life packaging factory. Front. Manuf. Technol. 2022, 2, 854155.
[CrossRef]

44. Staab, S.; Studer, R. Handbook on Ontologies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010.
45. Kendall, E.F.; McGuinness, D.L. Ontology Engineering; Morgan & Claypool Publishers: San Rafael, CA, USA, 2019.
46. Romero, D.; Stahre, J.; Wuest, T.; Noran, O.; Bernus, P.; Fast-Berglund, Å.; Gorecky, D. Towards an operator 4.0 typology: A

human-centric perspective on the fourth industrial revolution technologies. In Proceedings of the International Conference on
Computers and Industrial Engineering (CIE46), Tianjin, China, 29–31 October 2016; pp. 29–31.

47. Grüninger, M.; Fox, M.S. Methodology for the design and evaluation of ontologies. In Proceedings of the IJCAI95 Workshop on
Basic Ontological Issues in Knowledge Sharing, 13 April 1995; Volume 6, pp. 1–2.

48. D’Aquin, M.; Motta, E. Watson, more than a Semantic Web search engine. Semant. Web 2011, 2, 55–63. [CrossRef]

http://dx.doi.org/10.1016/S1359-6446(05)03504-X
http://dx.doi.org/10.1016/j.eswa.2019.112948
http://dx.doi.org/10.1016/j.cie.2018.12.047
http://dx.doi.org/10.1142/S2424862220500141
http://dx.doi.org/10.3390/s18020471
http://www.ncbi.nlm.nih.gov/pubmed/29415444
http://dx.doi.org/10.1007/s11042-022-13803-1
http://dx.doi.org/10.3390/app12031192
http://dx.doi.org/10.1016/j.compind.2020.103300
http://dx.doi.org/10.1016/j.procir.2019.03.011
http://dx.doi.org/10.1016/j.cirpj.2018.06.002
http://dx.doi.org/10.1145/3385009
http://dx.doi.org/10.3389/fmtec.2022.854155
http://dx.doi.org/10.3233/SW-2011-0031


Appl. Sci. 2024, 14, 3398 27 of 27

49. Wang, B.; Zhou, H.; Yang, G.; Li, X.; Yang, H. Human Digital Twin (HDT) driven human-cyber-physical systems: Key technologies
and applications. Chin. J. Mech. Eng. 2022, 35, 11. [CrossRef]

50. Paulheim, H. Knowledge graph refinement: A survey of approaches and evaluation methods. Semant. Web 2017, 8, 489–508.
[CrossRef]

51. Yue, L.; Niu, P.; Wang, Y. Guidelines for defining user requirement specifications (URS) of manufacturing execution system (MES)
based on ISA-95 standard. J. Phys. Conf. Ser. 2019, 1168, 032065. [CrossRef]

52. Dennis Brandl, C.J. Beyond the Pyramid: Using ISA95 for Industry 4.0 and Smart Manufacturing. 2022. Available online:
https://www.automation.com/en-us/articles/january-2022/beyond-pyramid-isa95-industry-4-0 (accessed on 14 March 2024).

53. Krüger, J.; Lien, T.K.; Verl, A. Cooperation of human and machines in assembly lines. CIRP Ann. 2009, 58, 628–646. [CrossRef]
54. Helms, E.; Schraft, R.D.; Hagele, M. rob@ work: Robot assistant in industrial environments. In Proceedings of the 11th IEEE

International Workshop on Robot and Human Interactive Communication, Berlin, Germany, 27 September 2002; pp. 399–404.
55. Schleipen, M.; Drath, R. Three-view-concept for modeling process or manufacturing plants with AutomationML. In Proceedings of the

2009 IEEE Conference on Emerging Technologies & Factory Automation, Palma de Mallorca, Spain, 22–25 September 2009; pp. 1–4.
56. Ferrer, B.R.; Ahmad, B.; Lobov, A.; Vera, D.A.; Lastra, J.L.M.; Harrison, R. An approach for knowledge-driven product, process

and resource mappings for assembly automation. In Proceedings of the 2015 IEEE International Conference on Automation
Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 1104–1109.

57. Navas-Reascos, G.E.; Romero, D.; Stahre, J.; Caballero-Ruiz, A. Wire Harness Assembly Process Supported by Collaborative
Robots: Literature Review and Call for R&D. Robotics 2022, 11, 65. [CrossRef]

58. Nagy, L.; Ruppert, T.; Löcklin, A.; Abonyi, J. Hypergraph-based analysis and design of intelligent collaborative manufacturing
space. J. Manuf. Syst. 2022, 65, 88–103. [CrossRef]

59. Yahya, M.; Breslin, J.G.; Ali, M.I. Semantic web and knowledge graphs for industry 4.0. Appl. Sci. 2021, 11, 5110. [CrossRef]
60. Janowicz, K.; Haller, A.; Cox, S.J.; Le Phuoc, D.; Lefrançois, M. SOSA: A lightweight ontology for sensors, observations, samples,

and actuators. J. Web Semant. 2019, 56, 1–10. [CrossRef]
61. Haller, A.; Janowicz, K.; Cox, S.J.; Lefrançois, M.; Taylor, K.; Le Phuoc, D.; Lieberman, J.; García-Castro, R.; Atkinson, R.; Stadler,

C. The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and
actuation. Semant. Web 2019, 10, 9–32. [CrossRef]

62. Nagy, L.; Ruppert, T.; Abonyi, J. Ontology-Based Analysis of Manufacturing Processes: Lessons Learned from the Case Study of
Wire Harness Production. Complexity 2021, 2021, 8603515 . [CrossRef]

63. Barnes, J.A.; Harary, F. Graph theory in network analysis. Soc. Netw. 1983, 5, 235–244. [CrossRef]
64. Tal, O. Overall resources effectiveness, the key for cycle time reduction & capacity improvements. In Proceedings of the GaAs

Mantech Conference, 21–24 May 2001; pp. 255–258.
65. Badawy, M.; Abd El-Aziz, A.; Idress, A.M.; Hefny, H.; Hossam, S. A survey on exploring key performance indicators. Future

Comput. Inform. J. 2016, 1, 47–52. [CrossRef]
66. DuCharme, B. Learning SPARQL: Querying and Updating with SPARQL 1.1; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2013.
67. Barabási, A.L. Network science. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2013, 371, 20120375. [CrossRef] [PubMed]
68. Zhang, W.; Wang, X.; Zhao, D.; Tang, X. Graph degree linkage: Agglomerative clustering on a directed graph. In Proceedings of

the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 428–441.
69. Liebig, T.; Maisenbacher, A.; Opitz, M.; Seyler, J.R.; Sudra, G.; Wissmann, J. Building a knowledge graph for products and

solutions in the automation industry. Comput. Sci. 2019.
70. Göppert, A.; Grahn, L.; Rachner, J.; Grunert, D.; Hort, S.; Schmitt, R.H. Pipeline for ontology-based modeling and automated

deployment of digital twins for planning and control of manufacturing systems. J. Intell. Manuf. 2021, 34, 2133–2152. [CrossRef]
71. Perrone, G. Pyvis Interactive Network Visualizations. 2018. Available online: https://pyvis.readthedocs.io/en/latest (accessed on

14 March 2024).
72. Nathan, P. kglab: A Simple Abstraction Layer in Python for Building Knowledge Graphs. 2020. Available online: https:

//github.com/DerwenAI/kglab (accessed on 14 March 2024).
73. Nathan, P. Graph-Based Approaches for Hybrid AI Solutions. 2021. Available online: https://openreview.net/forum?id=jYdC3

Pd8n2W (accessed on 14 April 2024).
74. Noy, N.F.; Crubézy, M.; Fergerson, R.W.; Knublauch, H.; Tu, S.W.; Vendetti, J.; Musen, M.A. Protégé-2000: An open-source ontology-

development and knowledge-acquisition environment. In Proceedings of the AMIA Annual Symposium Proceedings, AMIA Sym-
posium, 2003; p. 953. Availble onine: https://welch.jhmi.edu/journal?t=AMIA%20...%20Annual%20Symposium%20proceedings
(accessed on 14 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s10033-022-00680-w
http://dx.doi.org/10.3233/SW-160218
http://dx.doi.org/10.1088/1742-6596/1168/3/032065
https://www.automation.com/en-us/articles/january-2022/beyond-pyramid-isa95-industry-4-0
http://dx.doi.org/10.1016/j.cirp.2009.09.009
http://dx.doi.org/10.3390/robotics11030065
http://dx.doi.org/10.1016/j.jmsy.2022.08.001
http://dx.doi.org/10.3390/app11115110
http://dx.doi.org/10.1016/j.websem.2018.06.003
http://dx.doi.org/10.3233/SW-180320
http://dx.doi.org/10.1155/2021/8603515
http://dx.doi.org/10.1016/0378-8733(83)90026-6
http://dx.doi.org/10.1016/j.fcij.2016.04.001
http://dx.doi.org/10.1098/rsta.2012.0375
http://www.ncbi.nlm.nih.gov/pubmed/23419844
http://dx.doi.org/10.1007/s10845-021-01860-6
https://pyvis.readthedocs.io/en/latest
https://github.com/DerwenAI/kglab
https://github.com/DerwenAI/kglab
https://openreview.net/forum?id=jYdC3Pd8n2W
https://openreview.net/forum?id=jYdC3Pd8n2W
https://welch.jhmi.edu/journal?t=AMIA%20...%20Annual%20Symposium%20proceedings

	Introduction
	 State-of-the-Art—Knowledge Gap and Motivation 
	 Human-Centered Knowledge Graph-Based Concept towards Collaboration in Manufacturing 
	Manufacturing Operations Management
	Human–Robot Collaboration and Key Performance Indicators
	Design Structure of the HCKG Concept

	 Human-Centered Knowledge Graph Representation for a Wire Harness Assembly Process
	Wire Harness Assembly-Based Case Study
	Development of the Industry-Specific Human-Centered Knowledge Graph
	Discussion on KG-Based Analytics of the Use Case

	Conclusions and Future Work
	Appendix A
	Appendix B
	References

